
RESEARCH ARTICLE

Data-informed deep optimization

Lulu ZhangID
1, Zhi-Qin John Xu1,2*, Yaoyu ZhangID

1,2,3*

1 School of Mathematical Sciences, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai,

China, 2 MOE-LSC and Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China,

3 Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China

* xuzhiqin@sjtu.edu.cn (ZQJX); zhyy.sjtu@sjtu.edu.cn (YZ)

Abstract

Motivated by the impressive success of deep learning in a wide range of scientific and indus-

trial applications, we explore in this work the application of deep learning into a specific class

of optimization problems lacking explicit formulas for both objective function and constraints.

Such optimization problems exist in many design problems, e.g., rotor profile design, in

which objective and constraint values are available only through experiment or simulation.

They are especially challenging when design parameters are high-dimensional due to the

curse of dimensionality. In this work, we propose a data-informed deep optimization (DiDo)

approach emphasizing on the adaptive fitting of the the feasible region as follows. First, we

propose a deep neural network (DNN) based adaptive fitting approach to learn an accurate

DNN classifier of the feasible region. Second, we use the DNN classifier to efficiently sample

feasible points and train a DNN surrogate of the objective function. Finally, we find optimal

points of the DNN surrogate optimization problem by gradient descent. To demonstrate the

effectiveness of our DiDo approach, we consider a practical design case in industry, in

which our approach yields good solutions using limited size of training data. We further use

a 100-dimension toy example to show the effectiveness of our approach for higher dimen-

sional problems. Our results indicate that, by properly dealing with the difficulty in fitting the

feasible region, a DNN-based method like our DiDo approach is flexible and promising for

solving high-dimensional design problems with implicit objective and constraints.

1 Introduction

In recent years, deep learning has achieved impressive success not only in traditional artificial

intelligence (AI) problems but also in many scientific and industrial applications [1]. More

researchers realize that deep neural network (DNN) is a powerful tool to solve high-dimen-

sional problems suffering from the “curse of dimensionality” (CoD). Currently, it has been a

trend to actively explore the application of DNN to a wide range of scientific and industrial

problems difficult to be solved by conventional methods [2]. For example, deep learning-based

algorithms has been developed for solving high-dimensional PDEs [3, 4], stochastic control

problems [5], robotic control problems [6, 7] as well as other applications. These successes

motivate us to extend the application of DNN to a wider range of scientific and industrial

problems. Note that, though DNN is a promising method for high dimensional problems,
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adapting it to specific problems and achieving success is still a highly nontrivial task. It is

important not only to develop methods, but also to unravel the key issues encountered and

their potential solutions in designing DNN-based algorithms.

In this paper, we explore the application of DNN in a specific class of optimization prob-

lems with implicit objective and constraints. This class of problems exhibit in many different

scientific and industrial applications, such as modeling a biological neuronal network to meet

a set of biological requirements on its dynamical performance in neuroscience [8], and opti-

mizing a large set of design parameters to maximize the machine performance while satisfying

physical constraints in industry [9, 10]. For such systems, the dependence between the model

or design parameters and the corresponding performance often has no explicit formula, which

restricts the application of optimization techniques in the complex industrial problem [11, 12].

Moreover, constraints of model/design parameters in these problems may also be very com-

plex with no explicit formulas. Whether a set of model/design parameters is compatible to the

constraints may only be examined through experiments or simulations. For convenience, we

call such optimization problems data-informed optimization problems. Moreover, in contrary

to traditional optimization problems which are often low-dimensional and can be analytically

described and solved by many well-developed algorithms [13, 14], it is increasingly important

to develop tractable approaches for high-dimensional data-informed optimization problems

[15].

A viable method to solve a data-informed optimization problem is to use surrogate models

to fit the objective and constraint functions. There are many conventional machine learning

models which can be used to learn a surrogate function from discrete data [12, 16, 17]. Polyno-

mial regression is a commonly used method since it is easy to use [18]. However, this paramet-

ric model has limited flexibility and generally does not fit well unless the true function which

generates data has a similar form to the polynomial [19]. In general, it is mainly used in low-

dimensional, linear or quadratic cases [15]. Another popular method called Kriging model has

been developed for use in the fields of spatial statistics and geostatistics, and is especially popu-

lar in aerodynamic design [20, 21]. The Kriging method is based on Gaussian Processes and is

sufficiently flexible to represent nonlinear and multimodal functions. However, Kriging model

has many hyperparameters and it is untractable to tune them in high-dimensional problems

[17, 22]. In addition, regular Kriging model can be correctly formulated only when the func-

tion to be approximated satisfies several assumptions of accuracy, smoothness, and continuity

[23–25]. There are several other types of models often considered, such as radial basis func-

tions (RBF) [26–28], multivariate adaptive regression splines(MARS) [19], wavelet modeling

[29] and inductive learning [30]. Unfortunately, these conventional modeling techniques are

mostly limited to lower dimensional problems due to the curse of dimensionality. Developing

methods suitable for high dimensional problems is highly demanded [15].

