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 A B S T R A C T

This study introduces Deep learning-based kinetic model optimization (DeePMO), a novel approach for opti-
mizing parameters in chemical kinetic models. The primary challenge lies in mapping high-dimensional kinetic 
parameters to comprehensive performance metrics derived from diverse numerical simulations, including 
ignition delay time, laminar flame speed, heat release rate, and temperature-residence time distributions in 
perfectly stirred reactors. We propose an iterative sampling-learning-inference strategy to efficiently explore 
high-dimensional parameter spaces. The approach features a hybrid deep neural network (DNN) architecture 
that combines a fully connected network for non-sequential data with a multi-grade network for sequential 
data, enabling effective utilization of performance metrics with varying distribution characteristics. DeePMO’s 
effectiveness and versatility was validated across multiple fuel models, including methane, ethane, butane, 
n-heptane, n-pentanol, ammonia, ammonia/hydrogen, and their mixtures, with parameter counts ranging 
from tens to hundreds. The validation demonstrated successful optimization in all test cases and confirmed 
the method’s flexibility in incorporating both direct experimental measurements and simulated data from 
benchmark chemistry models. An ablation study highlighted the critical role of DNN in guiding data sampling 
and optimization processes, while additional comparative experiments examined hyperparameter effects. This 
work provides a valuable tool for kinetic parameter optimization and offers insights for applying machine 
learning algorithms in combustion research.
1. Introduction

Combustion chemical kinetics is a complex nonlinear system in-
volving many elementary reactions and intermediate species, where 
calibrating rate parameters is essential [1]. For detailed models, the 
individual rate measurement and reaction-rate theory are born with 
uncertainty, let alone estimation for analogous reactions. The limited 
understanding of the physical processes can further complicate the 
model formulation [2,3]. Thus, parameter optimization becomes nec-
essary for uncertainty quantification and calibrating with experimental 
data [4]. The optimization technique becomes even more important 
for developing reduced models, as extra truncation errors are involved 
when removing redundant species and reactions from the full model. 

I This article is part of a Special issue entitled: ‘AI for Combustion’ published in Applications in Energy and Combustion Science.
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E-mail addresses: xuzhiqin@sjtu.edu.cn (Z.-Q.J. Xu), thzhang@buaa.edu.cn (T. Zhang).

The modified reaction pathway structure requires fine-tuned reaction 
rate parameters to better predict quantities of interest.

Approaches to rate parameter tuning include genetic algorithms 
(GA) [5,6], as demonstrated in the optimization of methane flames [7], 
and hydrogen/nitrogen/oxygen combustion [8], where GA achieved 
accurate predictions of flame speeds, species profiles, and ignition 
delays while streamlining mechanisms for computational efficiency. 
GA is a metaheuristic optimization method that employs principles 
of natural evolution to search for optimal parameter sets by iter-
atively evaluating and evolving populations of candidate solutions. 
Sensitivity analysis serves as a diagnostic tool to identify influential 
parameters by perturbing them and assessing changes in model re-
sponse. Current rate optimization methods often build upon sensitivity 
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analysis, extending it to higher orders to solve the inverse problem 
of uncertainty quantification. A forward problem is constructed first 
to quantify the impact of uncertainties in kinetic parameters on the 
model’s performance, such as the accuracy of predicting ignition delay 
time, laminar flame speed, or extinction stretch rate. The quantitative 
correlation between the rate parameters and the model predictions is 
formulated as the solution mapping and response surface. Advanced 
mathematical tools from informatics and data science are introduced to 
represent the high-dimensional nonlinear mapping functions, including 
the Bayesian approach [9], polynomial chaos expansion (PCE) [4], 
and high-dimensional model representation (HDMR) [10,11]. Concur-
rently, popular tools such as OptiSMOKE++ [12] and Optima++ [13,14] 
have been developed to facilitate the optimization of kinetic mecha-
nisms against experimental data. OptiSMOKE++ leverages the DAKOTA 
toolkit to employ derivative-free optimization methods, such as DI-
RECT, MADS, Solis-Wets, and pattern search, while bounding parame-
ters within their uncertainties. Optima++ uses FOCTOPUS optimization 
algorithm [15] combined with principal component analysis (PCA) to 
minimize a least squares error function.

Powerful mathematical tools facilitate the kinetic parameter opti-
mization methods. In recent years, deep learning has emerged as a 
highly successful mathematical tool in various scientific and engineer-
ing domains [16–22]. The explosive development of deep learning can 
be attributed to three main factors [23]: the availability of massive 
datasets, advancements in GPU-based computation power, and algo-
rithmic improvements. These factors benefit combustion research as 
well. Deep learning is particularly suited for studies related to reaction 
kinetics due to its ability to uncover intricate structures within reac-
tion networks and identify high-order correlations in high-dimensional 
data. When it comes to rate optimization, employing a deep neural 
network as a surrogate model using rate parameters as inputs and 
quantities of interest as outputs is a good demonstration in [24,25]. 
This training process can be seen as solving the forward problem, 
while backpropagation serves as the inverse problem. The pioneering 
works by [26] showed the advantage of using neural networks as 
surrogate models to replace PCE or HDMR, while the one-shot sampling 
strategy and one-hidden-layer structure might limit the neural network 
approximation ability of high-dimensional mapping functions. In [27], 
researchers implemented neural ODE into kinetic optimization and 
demonstrated its strong performance using temporal experiment data. 
Owoyele and Pal [28] introduced ChemNODE, embedding neural ODEs 
into chemical solvers to ensure trajectory fidelity during hydrogen-
air autoignition predictions and maintain gradient propagation for 
optimization. Fedorov et al. [29] proposed Kinetics-Constrained Neural 
ODEs, embedding thermodynamic knowledge into ANN architectures to 
enable reliable kinetic modeling with limited experimental data. Zhang 
et al. [30] advanced adaptive ANN training for high-dimensional uncer-
tainty minimization in FFCM-2 mechanisms, outperforming polynomial 
methods. Recently, Wang et al. [31] and Chen et al. [32] replaced 
MCMC with variational inference guided by ANN surrogates, achieving 
speedup in methanol kinetic optimization while resolving parameter 
covariance constraints. Zhou et al. [33] proposed the OptEx framework 
to optimize combustion models through experimental design and data 
clustering. Li et al. [34] developed the CODENN algorithm, integrating 
neural ODEs and Cantera to optimize the high-fidelity battery venting 
gas mechanism. However, developing a general and effective method 
of optimization of kinetic parameters presents significant challenges 
that remain largely unexplored. These challenges stem from the need 
to accommodate diverse performance metrics within a unified frame-
work while navigating high-dimensional parameter spaces. An ideal 
solution must be robust across different chemical systems, scalable to 
handle varying parameter quantities, compatible with heterogeneous 
data types, and capable of maintaining physical interpretability of the 
optimized parameters.

This study introduces DeePMO (Deep learning-based kinetic model 
optimization), a novel framework designed to overcome critical lim-
itations in chemical kinetic model development. DeePMO tackles the 
2 
curse of dimensionality by enabling the simultaneous optimization of 
hundreds of kinetic parameters—a significant leap from conventional 
methods typically limited to dozens. Its core innovation is an itera-
tive sampling strategy that trains sequential local DNN surrogates for 
improved sample efficiency and accuracy, paired with a hybrid DNN 
architecture integrating fully connected networks for non-sequential 
QoIs (e.g., ignition delay time) and multi-head networks for sequen-
tial data (e.g., temperature profiles in perfectly stirred reactors). This 
unified approach accommodates diverse QoIs, effectively utilizing both 
high-fidelity simulations and sparse experimental measurements, with 
rigorous validation on independent datasets to ensure reproducibility, 
robustness, and generalization.

In the subsequent sections, we substantiate these claims. The
methodology section details the DeePMO methodology, including the 
hybrid DNN architecture for diverse QoIs, iterative local surrogate 
training for sample efficiency, and rigorous uncertainty constraints to 
ensure physical plausibility, with explicit norms and error metrics for 
reproducibility. The results and discussion section validates DeePMO 
across various fuel models, including n-heptane, ammonia, and others, 
demonstrating its robust performance. Through a detailed ablation 
analysis, we prove the critical role of the deep neural network in 
achieving these capabilities and provide an in-depth kinetic analysis 
of the optimization results. Finally, we conclude by summarizing the 
key contributions of this work.

2. Methodology

2.1. Problem formulation and deep neural network design

A general chemical reaction can be written as 
𝑐1𝐶1 + 𝑐2𝐶2 +⋯ ⇌ 𝑏1𝐵1 + 𝑏2𝐵2 +⋯ , (1)

where 𝑐𝑖’s and 𝑏𝑖’s are stoichiometric coefficients and 𝐶𝑖’s and 𝐵𝑖’s are 
reactants and products, respectively.

The rate coefficient (or rate constant) of a chemical reaction can be 
expressed in the form of the Arrhenius equation, i.e., 

𝑘 = 𝐴𝑇 𝑏 exp
(

−
𝐸𝑎
𝑘𝐵𝑇

)

, (2)

where 𝐴, 𝑏, 𝐸𝑎 are the pre-exponential factor, the temperature depen-
dency exponent, and the Arrhenius energy of activation and 𝑘𝐵 is 
denoted as the Boltzmann constant. These kinetic parameters are cru-
cial for models to predict QoIs accurately in numerical simulations, 
while the comprehensive relationship between kinetic parameters and 
overall model performance is challenging to depict.