In recent years, empirical and theoretical studies suggest that the DNN model, trained by

gradient-based algorithms, can overcome the curse of dimensionality in fitting high-dimen-

sional functions [31, 32]. It has also been observed in practice that the DNNs in general do not

overfit even in an overparameterized setting without explicit regularizations [33]. A series of

studies provide potential mechanisms underlying the non-overfitting puzzle of DNNs. For

example, frequency principle, both in experiments and theory [34–37], shows that DNNs pre-

fer to fit training data with low-frequency functions, which often leads to a good generalization

performance due to the low frequency dominance in real data. From the optimization perspec-

tive, though training of a DNN surrogate is a highly non-convex problem [38], we empirically

find that the first-order optimization method of gradient descent often converges efficiently

and yields satisfying solutions. Moreover, using the well-developed platform like Tensorflow

and PyTorch [39–41] implemented on GPUs, one can easily and efficiently train a DNN with
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even millions of parameters. Due to all these merits, deep learning emerges as an increasingly

important surrogate model in exploring optimal solutions of practical problems in many fields,

for example, robot manipulator control [42, 43], heat management [44, 45], industrial design

and production [46].

Though our idea of using DNN surrogate for fitting objective and constraints from data

looks straightforward and promising, the design of a DNN-based algorithm that works well in

experiments is still nontrivial. We encounter the following difficulties. First, without an explicit

feasible region, sampling feasible points well covering the feasible region is very difficult espe-

cially in a high-dimensional space. Usually, our prior knowledge of the feasible region gained

from experience is in the form of a parameter box consisting of rough intervals for each

parameter. However, as the dimension of parameter space gets higher, volume of the feasible

region over the volume of even the smallest box containing it often vanishes exponentially fast

[47]. We refer to this phenomenon the curse of dimensionality for sampling, which indicates

that a random sampling in the box has almost no chance to obtain a feasible point. Second, the

fitting of the feasible region itself similarly suffers from this curse of dimensionality for sam-

pling in the sense that it is very difficult to obtain a balanced sample. Clearly, tackling above

sampling difficulty is essential to the success of our algorithm design.

In this work, we propose the data-informed deep optimization (DiDo) approach to solve

potentially high-dimensional complex optimization problems with implicit objective and con-

straints. Our approach emphasizes the DNN-based adaptive fitting of the feasible region which

can overcome the curse of dimensionality for sampling. The idea is as follows. Starting from a

small size of initial samples, we train a coarse DNN classifier for the feasible region identifica-

tion. Then, at each iteration, we sample an additional set of points informative to the improve-

ment of the last DNN classifier, based on which we further update the DNN classifier to

improve its accuracy. With an accurate DNN classifier obtained after a few iterations, we can

easily use Langevin Monte Carlo sampling to generate feasible samples well covering the feasi-

ble region, by which an accurate DNN surrogate for the objective function can be fitted.

Finally, with accurate DNN surrogates for both objective and constraints, we can easily imple-

ment conventional gradient-based optimization techniques to find candidates of optimal

parameters.

As for the application, our DiDo approach can be applied to solve a series of engineering

design problems, in which performance of the designed products is evaluated through simula-

tion and the design parameters are constrained in an implicit region, e.g. determined by com-

plex geometric constraints. For demonstration, we first consider a specific problem in

industry, which is to optimize the 6-dimensional design parameters for the rotor profile of

double screw compressor to maximize the actual flow. Without the need of carefully adjusting

hyper-parameters, the best actual flow found by our DiDo approach is much better than the

result obtained by original hand-craft approach. To illustrate the effectiveness of DiDo

approach in higher dimensional problems, we consider a 100-dimension toy example. The

optimal value found by our approach is far beyond the optimal value in training samples, and

is close to the true optimal value. These results demonstrate that our DiDo approach can

indeed solve high-dimensional data-informed optimization problems.

The main contribution of our work is outlined as follows:

1. We explore the application of DNN by proposing the DiDo approach to solve a specific

class of optimization problems with implicit constraints and objective function. Impor-

tantly, we identify the curse of dimensionality for sampling as the main challenge for the

design of a DNN-based algorithm for these problems.
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2. We propose the DNN-based adaptive fitting method for fitting the feasible region, which

overcomes the curse of dimensionality for sampling and greatly improves sampling effi-

ciency as demonstrated by numerical experiments.

3. We combine an accurate DNN-based classifier for the feasible region with Langevin Monte

Carlo (LMC) sampling to efficiently generate feasible samples well covering the feasible

region, which is key to obtain an accurate DNN surrogate of the objective function.

The rest of paper is organized as follows. Initially, we give a brief preliminary about the

notation, DNN and LMC. Followed by the main contents of this paper, our data-informed

deep optimization approach, that is, using a deep-based method to solve a type of optimization

problem which is different from the traditional ones. Then for demonstrating our DiDo

approach, a practical design case in industry and a 100-dimensional toy example are shown in

detail. Finally, we make a conclusion and discuss the future work.

2 Preliminary

2.1 Notation

In this paper, we use the following notations, see Table 1.

2.2 DNN

The general setup for a DNN is reviewed as follows. A fully connected DNN of H layers is

denoted by

fθðxÞ ¼W ½H� 1�soð� � � ðW ½1�soðW ½0�soþ b½0�Þ þ b½1�Þ � � �Þ þ b½H� 1�
;

where x 2 Rd
, W ½l� 2 Rml� 1�ml , b½l� 2 Rml� 1 , m0 = d, mH = 1, σ is the activation function and “o”

means entry-wise operation. The set of parameters for DNN is denoted by

θ ¼ ðW ½0�;W ½1�; � � � ;W ½H� 1�; b½0�; b½1�; � � � ; b½H� 1�
Þ;

For the regression problem of fitting a training set fðxi; yiÞg
n
i¼1

, where xi 2 R
d

and yi 2 R
for each i, the commonly used loss functions are mean-square error (MSE), that is,

LðθÞ ¼
1

n

Xn

i¼1

ðfθðxiÞ � yiÞ
2
;

Table 1. Notation.

x scalar component of x
x optimization variable

d dimension of optimization variable

[n] index set {1, 2, . . ., n}

f(x) objective function

O feasible region determined by the considered problem

@O the true boundary of implicit feasible region

IO(x) indicator function of the region O, i.e., if x 2 O, IO(x) = 1; otherwise, IO(x) = 0

Dobj ¼ fðxi; f ðxiÞg
no
i¼1

training set for DNN fitting

Dc ¼ fðxi; IOðxiÞÞg
nc
i¼1

training set for DNN classifier

fθo ðxÞ DNN surrogate model for objective function

fθc ðxÞ DNN classifier neural network for feasible region

https://doi.org/10.1371/journal.pone.0270191.t001
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and root-mean-square error (RMSE), that is,

LðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðfθðxiÞ � yiÞ
2

s

:

We use MSE when training DNN to fit the objective function. and use RMSE to measure

the training error and test error of the DNN.

For the classification problem of fitting a training set fðxi; qiÞg
n
i¼1

, where xi 2 R
d and qi 2

{0, 1} for each i, the loss function we used is binary-cross-entropy (BCE), that is,

LðθÞ ¼ �
1

n

Xn

i¼1

½qilogfθðxiÞ þ ð1 � qiÞlogð1 � fθðxiÞÞ�

In cases given in this paper, the activation function is fixed to GELU function. GELU is a

smooth non-saturating activation function that can alleviate gradient vanishing. Empirically, a

GELU DNN is efficient to train and generalizes well for smooth problems we considered. Note

that one can also consider other smooth non-saturating activation functions like Swish, ELU

and SELU to achieve similar training and generalization performance.

During the training of neural network, the parameters of the DNN in each epoch are

updated by a gradient-based optimization algorithm, e.g. gradient descent (GD), stochastic

gradient descent (SGD) or Adam. To speed up the training process, we update the parameters

of DNN using Adam [48].

2.3 Langevin Monte Carlo (LMC)

There are many mature methods to sample data from a desired probability distribution, such

as Markov chain Monte Carlo, Metropolis-Hastings, Hamiltonian Monto Carlo and Split

Monte Carlo. For convenience, in our experiments, we use overdamped Langevin Monte

Carlo (LMC).

LMC is a common method to sample data following a Boltzmann distribution [49–52].