As illustrated in Fig.  1(a), the optimization process considers five 
distinct QoIs for evaluating the chemical kinetic model, which are 
defined as follows:

Ignition Delay Time (IDT): Defined as the time to the intersection 
of the baseline and the tangent at the maximum slope of the OH con-
centration profile in an adiabatic, constant-volume reactor simulating 
shock tube experiments. Due to spanning orders of magnitude, IDTs 
are analyzed on a logarithmic scale, with errors computed as absolute 
logarithmic differences (e.g., | log(𝜏sim∕𝜏exp)|).

Laminar Flame Speed (LFS): The propagation speed of a one-
dimensional, planar flame through a stationary premixture.

PSRT and PSRex: Steady-state temperature as a function of resi-
dence time (PSRT) and the residence time at flame extinction (PSRex) 
in a perfectly stirred reactor (PSR).

Mole fraction in PSR: Species mole fractions in a PSR at fixed 
residence time.

As depicted in Fig.  1(b), we employ a DNN to model the response 
surface between pre-exponential factors 𝐴 and QoIs. While the method 
can be extended to model relationships with other kinetic parameters, 
such as activation energy, this study focuses specifically on optimizing 
pre-exponential factors to demonstrate the methodology’s effectiveness. 
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Fig. 1. Overview of the DeePMO methodology through a four-part flow chart. Fig. (a) Benchmark data acquisition: DeePMO obtains optimization benchmarks 
from either experimental data or detailed model simulations. Fig. (b) Hybrid DNN architecture: fully connected network for non-sequential data (IDT, LFS, HRR, 
and PSRex) and multi-grade networks for sequential data (PSRT). Every layer of DNN is a fully connected neural network with ReLU activation. Fig. (c) Iterative 
sampling-training-optimization process. In every iteration, we generate the model pool based on the best mechanism of the previous iteration and the assistance of 
DNN. Fig. (d) shows the visualization of the optimization process across iterations, presented in two complementary subfigures. The coordinate system represents 
two representative pre-exponential factors from the kinetic model. The upper subfigure demonstrates the progressive improvement in DNN accuracy throughout 
the iterations, culminating in identifying the global minimum for model errors. The optimization trajectory is mapped as a continuous path through the parameter 
space. The lower subfigure illustrates the spatial distribution of sampled data points along this optimization trajectory, revealing the evolution of the sampling 
strategy as the algorithm converges toward optimal parameters.
The architecture implements distinct subnetworks for different types 
of QoIs. A standard fully connected network structure suffices for 
non-sequential data such as IDT. However, PSRT’s sequential nature 
necessitates a specialized network design. We implement a 𝐾-layer sub-
network for PSRT calculations, where each layer operates sequentially: 
the 𝑘th layer predicts the PSRT value at time step 𝑘 and feeds its output 
to the (𝑘+ 1)th layer, enabling adaptive prediction refinement through 
the temporal sequence. All experiments in this study use 𝐾 = 20 time 
steps.

We distinguish three versions of QoIs in our methodology: (1) 
𝑄(𝐴): QoIs calculated through numerical simulation as a function of 
pre-exponential factors 𝐴; (2) DNN(𝐴): QoIs predicted by the DNN 
3 
surrogate model; (3) 𝑄𝑏: Ground-truth benchmark QoIs, and here repre-
sents for the simulation data of detailed mechanism or experiment data. 
The DNN predicts model performance, with its loss function ̃𝑄(𝐴)
defined as the mean square error between DNN(𝐴) and 𝑄(𝐴), where 
𝜃 denotes the parameters in neural network and 𝜆 is treated as the 𝐿2

regularization coefficient in DNN training. 
̃𝑄(𝐴) = ‖DNN(𝐴) −𝑄(𝐴)‖22 + 𝜆‖𝜃‖22 (3)

Once converged, the DNN can efficiently predict QoIs for arbitrary 
combinations of kinetic parameters without requiring computationally 
expensive numerical simulations to obtain 𝑄(𝐴). The ultimate objec-
tive is to identify optimal parameters that minimize the discrepancy 
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between the optimized model’s outcome 𝑄(𝐴) and benchmark values 
𝑄𝑏. This optimization is achieved by minimizing the error function 
defined in Eq. (4), where a hyperparameter weight vector 𝝎 balances 
the relative importance of different QoIs. 

(𝐴) =
∑

𝑄
𝜔𝑄

‖

‖

‖

𝑄(𝐴) −𝑄𝑏

𝜎
‖

‖

‖∞
. (4)

We utilize the infinity norm to ensure the optimized mechanism 
performs uniformly well across all conditions of interest, with each 
target inversely weighted by its uncertainty 𝜎.

Weight hyperparameters play a pivotal role in the optimization 
process. Traditional methods often weight QoIs based on experimental 
uncertainties, assigning lower weights to higher-uncertainty targets. 
However, this approach has limitations: it lacks flexibility for user-
defined priorities, e.g., emphasizing IDT fidelity over LFS or vice versa, 
and does not directly apply to simulation data, which lack measure-
ment noise but can incorporate propagated uncertainties via condition 
variability as standard practice. To address these, DeePMO employs 
tunable weights 𝜔𝑄 between QoIs to guide optimization, alongside 
preprocessing for standardization – such as logarithmic transforms for 
IDTs and normalization by uncertainties 𝜎 – ensuring comparable errors 
across heterogeneous data types. For simulation data, we propagate 
uncertainties where applicable or set 𝜎 to the minimum experimen-
tal uncertainty for consistency, with all values documented in the 
Supplementary Information for reproducibility.

2.2. Iterative sampling-training-inference process

As illustrated in Fig.  1(c), we employ a neural network-assisted 
iterative process to search for optimal pre-exponential factors. At it-
eration 𝑡, we define several key variables. Let 𝐀𝑖 represent the 𝑖th 
model among 𝑁 optimized models, and the set {𝐀𝑖}𝑁𝑖=1 is denoted as 
the model pool. Each model contains 𝑛𝑟 reactions, with individual pre-
exponential factors denoted as 𝑎𝑖,𝑗 . Thus, 𝐀𝑖 = {𝑎𝑖,𝑗}𝑗=1...𝑛𝑟 represents 
the complete pre-exponential factor vector for a single model. These 
varying kinetic parameters across models enable the DNN to learn 
the mapping between parameters and model performance. The 𝐴∗

represents the best-performing model in the current iteration: 
𝐴∗ = argmin

𝑖
{(𝐴𝑖) ∶ 𝑖 = 1,… , 𝑁}. (5)

The adjustment range for each kinetic parameter is carefully con-
strained to ensure physical plausibility, guided by uncertainty quan-
tification (UQ). For the 𝑗th reaction, we define a maximum allowable 
adjustment bound, denoted as 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 , for the logarithm of its pre-
exponential factor, 𝑎𝑗 . This bound establishes a hard constraint on the 
parameter search space, such that the adjusted value, 𝑎′𝑗 , must remain 
within  = [log 𝑎0𝑗 − 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 , log 𝑎0𝑗 + 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 ]. The value of this non-
tunable bound, 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 , is determined based on the nature of the kinetic 
mechanism: (1) For detailed mechanisms with provided UQ, 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗
is set directly to the uncertainty factor reported for that reaction. (2) 
For detailed mechanism reactions without a specified UQ, we adopt a 
conventional approach based on prior studies [27,30] and set 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 =
1.3) For reduced mechanisms, where original UQ values are no longer 
applicable, we set a conservative, uniform bound of 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 = 1.5.

Within these hard boundaries, we introduce a separate hyperpa-
rameter, the iterative sampling range 𝑓𝑗 to control the perturbation 
magnitude during the optimization process. Before screening we uni-
formly sample [log 𝑎∗𝑗 − 𝑓𝑗 , log 𝑎∗𝑗 + 𝑓𝑗 ] ∩ . Any parameter set sampled 
outside the hard boundaries is rejected to strictly enforce physical 
constraints. For convenience, the sampling range 𝑓𝑗 is set to the same 
value for different reactions in the paper.

To ensure sample quality and reduce computational cost from nu-
merical simulations, kinetic parameter combinations are filtered based 
on DNN-identified deviations that exceed our exploration range. Draw-
ing inspiration from the principles of rejection sampling methodology, 
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the error tolerance at iteration 𝑡 is governed by a threshold hyper-
parameter 𝛩𝑄. A sample is retained only if its loss function satisfies 
̃𝑄(𝐴) < 𝛩𝑄 for all quantities of interest 𝑄 ∈ QoIs. Following filtration, 
the QoIs of retained samples are computed via numerical simulation 
using Cantera [35] and incorporated into an updated dataset for neural 
network training. As a heuristic rule, the sampling threshold monoton-
ically decreases with iteration 𝑡. We select the current best model 𝐀∗

as the temporary result of iteration 𝑡. The process terminates when the 
error function (𝐀∗) shows negligible improvement. In this work, we 
set the termination condition as when the difference in relative error 
between two consecutive iterations is less than 2%, ensuring stable 
convergence without excessive computation. The relative error will 
be calculated by |𝑄(𝐴∗)−𝑄𝑏

𝑄𝑏 |. We will also report the logarithmic error 
| log𝑄(𝐴∗) − log𝑄𝑏

| for IDT. To better illustrate our method, we provide 
its pseudo-code in Alg. 1.