This method is based on evolving a stochastic differential equation (SDE), that is,

dx ¼ � rEðxÞdt þ
ffiffiffi
2

b

r

dW;

where β is positive hyperparamter and W is the Brownian motion. The steady-state distribu-

tion of this SDE is proportional to e−βE(x) and it satisfies the detailed balance condition. The set

of long-time solution of the SDE follows the Boltzmann distribution *e−βE(x). We use the

first-order Euler-Maruyama scheme to solve the SDE, i.e. each data point x is updated accord-

ing to xtþ1 ¼ xt � arEðxtÞ þ
ffiffiffi
2a

b

q
x
t
, where ξt* N(0d, Id).

Note that we choose appropriate energy function E(x) for different tasks. In our experi-

ment, we use EðxÞ ¼ ðfθcðxÞ � 0:5Þ
2

to sample data concentrated around the boundary of the

predicted-feasible region for DNN classifier fθcðxÞ and use EðxÞ ¼ ðfθcðxÞ � 1Þ
2

to efficiently

sample more feasible data, where fθcðxÞ denotes the DNN classifier.

A simple version of LMC method is shown in algorithm 1.

Algorithm 1: Langevin Monte Carlo (LMC)
Data: T: total iteration steps; energy function E(x); step length α;
positive β; X0 ¼ fx0

i g
n
i¼1
: initial data set.

Result: XT

1 for t = 0 to T do
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2 xtþ1
i ¼ xti � arEðx

t
iÞ þ

ffiffiffi
2a

b

q
x
t
i, where x

t
i � Nð0d; IdÞ; i 2 ½n�;

3 end
4 Get XT ¼ fxTi g

n
i¼1

and XT � e� bEðxÞ

3 Data-informed deep optimization

In this section, we introduce the framework of Data-informed deep optimization (DiDo)

approach for solving high-dimensional optimization problems, in which the objective function

and the constraints are only available through samples without explicit formula. The DiDo

approach shows an indispensable value beyond the tradition optimization approach in high-

dimensional data-informed problems.

3.1 Data-informed problem formulation

The data-informed optimization problem is formulated as follows.

Data-informed optimization problem:

min
x2O

f ðxÞ; ð1Þ

where objective function f(x) and feasible region O are implicit which can only be evaluated

through simulation at certain sampling points. In practice, O is often defined by a series of

implicit constraints as O = {x|fi(x)� 0, i = 1, 2, . . ., L}.

3.2 Deep optimization approach

We propose a deep optimization approach to solve the data-informed optimization problem

(see Fig 1 for a flow chart). Our general idea to deal with a problem with implicit objective

function and feasible region is to fit them by DNN surrogates from data. Then we can optimize

this problem with common gradient-based method. Note that the training of the objective

function relies on an explicit and accurate surrogate of feasible region for generating high qual-

ity training samples well covering the whole feasible region. Therefore, we first train a DNN

classifier fθcðxÞ through an iterative process from an initial sample set. Then we use fθcðxÞ to

generate random samples from feasible region and evaluate the corresponding values of the

objective function. Then we build the training data set Dobj ¼ fxi; f ðxiÞg
no
i¼0

by simulation,

whose inputs are sampled randomly from feasible region based on fθcðxÞ. Through fitting Dobj,

we obtain a DNN fθoðxÞ as a surrogate of the objective function f(x). Finally, by optimizing

fθoðxÞ with surrogate constraints fθcðxÞ � 0:5 (fθcðxÞ ¼ 0:5 is regarded as surrogate boundary),

we can get candidates of the optimal parameters of the problem (1), which should be close to

the true optimal parameters of the problem.

3.2.1 Fitting feasible region. Generally, without an explicit feasible region, it is difficult to

generate well distributed feasible training samples especially in a high-dimensional problem.

With a blind sampling, training samples are likely far from the decision boundary, i.e., bound-

ary of the feasible region, resulting in an inaccurate fitting of the DNN classifier. To overcome

this difficulty in our deep optimization approach, we propose a DNN-based adaptive fitting

approach which adds new samples around the boundary of current DNN classifier and retrain

it at each iteration. Using this approach, we can efficiently obtain an accurate DNN classifier

fθcðxÞ 2 ½0; 1� of the feasible region through several rounds of iteration.

Initially, we uniformly sample Xini
I in a selected region B based on the prior knowledge of

the considered problem and train the classifier fθð0Þc
ðxÞ by Dð0Þ ¼ fðxi; IOðxiÞÞjxi 2 Xini

I g. Empir-

ically balancing the feasible and infeasible points benefits the performance of the classifier.
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Note that many problems whose optimal parameters close to the boundary of the feasible

region require highly accurate DNN classifier (see example in Fig 6). We propose a DNN-

based adaptive fitting approach to efficiently improve the accuracy of classifier fθðtÞc ðxÞ at each

iteration step t. For classification problem, generally, the points close to the decision boundary

is of crucial importance to determine the classifier, e.g., support vectors for support vector

machine (SVM). Therefore, at each iteration step, we add new training data sampled near the

decision boundary of classifier fθðtÞc ðxÞ by LMC method (see algorithm 1 for details) and train a

new classifier f
θðtþ1Þ
c
ðxÞ initialized by θðtÞc .