Fig.  1(d) visualizes the optimization process using two complemen-
tary subfigures in a coordinate system defined by two representative 
pre-exponential factors from the kinetic model. The upper subfigure 
tracks the progressive enhancement of DNN accuracy across iterations, 
culminating in identifying the global minimum for model errors. The 
optimization trajectory appears as a continuous path through the pa-
rameter space. The lower subfigure depicts the spatial distribution 
of sampled data points along this optimization trajectory, revealing 
how the sampling strategy evolves as the algorithm converges toward 
optimal parameters. This visualization illustrates DeePMO’s ability to 
concentrate computational resources on the most influential parameter 
subspaces efficiently.

Algorithm 1 DeePMO
Input: Original mechanism 𝐴0, the size of model pool 𝑁 , the bench-

marks 𝑄𝑏, the sample range 𝑓𝑗 and max sample range 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 , 
the weight of QoIs 𝜔𝑄, threshold parameter 𝛩𝑄 and the DNN 
hyperparameters. 

1: 𝐴∗ ← 𝐴0, 𝐴∗ = (𝑎1,… , 𝑎𝑛𝑟); 
2: for 𝑖 = 1 ∶ 𝑛 do 
3: // Step 1: Generate model pool 
4: while  number of 𝐀 < 𝑁 do 
5: Generate 𝑁 samples 𝐀 uniformly in [ log 𝑎𝑗 − 𝑓𝑗 , log 𝑎𝑗 + 𝑓𝑗 ]; 
6: Filter the samples which are out of max sample range  =

[log 𝑎0𝑗 − 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 , log 𝑎0𝑗 + 𝑓𝑏𝑜𝑢𝑛𝑑,𝑗 ]; 
7: if  Iteration 𝑖 ≥ 1  then 
8: Predict the QoIs of 𝐀 By previous neural network DNN; 
9: // DNN-assistant screening
10: For all 𝐴 ∈ 𝐀, if ̃𝑄(𝐴) < 𝛩𝑄, then the sample is retained in 

model pool 𝐀.
11: end if
12: end while
13: Use Cantera to generate the QoIs 𝑄(𝐀) of model pool 𝐀.
14: end for
15: // Step 2: Train the DNN for surrogate model
16: Train the DNN with input 𝐀 and the label 𝑄(𝐀). 
17: // Step 3: Find out the best sample 
18: 𝐴∗ ← argmin

𝑖
{(𝐴𝑖) ∶ 𝑖 = 1,… , 𝑁}, with the error function 

defined in Eq. (4).
Output: The final optimized model 𝐴∗

3. Result and discussion

This section demonstrates the effectiveness of DeePMO through 
comprehensive case studies. To clarify the results presented in our 
plots, we use the following consistent terminology:

• Benchmark: Refers to the ground-truth target values for each 
QoI, sourced from cited experiments or detailed Cantera simula-
tions.
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Fig. 2. Comparison between original and optimized n-heptane models: (a) IDT (b) LFS (c) PSRT(PSRex) and (d) Mole fraction in PSR predictions. The subplots 
(a1)–(a3) show the simulation results before and after the optimization, with average relative errors reduced from 285% (logarithmic difference: 0.53) to 19.48% 
(0.07). Subplots (a4)–(a7) utilizes the experiment data from [36–39] separately, where [36] is used for optimization and [37–39] for validation. We use the baseline
from the detailed LLNL mechanism for reference. Subplots (b1)–(b4) use LFS measurements from [40]. The PSRT results come from simulation benchmarks where 
the PSR extinction time is highlighted. Subplot (d) shows the mole fraction of CO and CO2 in PSR with residence time 0.05 s. We use the simulation data as 
benchmark.
• Original: Predictions from the initial, unoptimized kinetic model 
under benchmark conditions.

• Alignment Points: Subset of benchmark data used to compute 
the loss function (𝐴) in Eq. (4) during optimization.

• Optimized: Predictions from the final optimized model when 
evaluated on a set of validation conditions. These conditions were 
held out and not used during optimization. The validation set 
includes unseen conditions in the optimization process, allowing 
us to evaluate the model’s robustness.

3.1. n-heptane model optimization using simulation and experimental data

We first examine a 27-species n-heptane model. It is derived from 
the detailed LLNL model (648 species, 4846 reactions) [41] and over-
reduced by DeePMR [42,43] until 29 species, 145 reactions, and 
152 pre-exponential factors. In this work, we optimize all of the 
pre-exponential factors. Although the reduced LLNL-29sp model (29 
species, 145 reactions, 152 pre-exponential factors) preserves core pre-
dictive capabilities, over-simplification leads to degraded performance, 
posing a high-dimensional optimization challenge. We demonstrate 
DeePMO’s efficacy in enhancing accuracy through parameter tun-
ing, validated against benchmarks from detailed-model simulations 
and cited experiments [36], with extrapolation tests on independent 
datasets [37] confirming generalization and reproducibility.
5 
The optimization targets multiple quantities of interest (QoIs). The 
alignment points for each QoI are defined as follows:

1. IDT: A total of 61 points are used, comprising 16 experimental 
conditions from Campbell et al. [36] and 45 simulation bench-
marks from the detailed mechanism. The simulation conditions 
are uniformly distributed across temperatures 𝑇 ∈ {750, 850, 950,
1050, 1700} K, pressures 𝑃 ∈ {0.5, 1, 50} atm, and equivalence 
ratios 𝜙 ∈ {0.5, 1, 2}.

2. LFS: 6 experimental points from Sileghem et al. [40] are used, 
covering 𝑇 = 298 K, 𝑃 ∈ {1, 10} atm, and 𝜙 ∈ {0.6, 1, 1.4}.

3. PSRex/PSRT: 18 points are defined by the combination of 𝑇 ∈
{298, 470} K, 𝑃 ∈ {1, 20, 50} atm, and 𝜙 ∈ {0.5, 1, 2}.

4. Mole Fractions in PSR: 45 simulation benchmarks are used 
for the profiles of CO and CO2. The conditions cover initial 
temperatures of 𝑇 ∈ {900, 1100, 1300, 1500, 1700} K, pressures of 
𝑃 ∈ {0.5, 1, 50} atm, and equivalence ratios of 𝜙 ∈ {0.5, 1, 2}.

For every iteration, we sample 𝑁 = 80,000 to construct the model 
pool, and the sample range is set as 𝑓𝑗 = 0.1. The hyperparameter 
weight 𝜔𝑄 is set as 1, 1, 0.8, 50 for IDT, PSR, LFS and mole fraction 
in PSR, respectively, to account for the disparate scales and relative 
importance of these QoIs, as informed by multi-objective balancing 
techniques in [24,25]. The DNN is trained with optimizer Adam [44] 
with learning rate lr = 2e–5 and 𝐿2 regularization coefficient 𝜆 =
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1e–2. The batch size bs is set to 2000, and the architecture scale
is 3000, 2000, 2000. We strategically adopted an over-parameterized 
network design, as evidenced by the training phase consuming less 
computational budget than sampling operations. The hyperparameters 
selection and costs are discussed in Section 3.5.

Fig.  2 compares the performance of original and optimized models: 
(a) IDT predictions, (b) LFS predictions, (c) PSRT distributions, and (d) 
mole fractions of CO and CO2 in PSR versus initial temperature. As the 
figures (a1) to (a3) illustrate, the optimization significantly improves 
model accuracy, reducing the average relative error in IDTs from 285% 
(0.53) to 19.48% (0.07) on the alignment simulation benchmarks. 
The DeePMO-optimized model generalizes well across a broad range 
of operating conditions, even when optimized on a relatively small set 
of alignment points. The model’s accuracy is particularly high at high 
temperatures. Within the NTC region, a higher density of alignment 
points was employed to capture the sharp variations in IDT. Neverthe-
less, minor deviations in the low temperature regime between some 
test points and the benchmark data are still observed. Reflecting a 
trade-off between computational cost and accuracy, no more alignment 
points were added. Overall, DeePMO exhibits excellent interpolation
capabilities for the IDT predictions.

To evaluate the extrapolation capability of the present model, it was 
further tested against experimental data from Zhang et al. [37], Shao 
et al. [38], and Liang et al. [39]. For comparison, a baseline curve, 
representing the detailed mechanism, is included to demonstrate its 
consistency with this set of experimental data. The results indicate that 
our optimized mechanism exhibits consistently excellent performance 
on the extrapolation datasets, including enhanced agreement with 
experimental LFS measurements. As specifically shown in Fig.  2(a5), 
in the negative temperature coefficient (NTC) region, our optimized 
model successfully corrects the inaccuracies of the reduced mecha-
nism and accurately reproduces the NTC phenomena observed in the 
experiments.

As for the optimization of Laminar Flame Speed (LFS), we follow 
the LFS measurements from [40]. Given that the computational cost of 
LFS is significantly higher than that of other QoIs, selecting a small 
yet representative set of alignment points is preferable. An optimal 
approach is to choose three points at a fixed temperature and pressure, 
corresponding to lean (𝜙 = 0.5), stoichiometric (𝜙 = 1.0), and rich 
(𝜙 = 1.5) equivalence ratios. While the reduced mechanism initially 
underestimates the LFS values, all test points demonstrate satisfactory 
optimization results after DeePMO.