For a stopping criterion, it is crucial to determine whether the surrogate boundary is close

to the true boundary, e.g., their “mean distance” is smaller than certain tolerance �. Intuitively,

for any point on the surrogate boundary, if its distance to the true boundary is larger than the

�, then the prediction accuracy of the DNN classifier in the �-neighborhood of this point is

roughly 50% (see Fig 2(a) for illustration); otherwise, if the distance is much smaller than �,

then the prediction accuracy in the �-neighborhood should be close to 1 (see Fig 2(b) for illus-

tration). Therefore, we sample some points close to the surrogate boundary by LMC method

(see algorithm 1 for details) and perturbed them by Gaussian noise of covariance matrix σ2 Id,

Fig 1. The flow chart of the DiDo approach.

https://doi.org/10.1371/journal.pone.0270191.g001
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where σ is roughly � due to concentration in the equator [47]. When the predicted accuracy of

the classifier on these points is higher than a expected value, say 95%, we stop the iteration.

The detail of our DNN-based adaptive fitting approach is shown in algorithm 2.

Algorithm 2: DNN-based adaptive fitting approach
Data: B: region of initial sampling depending on the considered prob-
lem; n0: initial sample size; n1: adding sample size at each iteration;
EtðxÞ ¼ ðfθðtÞc ðxÞ � 0:5Þ

2: energy function used in LMC method; σ: standard

deviation of noise term; β: positive hyperparameter used in LMC
method.
Result: Good classifier: fθcðxÞ
1 Uniformly sample Xini

I in B;
2 Define Dð0Þ ¼ fðxi; IOðxiÞÞjxi 2 Xini

I ; i 2 ½n0�g;
3 Define t = 0;
4 do
5 Train θðtÞc of f

θðtÞc
ðxÞ by D(t) with Adam;

6 Use LMC method with proper initialization and Et(x) to sample n1
data following distribution � e� bEtðxÞ and obtain input set XðtÞI ;
7 Perturbation: XðtÞP ¼ fxþ ξjx 2 XðtÞI ; ξ � N ð0d;s

2IdÞg;
8 Evaluate the classification accuracy acc of f

θðtÞc
ðxÞ on XðtÞP

9 if acc � 95% then
10 fθcðxÞ  f

θðtÞc
ðxÞ;

11 break;
12 end
13 Evaluate XðtÞI and add to the training data
Dðtþ1Þ ¼ fðxi; IOðxiÞÞjxi 2 X

ðtÞ
I g [ DðtÞ;

14 Update t  t + 1;
15 while;

Fig 2. Illustration of “mean distance” for stopping criterion. Illustration of the relation between prediction accuracy and the “mean distance”.

Intuitively, we can use predicted accuracy on perturbed points to quantify the quality of the classifier. (a) For red point on the surrogate boundary, the

distance to the true boundary is larger than �, and the prediction accuracy is roughly 50%; (b) for red point on the surrogate boundary, the distance to

the true boundary is much smaller than �, and the prediction accuracy is close to 1.

https://doi.org/10.1371/journal.pone.0270191.g002
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3.2.2 Fitting objective function. For a high-dimensional large-scale problem, with

implicit boundary, it is difficult to efficiently sample diverse training data. However, with

explicit classifier obtained above, we can use LMC with energy function EðxÞ ¼ ðfθcðxÞ � 1Þ
2

to generate high quality training samples Dobj = {(xi, f(xi)} well covering the feasible region of

considered problem. By training the DNN by Dobj, we can get the DNN surrogate fθoðxÞ of the

objective function.

The detail of fitting objective function is shown in algorithm 3.

Algorithm 3: Fitting of objective function
Data: classifier fθcðxÞ; a non-empty feasible set of fθcðxÞ: Xini

S ; a large

enough number nt; energy function EðxÞ ¼ ðfθcðxÞ � 1Þ
2.

Result: DNN surrogate fθoðxÞ
1 Generate initial points for LMC method: X0 ¼ fxijxi 2 Xini

S ; i 2 ½nt�g
2 Use LMC method with E(x) to sample data following distribution *e−βE
(x) and obtain XT

S

3 Select data in the feasible region of real system Ω: Xo ¼ O \ XT
S;

4 Obtain training data for the objective function: Dobj = {(xi, f(xi))|
xi 2 Xo, i 2 [nt0]};
5 Train θo of fθo xð Þ by Dobj with Adam.

3.3 Deep optimization

Based on the accurate DNN surrogate models of constraints and objective function obtained

above, the data-informed optimization problem (1) turns to be the following explicit optimiza-

tion problem,

min
x

fθoðxÞ

s:t: 0:5 � fθcðxÞ � 0;
ð2Þ

where 0.5 is the threshold of the DNN classifier fθcðxÞ 2 ½0; 1� for prediction.

The problem (2) is a conventional optimization problem with constraints. To solve it, we

first rewrite it as an unconstrained problem, making the inequality constraint implicit in the

objective

min
x

fθoðxÞ þ I� ð0:5 � fθcðxÞÞ;

where I� : R7!R is the indicator function for the non-positive real number,

I� ðuÞ ¼
0; if u � 0;

1; if u > 0:

(

However, the indicator function I− is not differentiable. We approximate the indicator

function I− by a “soft” function. For example, we use the interior-point method. The basic idea

of interior-point method is to approximate the indicator function I−(u) by the barrier function

and a common barrier function is logarithmic barrier, � 1

t

� �
logð� uÞ, where t> 0 is a hyper-

parameter that sets the accuracy of the approximation [53].

Substituting I−(u) with � 1

t logð� uÞ gives the approximation

min
x

fθoðxÞ �
1

t

� �

logð� ð0:5 � fθcðxÞÞÞ: ð3Þ
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To solve problem (3), we use gradient descent (GD) for convenience. Although simple, we

find that GD is often an effective optimization algorithm in DiDo.

The deep optimization is concluded in algorithm 4.

Algorithm 4: Deep optimization
Data: fθcðxÞ: well-trained DNN classifier; fθoðxÞ: DNN surrogate model for
fitting objective function.
Result: Candidates of optimal parameters
1 Substitute fθoðxÞ and fθcðxÞ into problem (3);
2 Solve problem (3) by gradient-descent-based optimization algorithms,
such as gradient descent (GD);
3 Get candidates of optimal parameters of the problem (1).

The proposed methodology gives a schematic process to search for candidates of optimal

parameters (see Fig 1) for high dimensional optimization problem with implicit feasible region

and objective function. As we will show, it is well suitable for data-driven inferences using

deep neural networks which can efficiently differentiate.

Remark that even when we can analytically characterize the feasible region by a set of equa-

tions, we can also train a DNN surrogate to represent the feasible region. In such case, our

approach can still bring benefits, for example, using DNN classifier can soft the boundary of

the feasible region and we can easily determine the normal vector of the boundary.

4 Optimal rotor profile design

In this section, we apply the DiDo approach to solve an engineering design problem to show

its effectiveness.

4.1 Problem description

Screw compressor is widely used in refrigeration, mining, petrochemical and other industries

because of its high reliability, good power balance, less leakage and high efficiency. As the core

component of twin-screw compressor, optimizing the design of rotor profile would vastly ben-

efit the mechanical performance of the screw compressor. The rotor profile is smoothly con-

nected by several arcs and arc envelopes together. Empirically, we can parameterize the rotor

profile by 6 parameters, x ¼ ½r; r3; ro; ro2; u1;R� 2 R
6, where r, r3, ro, ro2, R are radius of the arc

and u1 is an angle [54, 55]. Then, the optimization of the rotor profile becomes an optimization

problem w.r.t. the 6 parameters.

In our example, the performance of a design parameter set, consisting of the 6 design

parameters, is measured by the actual flow of the rotor, which is an important performance

indicator for large compressor, through computational fluid dynamics simulation. Our goal is

to find a rotor profile that can maximize the actual flow.

Remark that not all parameters inR6
are feasible for the design. They should satisfy a set of

implicit constraints related to geometrical properties of the rotor. Therefore, both the objective

and the constraint functions are data-informed, i.e., they are only available on a set of data

points through simulation. In the following, we demonstrate the effectiveness of our DiDo

approach on this problem.

4.2 Feasible region learned by a DNN classifier

In this example, we first use the DNN-based adaptive fitting approach in algorithm 2 to train

the DNN classifier fθcðxÞ, which is a fully connected DNN with hidden layer sizes 800-600-

400-200 equipped with a sigmoid function at the output layer. Without loss of generality, we

choose 0.5 as threshold to determine the surrogate feasible region, i.e., fθcðxÞ � 0:5.
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Remark that, we carefully choose the initial sample region B, such that the number of feasi-

ble points and non-feasible points are balanced in the initial training data. For the effectiveness

of DNN training, we normalize each parameter to a mean zero and variance one input

variable.