The final temperature of a Perfectly Stirred Reactor (PSR) is strongly 
correlated with its extinction limit. As indicated in Fig.  2(c), with 
residence time decreasing, the final temperature shows a slight de-
cline before dropping abruptly at the extinction point. The reduced 
mechanism predicts a longer residence time at extinction compared to 
the detailed mechanism, which serves as the benchmark. This discrep-
ancy is likely due to the slower overall reaction rate in the reduced 
model, caused by the omission of numerous reaction pathways. Our 
method successfully aligns the extinction limit with the benchmark 
while maintaining high accuracy for the PSRT.

For the mole fraction in PSR as the QoI, we follow the settings 
from [12], where a mixture of 10% fuel/oxidizer blend and 90% 
AR is fed into a PSR at various inlet temperatures. The residence 
time is fixed at 0.05 s to measure the resulting mole fractions of 
CO and CO2. The reduced mechanism shows good agreement with 
the detailed mechanism under lean conditions (𝜙 ≤ 1), but exhibits 
significant prediction discrepancies under rich conditions (𝜙 > 1), 
especially at lower temperatures. The proposed method successfully 
preserves the performance under both lean and stoichiometric condi-
tions and enhances the prediction accuracy of species concentrations 
under rich conditions. Additionally, in recognition of the exponential 
nature of pressure dependencies, we conducted a further test to validate 
DeePMO’s performance at pressure extremes. By extending the pressure 
range to include 0.1 atm and 100 atm, we found that the optimiza-
tion capability of the method remains robust with the reduction of 
logarithmic differences from 0.40 to 0.09. More results and analysis 
of LLNL-29sp are detailed in Appendix.
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3.2. Parameter optimization for ammonia and ammonia/alcohol models

We apply DeePMO to complex fuel systems: a detailed ammonia 
model [47] and an ammonia/methanol/ethanol model [48]. These ap-
plications demonstrate the method’s ability to handle multi-component 
fuel systems with varying numbers of species. Through ablation ex-
periments, we analyze the critical role of DNN in data sampling and 
parameter phase space exploration. Third, we validate DeePMO’s ef-
fectiveness through extensive case studies spanning from methane to 
iso-octane models.

For pure ammonia combustion, we employ a mechanism devel-
oped by Zhan et al. [47], comprising 40 species, 272 reactions, and 
289 adjustable parameters. IDT and LFS were selected as QoIs, with 
experimental data serving as benchmarks for optimization. The exper-
imental data included IDT measurements from Chen et al. [45] and 
LFS measurements from Mei et al. [46]. For LFS, we used experimental 
data with an oxidizer composition of O2/N2 = 35/65, while model 
performance was additionally evaluated under air oxidizer conditions. 
We utilize 11 IDT alignment data and 6 LFS alignment data in total.

Fig.  3 presents the optimization results of the Zhan-2024 model. 
Compared to the original model, the optimized model significantly 
improves performance across all tested conditions. The average relative 
error decreases from 56.76% (0.36) to 14.19% (0.06) for IDT and 
from 12.84% to 4.23% for LFS on alignment points. We further tested 
the performance of this method on the dataset from Mei et al. [46] 
and observed a significant improvement. Additionally, we attempted to 
test the model’s LFS performance for ammonia-air mixtures. Although 
the results were not entirely satisfactory, they still represented an 
improvement over the original mechanism. This indicates limitations 
in the method’s extrapolation capability.

These improvements demonstrate DeePMO’s effectiveness in opti-
mizing ammonia combustion models. Unlike the reduced n-heptane 
(LLNL) model case in Section 3.1, this detailed ammonia model is larger 
and begins with smaller initial errors. Nevertheless, the significant 
improvements in both IDT and LFS predictions validate DeePMO’s 
effectiveness.

To further evaluate DeePMO’s capability on more complex mecha-
nisms, we tested it on the more complex CEU–NH3 model developed 
by Wang et al. [48] for ammonia/CH3OH/CH3CH2OH/air mixture, 
comprising 91 species, 444 reactions and 478 adjustable parameters, 
representing a complex C–H–O–N system. IDT was selected as the QoI 
for optimization, given the simulation efficiency. Experimental data 
from an extensive set of studies [49–51] were used, from which 44 
points were selected for training.

Fig.  4(a–c) demonstrates DeePMO’s optimization results for IDT. 
The optimized CEU–NH3 model shows significant improvements, with 
the average relative error reducing from 144.19% (0.38) to
28.56% (0.13) on alignment points. For NH3-CH3OH blending cases 
shown in (a), DeePMO substantially decreased average relative error 
from 166.80% (0.42) to 32.25% (0.15). The inclusion of NH3–H2
experimental data, which was important but omitted in the original 
model, led to dramatic improvements with just five experimental data 
points, reducing IDT average relative error from 1796.28% (1.2) to
39.37% (0.18) shown in (b). Notably, the optimization maintained 
the original model’s accurate performance for pure ammonia IDT 
predictions without degradation, as shown in (c).

However, the results in Fig.  4(b1–b2) also highlight a limitation. As 
noted, while the model perfectly captures the single alignment point in 
each set, it fails to capture the overall trend and endpoints. We concur 
that this is a direct consequence of using sparse alignment data; a single 
point provides insufficient information to constrain the slope of the IDT 
curve during optimization.

In context, the original CEU–NH3 model was not designed for 
NH3–H2 conditions, explaining its poor baseline. DeePMO’s error re-
duction remains a notable advance, yet this case emphasizes the need to 
bolster extrapolability. Improvements could include strategic alignment 
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Fig. 3. Comparison between original and optimized ammonia models (Zhan-2024). (a) Ignition delay time versus initial temperature, the experiment data of 
Chen et al. [45] is selected as the benchmark and partially for training; (b) Ignition delay time validation on the experiment data from Mei et al. [46], which is 
excluded from optimization. (c) Laminar flame speed versus equivalence ratio in oxygen-rich conditions, and (d) Laminar flame speed in air. All LFS experiment 
measurements are from Mei et al. [46].
Fig. 4. Comparison of IDT before and after optimization for CEU–NH3. Figs. (a–c) show the variation of IDT with temperature, pressure, and blending ratio under 
different types of combustible substances. The primary difference among these three figures is the type of fuel burned. (a): NH3+CH3OH. (b): NH3+H2. (c): NH3.
point selection – e.g., two or three points spanning the temperature 
range (start, middle, end) – to better inform the optimizer of system 
dynamics. Future work may also integrate physics-informed priors or 
multi-fidelity data for enhanced robustness across unseen conditions.

The iterative sampling-training-inference process is fundamental to 
the DeePMO scheme, with the DNN serving as the cornerstone for 
rapid screening and global minimum identification. Fig.  5 presents an 
ablation study comparing performance with and without DNN assis-
tance during iterative evolution, and we select the mechanism from 
Zhan et al. [47] as the target. Without DNN screening, both median 
and minimum relative errors remain nearly constant across iterations, 
indicating negligible optimization capability. In contrast, with DNN-
guided sample selection, the error decreases substantially from nearly 
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60% to below 30% within four iterations, ultimately converging to 
20% (IDT 14. 19% + LFS 4. 23%). This improvement demonstrates 
the effectiveness of DNN-based sample selection in enhancing train-
ing sample quality. The DNN screening enables efficient exploration 
of high-dimensional parameter space, facilitating optimal parameter 
combination identification.

3.3. Extensive validation across diverse fuel models

This section demonstrates the broad applicability of DeePMO in 
various combustion models. We validated the method using diverse 
fuel types: alkane models from LLNL, including C2H4, C4H10, iso-
octane [52], n-heptane model from [52], alcohols such as n-pentanol 
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Fig. 5. Ablation analysis using ammonia model [47] regarding IDT and LFS 
as QoIs. The solid line represents the median performance of dataset 𝐴(𝑡)

at each iteration 𝑡, while the dashed line shows the minimum error sample 
performance 𝐴∗. The shaded areas indicate the quartile ranges of performance 
distribution.

[53], and different models for carbon-free fuel ammonia [54–56]. The 
alkane/alcohols models are reduced by DeePMR and then optimized by 
DeePMO on IDT with the detailed mechanism LLNL as the benchmark. 
The ammonia models are detailed mechanisms, and we apply IDT 
experiment data as the benchmark from Chen et al. [45]. As demon-
strated in Fig.  6, DeePMO significantly improves the accuracy of these 
models across different scenarios. Empirically, these experiments show 
robustness under different hyperparameter settings, and we provide a 
detailed analysis in Section 3.4.

These results demonstrate that DeePMO exhibits robust optimiza-
tion capabilities across a broad spectrum of combustion mechanisms, 
whether over reduced models or detailed mechanisms against simu-
lation or experiment datasets. For complex reaction frameworks, the 
optimized relative errors can be constrained within 20%, aligning 
with the experimental measurement uncertainty of IDT under standard 
conditions. The relative errors can be further reduced to lower levels 
for mechanisms with simplified architectures.

3.4. Ablation experiment of hyperparameters

This section details the ablation studies conducted on the hyperpa-
rameters of the DeePMO methodology, focusing on critical parameters 
such as network architecture, batch size, learning rate, and the param-
eter sampling range. These systematic investigations underscore the 
robustness and effectiveness of the DeePMO algorithm across diverse 
settings. Guided by insights from prior studies on ANN-based parameter 
optimization [24,25,31], we established a baseline configuration for 
our analysis with the following specifications: a network architecture 
of [3000, 2000, 2000], a batch size of 1000, a learning rate of 1e–5, 
and a sampling range of 0.15.

We employed a controlled variable methodology for our ablation 
studies, systematically varying individual parameters while keeping 
others constant. We evaluated multiple experimental configurations 
within prescribed hyperparameter adjustment ranges and reported peak 
performance metrics from the optimization outcomes. Detailed exper-
imental findings are presented in Table  1. The ablation study reveals 
two critical insights regarding the DeePMO algorithm’s characteristics: 
(1) DeePMO demonstrates stable optimization performance across a ra-
tional hyperparameter range, exhibiting low sensitivity to architecture-
related hyperparameters while showing pronounced responsiveness to 
the sampling range 𝑓𝑗 . (2) The original network architecture contains 
substantial redundancy—preliminary experiments demonstrate that a 
90% scaled-down network (100-50-50 vs. 3000-2000-2000) maintains 
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Table 1
Hyperparameter ablation studies on DeePMO of mechanism [47]. All results 
represent the best relative error of IDT and LFS under the corresponding 
hyperparameter configurations. For the baseline setting, we have 𝑓𝑗 = 0.15,
lr = 1e−5, bs = 1000, scale = 3000, 2000, 2000.
 Ablation studies IDT (%) LFS (%) 
 Baseline 13.92 5.87  
 

Sampling range 𝑓𝑗

0.1 14.62 5.74  
 0.2 12.95 5.48  
 0.25 14.64 5.02  
 0.3 12.66 2.34  
 0.35 11.80 3.22  
 0.4 12.67 6.51  
 0.45 13.23 1.82  
 0.5 Method diverged
 Learning rate
lr

2e−6 14.95 5.26  
 5e−5 14.19 6.16  
 Batch size
bs

500 13.66 5.79  
 2000 14.38 6.56  
 Architecture scale
scale

100, 50, 50 14.27 5.85  
 50, 10, 10 Method diverged

comparable accuracy. This indicates that both the scale and com-
putational cost can be significantly reduced without compromising 
performance, suggesting that optimization outcomes are not sensitive 
to neural network sizes provided the width remains reasonably high.

Similarly with the mechanism [47], we conducted an ablation study 
on the CEU–NH3 mechanism (shown in Table  2), focusing specifically 
on the ‘sampling range’ hyperparameter 𝑓𝑗 . The results, compiled after 
nine optimization iterations, indicate that narrower sampling ranges 
tend to be less efficient. Conversely, while larger sampling ranges offer 
potential for accelerated optimization progress, they may introduce 
divergence challenges that compromise stability. More discussion and 
about role of sampling range 𝑓𝑗 could be found in Appendix.

3.5. Computational cost breakdown

The overall computational cost comprises two principal compo-
nents: (1) Screening and simulation, (2) DNN optimization. The former 
constitutes mechanism-dependent costs primarily governed by chem-
ical complexity and sampling density requirements, while the latter 
reflects hardware-accelerated training overhead. With the n-heptane 
LLNL-29sp experiment as an example, our result reveals:

Per-sample simulation costs:

1. Ignition delay time (IDT): 80 s/sample (61 thermodynamic con-
ditions)

2. Extinction time/temperature profile in Perfectly stirred reactor 
(PSRex/PSRT): 16 s/sample (27 flow configurations)

3. Laminar flame speed (LFS): 52 s/sample (6 alignment points in 
3 pressure regimes)

4. Mole fraction in PSR: 8 s/sample (45 alignment points in 3 
pressure regimes)

Large-scale parallelization: 80,000-sample campaigns require ≈2 h 
30 min using 1280 CPU cores by parallel calculation.

Neural network training: 700-epoch convergence was achieved 
in 45 min using a single NVIDIA GeForce RTX 2080 Ti with net-
work dimensions (scale) set to 3000, 2000, 2000. This time cost de-
creased to approximately 20 min when reducing network dimensions 
to 100, 50, 50.

Neural network training represents a relatively minor component 
of the overall computational demand compared to sampling processes, 
which utilize thousands of CPU cores. The simulation time for LFS cal-
culations proved to be the most computationally intensive component, 
making it prohibitively expensive for direct large-scale mechanism 
optimization (see Table  2).
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Fig. 6. Comparison of IDT relative errors before and after DeePMO optimization across various combustion models on alignment points. For the alkane 
mechanisms, a reduction was performed using the DeePMR method prior to optimization. The n-pentanol and other ammonia mechanisms were optimized 
directly from the detailed mechanisms without simplification. The number of species and the total optimized parameters are labeled in the figure.
Table 2
Hyperparameter Ablation Studies on DeePMO of CEU–NH3 [48]. All results 
represent the best relative error of IDT and LFS under the sampling range. For 
all settings, we have lr = 1e−5, bs = 1000, scale = 3000, 2000, 2000.
 Ablation studies IDT (%)  
 

Sampling range 𝑓𝑗

0.05 (baseline) 28.56  
 0.2 28.94  
 0.25 23.29  
 0.3 25.98  
 0.35 17.19  
 0.4 20.46  
 0.5 Method diverged 

4. Conclusion

This work presents DeePMO, a novel deep learning-based approach 
for optimizing chemical kinetic models. Through extensive validation 
across diverse fuel models, we have demonstrated DeePMO’s effective-
ness in improving model accuracy while maintaining computational 
efficiency. The method successfully reduced average relative errors in 
various quantities of interest across all tested models.

DeePMO’s key innovations – its iterative sampling-learning-
inference strategy and hybrid DNN architecture – effectively tackle 
core challenges in data-driven chemical kinetics optimization, includ-
ing high-dimensional spaces and heterogeneous metrics. This unified 
framework enables robust handling of diverse QoIs from simulations 
and experiments, with rigorous enforcement of physical uncertainty 
bounds (𝑓𝑏𝑜𝑢𝑛𝑑,𝑗) and tunable sampling ranges (𝑓𝑗) for plausible, ef-
ficient exploration. Ablation studies confirm DNN-guided sampling’s 
pivotal role in enhancing convergence and sample efficiency, while ex-
trapolation validations on independent datasets affirm generalization.

DeePMO’s successful application to various fuel models demon-
strates its versatility and robustness, including methane, ethane, bu-
tane, n-heptane, n-pentanol, ammonia, and their mixtures. Particu-
larly noteworthy is its performance in optimizing complex models 
like CEU–NH3, where it reduced IDT relative errors from >100% to 
20% (logarithmic differences from 0.45 to 0.09) using sparse align-
ment points, with extrapolation validations on independent datasets 
confirming generalization without overfitting. The method’s capability 
to incorporate both experimental measurements and simulation data 
further enhances its practical utility.

These results establish DeePMO as a powerful, scalable tool for 
combustion model optimization, with demonstrated robustness across 
high-dimensional mechanisms and diverse QoIs. Limitations include 
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potential challenges in capturing trends with highly sparse alignment 
data, as observed in single-point cases, underscoring the need for 
strategic QoI selection to ensure well-posed problems and uncorrelated 
constraints. Future work could extend the method to additional com-
bustion characteristics, more complex fuel mixtures, and integrated 
algorithms for optimal data point curation, further broadening its 
applicability in combustion chemistry research.

CRediT authorship contribution statement

Pengxiao Lin: Writing – review & editing, Writing – original draft, 
Visualization, Methodology, Investigation, Formal analysis, Data cu-
ration, Conceptualization. Yuntian Zhou: Writing – original draft, 
Investigation, Data curation. Zhiwei Wang: Data curation, Conceptual-
ization. Weizong Wang: Supervision, Resources, Funding acquisition. 
Zheng Chen: Supervision, Resources, Funding acquisition. Zhi-Qin 
John Xu: Writing – review & editing, Writing – original draft, Su-
pervision, Resources, Methodology, Formal analysis. Tianhan Zhang: 
Writing – review & editing, Supervision, Formal analysis, Data curation, 
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

This work is sponsored by the National Natural Science Foundation 
of China Grant No. 92470127, 12371511, 92270203, the National Key 
R&D Program of China Grant No. 2019YFA0709503, and the Open 
Project of the National Key Laboratory of Scramjet Technology No. 
WDZC6142703202403.

Appendix A. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.jaecs.2025.100402.

Data availability

Data will be made available on request.

https://doi.org/10.1016/j.jaecs.2025.100402


P. Lin et al. Applications in Energy and Combustion Science 24 (2025) 100402 
References

[1] Frenklach M, Wang H, Rabinowitz MJ. Optimization and analysis of large 
chemical kinetic mechanisms using the solution mapping method—combustion 
of methane. Prog Energy Combust Sci 1992;18(1):47–73. http://dx.doi.org/
10.1016/0360-1285(92)90032-V, URL https://www.sciencedirect.com/science/
article/pii/036012859290032V.

[2] Zhang T, Susa AJ, Hanson RK, Ju Y. Studies of the dynamics of autoignition as-
sisted outwardly propagating spherical cool and double flames under shock-tube 
conditions. Proc Combust Inst 2020;1–9. http://dx.doi.org/10.1016/j.proci.2020.
06.089, URL https://linkinghub.elsevier.com/retrieve/pii/S1540748920301449. 
GSCC: 0000028 Publisher: Elsevier Inc.

[3] Zhang T, Susa AJ, Hanson RK, Ju Y. Two-dimensional simulation of cool and 
double flame formation induced by the laser ignition under shock-tube con-
ditions. Proc Combust Inst 2022;39:4. http://dx.doi.org/10.1016/j.proci.2022.
08.068, URL https://linkinghub.elsevier.com/retrieve/pii/S1540748922003492. 
GSCC: 0000012.