We set initial sample size n0 = 8000 and we set n1 = 5000 samples in each iteration. With

algorithm 2, we can obtain a well-trained classifier fθcðxÞ.
To show effectiveness of the DNN-based adaptive fitting approach, we show the accuracy of

the DNN classifier on the samples at surrogate boundary at each iteration with Gaussian noise

perturbation during the iteration. As shown in Fig 3(a), for each curve, which is the accuracy

of the classifier w.r.t. different noise standard deviation, as the perturbation noise increases,

the accuracy increases. This indicates that the classifier is more accurate on the samples that

deviate more from the boundary, which provides a rationale for our DNN-based adaptive fit-

ting approach focusing on training the boundary. Compared with different iterations, indi-

cated by different colored curves, as the iteration proceeds accompanied by the increasing of

training samples, the classifier is improved. For example, as shown in Fig 3(b), considering a

fixed noise with variance 0.1, the accuracy of the classifier almost monotonically increases as

the size of the training set.

4.3 Objective function learned by a DNN model

We use a DNN surrogate to fit the objective function, i.e. a mapping from a designed rotor

profile to the actual flow. By algorithm 3, we use the classifier fθcðxÞ obtained above to generate

a training set Dobj of size nt0 = 500 and train a GELU-DNN fθoðxÞ of hidden layer size 1024-

512-256-128. Remark that in algorithm 3, the ratio of the data in true feasible region to the

data obtained by LMC is close to 1. The test accuracy of the DNN fθoðxÞ is evaluated on a test

data set consisting of 2000 samples.

As shown in Fig 4, after training, the normalized RMSE training error is *0.01 whereas the

normalized RMSE test error is*0.04.

Fig 3. The improvement of DNN classifier through adaptive fitting. (a) Classification accuracy of the DNN classifier on the perturbed terms during

iteration. Note that, at each iteration t, we apply an extra constraint jf ðtÞθc
ðxiÞ � 0:5j � 0:1g to the points sampled by LMC. In the two figures, label

accuracy means classification accuracy after perturbation. As we add more data, the magnitude of the perturbed term when classifier accuracy on

perturbed term achieve 100% gets smaller, which means the performance of classifier is better. (b) Classification accuracy of the DNN classifier on the

fixed standard deviation of the perturbed terms, where variance σ2 = 0.1. The classification accuracy is getting better as we update the DNN classifier.

https://doi.org/10.1371/journal.pone.0270191.g003
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4.4 Deep optimization

Then we solve the problem with data-informed deep optimization approach in algorithm 4

using fθoðxÞ and fθcðxÞ.
The optimal of this optimization problem may be not unique and there could be multiple

local minima. Therefore, we solve the problem by gradient descent with various initial points

to search for a global minimum. For visualization, in Fig 5, we show the distribution of the

actual flow of the training samples used for learning DNN surrogate and a set of true feasible

candidates of optimal profile parameters. Note that the maximal actual flow of training sam-

ples approximates 1256. After solving the optimization problem, we obtain a set of candidates

of optimal profile parameters. Then we examine whether those parameters are in true feasible

region with simulator and calculate the actual flow on these feasible designed rotor parameters

with CFD simulator. The best actual flow we achieved is roughly 1400, which is better than

those obtained by manually tuning parameters and the maximal actual flow of training sam-

ples 1256. The candidates of optimal profile parameters outperform the training samples in

the sense of the actual flow. Most of the actual flow of the candidates of optimal profile param-

eters are larger than 1340.

Fig 4. Training trajectory of DNN loss functions. Trajectory of training loss and test loss through training DNN surrogate fθo ðxÞ for fitting objective

function of optimal rotor profile problem. In the end of training, the test loss is significantly larger than the training loss, indicating the DNN training is

close to convergence.

https://doi.org/10.1371/journal.pone.0270191.g004
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Further more, it is interesting to analyze the candidates of optimal parameters obtained

using our DiDo approach. We analyze the distance between the candidates of optimal parame-

ters and the boundary of the feasible region by computing the probability predicted by the clas-

sifier fθcðxÞ. As shown in Fig 6, each point corresponds to a candidates of optimal parameter

and the fθcðxÞ of obtained candidates of optimal parameters significantly deviate from 1, i.e.,

most candidates of optimal parameters with different actual flow predicted by DNN surrogate

(abscissa) are close to the surrogate boundary (ordinate). Moreover, many of candidates are

outside true feasible region examined by the simulator, i.e., these candidates are falsely classi-

fied as feasible ones by neural network (see yellow dots in Fig 6). Therefore these candidates

are close to the true boundary. For such a problem, obtaining an accurate surrogate classifier is

key to our optimization. Therefore, our DNN-based adaptive fitting approach, which can

adaptively improve the accuracy of the DNN classifier, is a key procedure for a good perfor-

mance of our DiDo approach.