[4] Wang H, Sheen DA. Combustion kinetic model uncertainty quantification, 
propagation and minimization. Prog Energy Combust Sci 2015;47:1–31. http:
//dx.doi.org/10.1016/j.pecs.2014.10.002.

[5] Elliott L, Ingham D, Kyne A, Mera N, Pourkashanian M, Wilson C. Genetic algo-
rithms for optimisation of chemical kinetics reaction mechanisms. Prog Energy 
Combust Sci 2004;30(3):297–328. http://dx.doi.org/10.1016/j.pecs.2004.02.002, 
URL https://www.sciencedirect.com/science/article/pii/S0360128504000115.

[6] Kelly M, Fortune M, Bourque G, Dooley S. Machine learned compact kinetic 
models for methane combustion. Combust Flame 2023;253:112755. http://dx.
doi.org/10.1016/j.combustflame.2023.112755.

[7] Polifke W, Geng W, Döbbeling K. Optimization of rate coefficients for 
simplified reaction mechanisms with genetic algorithms. Combust Flame 
1998;113(1):119–34. http://dx.doi.org/10.1016/S0010-2180(97)00212-5, URL 
https://www.sciencedirect.com/science/article/pii/S0010218097002125.

[8] Harris S, Elliott L, Ingham D, Pourkashanian M, Wilson C. The optimisation of 
reaction rate parameters for chemical kinetic modelling of combustion using ge-
netic algorithms. Comput Methods Appl Mech Engrg 2000;190(8):1065–90. http:
//dx.doi.org/10.1016/S0045-7825(99)00466-1, URL https://www.sciencedirect.
com/science/article/pii/S0045782599004661.

[9] Kim K, Wiersema PW, Ryu JI, Mayhew E, Temme J, Kweon C-B, Lee T. Data-
driven approaches to optimize chemical kinetic models. In: AIAA SCITECH 2022 
forum. AIAA sciTech forum, American Institute of Aeronautics and Astronautics; 
2021, http://dx.doi.org/10.2514/6.2022-0225.

[10] Li G, Rosenthal C, Rabitz H. High dimensional model representations. J Phys 
Chem 2001;105(33):7765–77. http://dx.doi.org/10.1021/jp010450t.

[11] Ziehn T, Tomlin AS. A global sensitivity study of sulfur chemistry in a premixed 
methane flame model using HDMR. Int J Chem Kinet 2008;40(11):742–53. 
http://dx.doi.org/10.1002/kin.20367.

[12] Fürst M, Bertolino A, Cuoci A, Faravelli T, Frassoldati A, Parente A. Op-
tiSMOKE++: A toolbox for optimization of chemical kinetic mechanisms. Comput 
Phys Comm 2021;264:107940. http://dx.doi.org/10.1016/j.cpc.2021.107940, 
URL https://www.sciencedirect.com/science/article/pii/S0010465521000680.

[13] Papp M, Varga T, Busai Á, Zsély IG, Nagy T, Turányi T. Optima++ v2.1: A 
general C++ framework for performing combustion simulations and mechanism 
optimization. 2021.

[14] Turányi T, Nagy T, Zsély IG, Cserháti M, Varga T, Szabó BT, Sedyó I, Kiss PT, 
Zempléni A, Curran HJ. Determination of rate parameters based on both direct 
and indirect measurements. Int J Chem Kinet 2012;44(5):284–302. http://dx.doi.
org/10.1002/kin.20717, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/
kin.20717. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.20717.

[15] Goitom SK, Papp M, Kovács M, Nagy T, Zsély IG, Turányi T, Pál L. Efficient nu-
merical methods for the optimisation of large kinetic reaction mechanisms. Com-
bust Theory Model 2022;26(6):1071–97. http://dx.doi.org/10.1080/13647830.
2022.2110945, arXiv:https://doi.org/10.1080/13647830.2022.2110945.

[16] Seo J, Kim S, Jalalvand A, Conlin R, Rothstein A, Abbate J, Erickson K, 
Wai J, Shousha R, Kolemen E. Avoiding fusion plasma tearing instability with 
deep reinforcement learning. Nature 2024. http://dx.doi.org/10.1038/s41586-
024-07024-9.

[17] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasu-
vunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, 
Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, 
Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, 
Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, 
Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. 
Nature 2021;596(7873):583–9. http://dx.doi.org/10.1038/s41586-021-03819-2.

[18] Zhang T, Zhang Y, E W, Ju Y. DLODE: a deep learning-based ODE solver for 
chemistry kinetics. In: AIAA scitech 2021 forum. American Institute of Aero-
nautics and Astronautics; 2021, http://dx.doi.org/10.2514/6.2021-1139, GSCC: 
0000011. arXiv:2012.12654. URL http://arxiv.org/abs/2012.12654.

[19] Zhang T, Yi Y, Xu Y, Chen ZX, Zhang Y, E W, Xu Z-QJ. A multi-scale sampling 
method for accurate and robust deep neural network to predict combustion 
chemical kinetics. Combust Flame 2022;245:112319. http://dx.doi.org/10.1016/
j.combustflame.2022.112319, URL https://linkinghub.elsevier.com/retrieve/pii/
10 
S0010218022003340. GSCC: 0000069 TLDR: The results reveal that the DNN 
trained by the manifold data can capture the chemical kinetics in limited 
configurations but cannot remain robust toward perturbation, which is inevitable 
for theDNN coupled with the flow field.

[20] Wang T, Yi Y, Yao J, Xu Z-QJ, Zhang T, Chen Z. Enforcing physical conservation 
in neural network surrogate models for complex chemical kinetics. Com-
bust Flame 2025;275:114105. http://dx.doi.org/10.1016/j.combustflame.2025.
114105, URL https://linkinghub.elsevier.com/retrieve/pii/S0010218025001439. 
GSCC: 0000003 TLDR: This work proposes a novel ANN approach with hard 
physical constraints (ANN-hard) for chemical source term calculations that 
strictly enforce conservation laws (mass, energy, and element) and demonstrates 
superior stability and physical accuracy by preventing error accumulation.

[21] Yao J, Yi Y, Hang L, Wang W, Zhang Y, Zhang T, Xu Z-QJ, et al. Solv-
ing multiscale dynamical systems by deep learning. Comput Phys Comm 
2025;109802.

[22] Zhang X, Yi Y, Wang L, Xu Z-QJ, Zhang T, Zhou Y. Deep neural networks 
for modeling astrophysical nuclear reacting flows. 2025, arXiv preprint arXiv:
2504.14180.

[23] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44. 
http://dx.doi.org/10.1038/nature14539.

[24] Ji W, Su X, Pang B, Li Y, Ren Z, Deng S. SGD-based optimization in modeling 
combustion kinetics: Case studies in tuning mechanistic and hybrid kinetic 
models. Fuel 2022;324:124560. http://dx.doi.org/10.1016/j.fuel.2022.124560.

[25] Oh J-H, Wiersema P, Kim K, Mayhew E, Temme J, Kweon C-B, Lee T. Fast 
uncertainty reduction of chemical kinetic models with complex spaces using 
hybrid response-surface networks. Combust Flame 2023;253:112772. http://dx.
doi.org/10.1016/j.combustflame.2023.112772.

[26] Li S, Yang B, Qi F. Accelerate global sensitivity analysis using artificial neural 
network algorithm: Case studies for combustion kinetic model. Combust Flame 
2016;168:53–64. http://dx.doi.org/10.1016/j.combustflame.2016.03.028.

[27] Su X, Ji W, An J, Ren Z, Deng S, Law CK. Kinetics parameter optimization 
of hydrocarbon fuels via neural ordinary differential equations. Combust Flame 
2023;251:112732. http://dx.doi.org/10.1016/j.combustflame.2023.112732.

[28] Owoyele O, Pal P. ChemNODE: A neural ordinary differential equations frame-
work for efficient chemical kinetic solvers. Energy AI 2022;7:100118. http://
dx.doi.org/10.1016/j.egyai.2021.100118, URL https://www.sciencedirect.com/
science/article/pii/S2666546821000677.

[29] Fedorov A, Perechodjuk A, Linke D. Kinetics-constrained neural ordinary differen-
tial equations: Artificial neural network models tailored for small data to boost 
kinetic model development. Chem Eng J 2023;477:146869. http://dx.doi.org/
10.1016/j.cej.2023.146869, URL https://www.sciencedirect.com/science/article/
pii/S1385894723056000.

[30] Zhang Y, Dong W, Vandewalle LA, Xu R, Smith GP, Wang H. Neural network 
approach to response surface development for reaction model optimization 
and uncertainty minimization. Combust Flame 2023;251:112679. http://dx.doi.
org/10.1016/j.combustflame.2023.112679, URL https://www.sciencedirect.com/
science/article/pii/S0010218023000640.

[31] Wang Y, Liu C, Tao C, Law CK, Yang B. Efficient combustion kinetic parameter 
optimization via variational inference. Proc Combust Inst 2024;40(1):105550. 
http://dx.doi.org/10.1016/j.proci.2024.105550, URL https://www.sciencedirect.
com/science/article/pii/S1540748924003584.

[32] Chen H, Li Q, Deng S. Fast QoI-Oriented Bayesian experimental design with 
unified neural response surfaces for kinetic uncertainty reduction. Energy Fuels 
2024;38(16):15630–41. http://dx.doi.org/10.1021/acs.energyfuels.4c02299.

[33] Zhou Z, Lin K, Wang Y, Wang J, Law CK, Yang B. OptEx: An integrated 
framework for experimental design and combustion kinetic model optimization. 
Combust Flame 2022;245:112298. http://dx.doi.org/10.1016/j.combustflame.
2022.112298, URL https://www.sciencedirect.com/science/article/pii/
S0010218022003133.

[34] Li M, Hu H, Lu L, Zhang H. Development of compact mechanism for lithium-
ion battery venting gas fires using cantera ordinary differential equation neural 
network algorithm. Appl Energy Combust Sci 2025;22:100326. http://dx.doi.
org/10.1016/j.jaecs.2025.100326, URL https://www.sciencedirect.com/science/
article/pii/S2666352X25000081.

[35] Goodwin DG, Speth RL, Moffat HK, Weber BW. Cantera: An object-oriented 
software toolkit for chemical kinetics, thermodynamics, and transport processes. 
2021, http://dx.doi.org/10.5281/zenodo.4527812.

[36] Campbell MF, Wang S, Davidson DF, Hanson RK. Shock tube study of normal 
heptane first-stage ignition near 3.5 Atm. Combust Flame 2018;198:376–92. 
http://dx.doi.org/10.1016/j.combustflame.2018.08.008.

[37] Zhang D, Wang Y, Zhang C, Li P, Li X. Experimental and numerical investigation 
of vitiation effects on the auto-ignition of n-heptane at high temperatures. 
Energy 2019;174:922–31. http://dx.doi.org/10.1016/j.energy.2019.03.035, URL 
https://www.sciencedirect.com/science/article/pii/S0360544219304396.

[38] Shao J, Choudhary R, Peng Y, Davidson DF, Hanson RK. A shock tube study of 
n-heptane, iso-octane, n-dodecane and iso-octane/n-dodecane blends oxidation at 
elevated pressures and intermediate temperatures. Fuel 2019;243:541–53. http:
//dx.doi.org/10.1016/j.fuel.2019.01.152, URL https://www.sciencedirect.com/
science/article/pii/S001623611930153X.

http://dx.doi.org/10.1016/0360-1285(92)90032-V
http://dx.doi.org/10.1016/0360-1285(92)90032-V
http://dx.doi.org/10.1016/0360-1285(92)90032-V
https://www.sciencedirect.com/science/article/pii/036012859290032V
https://www.sciencedirect.com/science/article/pii/036012859290032V
https://www.sciencedirect.com/science/article/pii/036012859290032V
http://dx.doi.org/10.1016/j.proci.2020.06.089
http://dx.doi.org/10.1016/j.proci.2020.06.089
http://dx.doi.org/10.1016/j.proci.2020.06.089
https://linkinghub.elsevier.com/retrieve/pii/S1540748920301449
http://dx.doi.org/10.1016/j.proci.2022.08.068
http://dx.doi.org/10.1016/j.proci.2022.08.068
http://dx.doi.org/10.1016/j.proci.2022.08.068
https://linkinghub.elsevier.com/retrieve/pii/S1540748922003492
http://dx.doi.org/10.1016/j.pecs.2014.10.002
http://dx.doi.org/10.1016/j.pecs.2014.10.002
http://dx.doi.org/10.1016/j.pecs.2014.10.002
http://dx.doi.org/10.1016/j.pecs.2004.02.002
https://www.sciencedirect.com/science/article/pii/S0360128504000115
http://dx.doi.org/10.1016/j.combustflame.2023.112755
http://dx.doi.org/10.1016/j.combustflame.2023.112755
http://dx.doi.org/10.1016/j.combustflame.2023.112755
http://dx.doi.org/10.1016/S0010-2180(97)00212-5
https://www.sciencedirect.com/science/article/pii/S0010218097002125
http://dx.doi.org/10.1016/S0045-7825(99)00466-1
http://dx.doi.org/10.1016/S0045-7825(99)00466-1
http://dx.doi.org/10.1016/S0045-7825(99)00466-1
https://www.sciencedirect.com/science/article/pii/S0045782599004661
https://www.sciencedirect.com/science/article/pii/S0045782599004661
https://www.sciencedirect.com/science/article/pii/S0045782599004661
http://dx.doi.org/10.2514/6.2022-0225
http://dx.doi.org/10.1021/jp010450t
http://dx.doi.org/10.1002/kin.20367
http://dx.doi.org/10.1016/j.cpc.2021.107940
https://www.sciencedirect.com/science/article/pii/S0010465521000680
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb13
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb13
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb13
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb13
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb13
http://dx.doi.org/10.1002/kin.20717
http://dx.doi.org/10.1002/kin.20717
http://dx.doi.org/10.1002/kin.20717
https://onlinelibrary.wiley.com/doi/pdf/10.1002/kin.20717
https://onlinelibrary.wiley.com/doi/pdf/10.1002/kin.20717
https://onlinelibrary.wiley.com/doi/pdf/10.1002/kin.20717
https://onlinelibrary.wiley.com/doi/abs/10.1002/kin.20717
http://dx.doi.org/10.1080/13647830.2022.2110945
http://dx.doi.org/10.1080/13647830.2022.2110945
http://dx.doi.org/10.1080/13647830.2022.2110945
https://doi.org/10.1080/13647830.2022.2110945
http://dx.doi.org/10.1038/s41586-024-07024-9
http://dx.doi.org/10.1038/s41586-024-07024-9
http://dx.doi.org/10.1038/s41586-024-07024-9
http://dx.doi.org/10.1038/s41586-021-03819-2
http://dx.doi.org/10.2514/6.2021-1139
http://arxiv.org/abs/2012.12654
http://arxiv.org/abs/2012.12654
http://dx.doi.org/10.1016/j.combustflame.2022.112319
http://dx.doi.org/10.1016/j.combustflame.2022.112319
http://dx.doi.org/10.1016/j.combustflame.2022.112319
https://linkinghub.elsevier.com/retrieve/pii/S0010218022003340
https://linkinghub.elsevier.com/retrieve/pii/S0010218022003340
https://linkinghub.elsevier.com/retrieve/pii/S0010218022003340
http://dx.doi.org/10.1016/j.combustflame.2025.114105
http://dx.doi.org/10.1016/j.combustflame.2025.114105
http://dx.doi.org/10.1016/j.combustflame.2025.114105
https://linkinghub.elsevier.com/retrieve/pii/S0010218025001439
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb21
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb21
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb21
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb21
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb21
http://arxiv.org/abs/2504.14180
http://arxiv.org/abs/2504.14180
http://arxiv.org/abs/2504.14180
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.fuel.2022.124560
http://dx.doi.org/10.1016/j.combustflame.2023.112772
http://dx.doi.org/10.1016/j.combustflame.2023.112772
http://dx.doi.org/10.1016/j.combustflame.2023.112772
http://dx.doi.org/10.1016/j.combustflame.2016.03.028
http://dx.doi.org/10.1016/j.combustflame.2023.112732
http://dx.doi.org/10.1016/j.egyai.2021.100118
http://dx.doi.org/10.1016/j.egyai.2021.100118
http://dx.doi.org/10.1016/j.egyai.2021.100118
https://www.sciencedirect.com/science/article/pii/S2666546821000677
https://www.sciencedirect.com/science/article/pii/S2666546821000677
https://www.sciencedirect.com/science/article/pii/S2666546821000677
http://dx.doi.org/10.1016/j.cej.2023.146869
http://dx.doi.org/10.1016/j.cej.2023.146869
http://dx.doi.org/10.1016/j.cej.2023.146869
https://www.sciencedirect.com/science/article/pii/S1385894723056000
https://www.sciencedirect.com/science/article/pii/S1385894723056000
https://www.sciencedirect.com/science/article/pii/S1385894723056000
http://dx.doi.org/10.1016/j.combustflame.2023.112679
http://dx.doi.org/10.1016/j.combustflame.2023.112679
http://dx.doi.org/10.1016/j.combustflame.2023.112679
https://www.sciencedirect.com/science/article/pii/S0010218023000640
https://www.sciencedirect.com/science/article/pii/S0010218023000640
https://www.sciencedirect.com/science/article/pii/S0010218023000640
http://dx.doi.org/10.1016/j.proci.2024.105550
https://www.sciencedirect.com/science/article/pii/S1540748924003584
https://www.sciencedirect.com/science/article/pii/S1540748924003584
https://www.sciencedirect.com/science/article/pii/S1540748924003584
http://dx.doi.org/10.1021/acs.energyfuels.4c02299
http://dx.doi.org/10.1016/j.combustflame.2022.112298
http://dx.doi.org/10.1016/j.combustflame.2022.112298
http://dx.doi.org/10.1016/j.combustflame.2022.112298
https://www.sciencedirect.com/science/article/pii/S0010218022003133
https://www.sciencedirect.com/science/article/pii/S0010218022003133
https://www.sciencedirect.com/science/article/pii/S0010218022003133
http://dx.doi.org/10.1016/j.jaecs.2025.100326
http://dx.doi.org/10.1016/j.jaecs.2025.100326
http://dx.doi.org/10.1016/j.jaecs.2025.100326
https://www.sciencedirect.com/science/article/pii/S2666352X25000081
https://www.sciencedirect.com/science/article/pii/S2666352X25000081
https://www.sciencedirect.com/science/article/pii/S2666352X25000081
http://dx.doi.org/10.5281/zenodo.4527812
http://dx.doi.org/10.1016/j.combustflame.2018.08.008
http://dx.doi.org/10.1016/j.energy.2019.03.035
https://www.sciencedirect.com/science/article/pii/S0360544219304396
http://dx.doi.org/10.1016/j.fuel.2019.01.152
http://dx.doi.org/10.1016/j.fuel.2019.01.152
http://dx.doi.org/10.1016/j.fuel.2019.01.152
https://www.sciencedirect.com/science/article/pii/S001623611930153X
https://www.sciencedirect.com/science/article/pii/S001623611930153X
https://www.sciencedirect.com/science/article/pii/S001623611930153X


P. Lin et al. Applications in Energy and Combustion Science 24 (2025) 100402 
[39] Liang J, Zhang Z, Li G, Wan Q, Xu L, Fan S. Experimental and kinetic studies 
of ignition processes of the methane–n-heptane mixtures. Fuel 2019;235:522–9. 
http://dx.doi.org/10.1016/j.fuel.2018.08.041, URL https://www.sciencedirect.
com/science/article/pii/S001623611831411X.

[40] Sileghem L, Alekseev VA, Vancoillie J, Van Geem KM, Nilsson EJK, Verhelst S, 
Konnov AA. Laminar burning velocity of gasoline and the gasoline surrogate 
components iso-octane, n-heptane and toluene. Fuel 2013;112:355–65. http:
//dx.doi.org/10.1016/j.fuel.2013.05.049.

[41] Mehl M, Pitz WJ, Westbrook CK, Curran HJ. Kinetic modeling of gasoline 
surrogate components and mixtures under engine conditions. Proc Combust Inst 
2011;33(1):193–200. http://dx.doi.org/10.1016/j.proci.2010.05.027.

[42] Wang Z, Zhang Y, Lin P, Zhao E, E W, Zhang T, Xu Z-QJ. Deep mecha-
nism reduction (DeePMR) method for fuel chemical kinetics. Combust Flame 
2024;261:113286. http://dx.doi.org/10.1016/j.combustflame.2023.113286.

[43] Song Y, Shen W, Bai S, Li S, Liang X, Shao J, Liu Z, Feng G, Zhao C, He X, 
Li Y, Liang J, Guan X, Zhang T, Wang Z, Xu Z-QJ, Chen D, Wang K. Modeling 
combustion chemistry of China aviation kerosene (RP-3) through the Hy-
Chem approach. Combust Flame 2025;280:114339. http://dx.doi.org/10.1016/
j.combustflame.2025.114339, URL https://linkinghub.elsevier.com/retrieve/pii/
S0010218025003761.

[44] Kingma DP, Ba J. Adam: A method for stochastic optimization. 2017, arXiv:
1412.6980. URL https://arxiv.org/abs/1412.6980.

[45] Chen J, Jiang X, Qin X, Huang Z. Effect of hydrogen blending on the high tem-
perature auto-ignition of ammonia at elevated pressure. Fuel 2021;287:119563. 
http://dx.doi.org/10.1016/j.fuel.2020.119563.

[46] Mei B, Zhang X, Ma S, Cui M, Guo H, Cao Z, Li Y. Experimental and 
kinetic modeling investigation on the laminar flame propagation of ammonia 
under oxygen enrichment and elevated pressure conditions. Combust Flame 
2019;210:236–46. http://dx.doi.org/10.1016/j.combustflame.2019.08.033, URL 
https://www.sciencedirect.com/science/article/pii/S0010218019303979.

[47] Zhan H, Li S, Yin G, Hu E, Huang Z. Experimental and kinetic study of 
ammonia oxidation and NOx emissions at elevated pressures. Combust Flame 
2024;263:113129. http://dx.doi.org/10.1016/j.combustflame.2023.113129.
11 
[48] Wang Z, Han X, He Y, Zhu R, Zhu Y, Zhou Z, Cen K. Experimental and 
kinetic study on the laminar burning velocities of NH3 mixing with CH3OH 
and C2H5OH in premixed flames. Combust Flame 2021;229:111392.

[49] He X, Shu B, Nascimento D, Moshammer K, Costa M, Fernandes R. Auto-
ignition kinetics of ammonia and ammonia/hydrogen mixtures at intermediate 
temperatures and high pressures. Combust Flame 2019;206:189–200. http://dx.
doi.org/10.1016/j.combustflame.2019.04.050.

[50] Li X, Ma Z, Jin Y, Wang X, Xi Z, Hu S, Chu X. Effect of methanol blending on 
the high-temperature auto-ignition of ammonia: An experimental and modeling 
study. Fuel 2023;339:126911. http://dx.doi.org/10.1016/j.fuel.2022.126911.

[51] Mathieu O, Petersen EL. Experimental and modeling study on the high-
temperature oxidation of ammonia and related NOx chemistry. Combust Flame 
2015;162(3):554–70. http://dx.doi.org/10.1016/j.combustflame.2014.08.022.

[52] Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK. A comprehensive modeling study 
of iso-octane oxidation. Combust Flame 2002;129(3):253–80. http://dx.doi.org/
10.1016/S0010-2180(01)00373-X.

[53] Huang H, Lv D, Zhu J, Chen Y, Zhu Z, Pan M, Huang R, Jia C. Development 
and validation of a new reduced diesel/n-pentanol mechanism for diesel engine 
applications. Energy Fuels 2018;32(9):9934–48. http://dx.doi.org/10.1021/acs.
energyfuels.8b02083.

[54] Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H. 
Experimental and numerical study of the laminar burning velocity of 
CH4–NH3–air premixed flames. Combust Flame 2018;187:185–98. http://dx.doi.
org/10.1016/j.combustflame.2017.09.002.

[55] Otomo J, Koshi M, Mitsumori T, Iwasaki H, Yamada K. Chemical ki-
netic modeling of ammonia oxidation with improved reaction mechanism for 
ammonia/air and ammonia/hydrogen/air combustion. Int J Hydrog Energy 
2018;43(5):3004–14. http://dx.doi.org/10.1016/j.ijhydene.2017.12.066.

[56] Stagni A, Cavallotti C, Arunthanayothin S, Song Y, Herbinet O, Battin-Leclerc F, 
Faravelli T. An experimental, theoretical and kinetic-modeling study of the gas-
phase oxidation of ammonia. React Chem Eng 2020;5:696–711. http://dx.doi.
org/10.1039/C9RE00429G.

http://dx.doi.org/10.1016/j.fuel.2018.08.041
https://www.sciencedirect.com/science/article/pii/S001623611831411X
https://www.sciencedirect.com/science/article/pii/S001623611831411X
https://www.sciencedirect.com/science/article/pii/S001623611831411X
http://dx.doi.org/10.1016/j.fuel.2013.05.049
http://dx.doi.org/10.1016/j.fuel.2013.05.049
http://dx.doi.org/10.1016/j.fuel.2013.05.049
http://dx.doi.org/10.1016/j.proci.2010.05.027
http://dx.doi.org/10.1016/j.combustflame.2023.113286
http://dx.doi.org/10.1016/j.combustflame.2025.114339
http://dx.doi.org/10.1016/j.combustflame.2025.114339
http://dx.doi.org/10.1016/j.combustflame.2025.114339
https://linkinghub.elsevier.com/retrieve/pii/S0010218025003761
https://linkinghub.elsevier.com/retrieve/pii/S0010218025003761
https://linkinghub.elsevier.com/retrieve/pii/S0010218025003761
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1016/j.fuel.2020.119563
http://dx.doi.org/10.1016/j.combustflame.2019.08.033
https://www.sciencedirect.com/science/article/pii/S0010218019303979
http://dx.doi.org/10.1016/j.combustflame.2023.113129
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb48
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb48
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb48
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb48
http://refhub.elsevier.com/S2666-352X(25)00083-4/sb48
http://dx.doi.org/10.1016/j.combustflame.2019.04.050
http://dx.doi.org/10.1016/j.combustflame.2019.04.050
http://dx.doi.org/10.1016/j.combustflame.2019.04.050
http://dx.doi.org/10.1016/j.fuel.2022.126911
http://dx.doi.org/10.1016/j.combustflame.2014.08.022
http://dx.doi.org/10.1016/S0010-2180(01)00373-X
http://dx.doi.org/10.1016/S0010-2180(01)00373-X
http://dx.doi.org/10.1016/S0010-2180(01)00373-X
http://dx.doi.org/10.1021/acs.energyfuels.8b02083
http://dx.doi.org/10.1021/acs.energyfuels.8b02083
http://dx.doi.org/10.1021/acs.energyfuels.8b02083
http://dx.doi.org/10.1016/j.combustflame.2017.09.002
http://dx.doi.org/10.1016/j.combustflame.2017.09.002
http://dx.doi.org/10.1016/j.combustflame.2017.09.002
http://dx.doi.org/10.1016/j.ijhydene.2017.12.066
http://dx.doi.org/10.1039/C9RE00429G
http://dx.doi.org/10.1039/C9RE00429G
http://dx.doi.org/10.1039/C9RE00429G

	DeePMO: An iterative deep learning framework for high-dimensional kinetic parameter optimization
	Introduction
	Methodology
	Problem formulation and deep neural network design
	Iterative sampling-training-inference process

	Result and discussion
	n-Heptane model optimization using simulation and experimental data
	Parameter optimization for ammonia and ammonia/alcohol models
	Extensive validation across diverse fuel models
	Ablation experiment of hyperparameters
	Computational cost breakdown

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	Data availability
	References