Fig 5. The distribution of the simulated actual flow value obtained by DiDo. The distribution of the simulated actual flow value on sampled data

used for training DNN surrogate and the candidates of optimal parameters obtained by DiDo finally. The light green bars correspond to the

training samples and the dark green bars correspond to the candidates of optimal parameters. The simulated actual flow values of all candidates

obtained by DiDo are greater than the largest simulated actual flow value in the training data, demonstrating the effectiveness of our DiDo

approach.

https://doi.org/10.1371/journal.pone.0270191.g005
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5 Toy example: Harmonic function

To verify the validity of our method in solving high-dimensional data-informed optimization

problem. Inspired by the practical problem of the rotor design, we construct a 100-dimen-

sional optimization problem, whose optimal points locates on the boundary of the feasible

region.

5.1 Problem description

We consider an optimization problem, where the objective function f(x) is a harmonic func-

tion f ðxÞ ¼ � x2
1
� 1

d� 1

Pd
i¼2
x2
i

� �
, which satisfies Poisson’s equationr2 f(x) = 0. The feasible

region is O ¼ fxjjjxjj � 1g ¼ fx ¼ ðx1; :::; xdÞ
T
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

i¼1
x2
i

q

� 1g.

Fig 6. Property of candidates of optimal parameters for rotor profile design. The classifier value fycðxÞ and the actual flow predicted by DNN

surrogate fyoðxÞ on these candidates of optimal parameters. The red solid line is corresponding to the probability 0.5. Both blue and yellow dots are

feasible predicted by DNN, both above the solid red line. However the yellow points are outside the true boundary. Therefore candidates of optimal

parameters are close to boundary of true feasible region, signifying the importance of a highly accurate surrogate of the feasible region as obtained by

our DNN-based adaptive fitting approach.

https://doi.org/10.1371/journal.pone.0270191.g006
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The toy optimization problem is as follows,

min
x

� x2

1
�

1

d � 1

Xd

i¼2

x2

i

 !

s:t:

ffiffiffiffiffiffiffiffiffiffiffi
Xd

i¼1

x2

i

s

� 1

ð4Þ

where x ¼ ðx1; :::; xdÞ
T
2 Rd

. For demonstration, we take d = 100.

Note that the harmonic function f(x) satisfies extremum principle, which indicates that the

minimum of problem (4) is achieved on the boundary. As for the given case, it is clear that the

minimum −1 is obtained at x = (1, 0, . . ., 0)T and x = (−1, 0, . . ., 0)T. Remark that although the

objective function and the constraints are analytically known, we assume that the objective

function and the constraint functions can only be measured through sampling.

5.2 Feasible region learned by a DNN classifier

Similarly to the rotor problem, with the same settings, we first train a DNN classifier to learn

the feasible region. We set initial sample size n0 = 3000, initial sample region B = [−0.173,

0.173]100 and we set n1 = 5000 samples in each iteration. By algorithm 2, we obtain a well-

trained classifier fθcðxÞ 2 ½0; 1�. We use the surrogate feasible region fxjfθcðxÞ � 0:5g to repre-

sent the true feasible region O.

During the DNN-based adaptive fitting, the accuracy of the classifier with Gaussian noise

perturbation efficiently improves as shown in Fig 7(a). In addition, for this toy example, we

know the real feasible region is a unit ball and it is clear to visualize the boundary along the

radial direction. Thus, we calculate fθcðrxÞ, where x is uniformly sampled on the real boundary

of the feasible region and r follows uniform distribution on the interval [0, 2]. As shown in

Fig 7. The improvement of DNN classifier through adaptive fitting. (a) Classification accuracy of the DNN classifier on the perturbed terms during

iteration. Note that, there are not all iteration results and at each iteration t, we apply an extra constraint jf ðtÞθc
ðxiÞ � 0:5j � 0:1g to the points sampled by

LMC. In the two figures, label accuracy means classification accuracy after perturbation. As we add more data, the magnitude of the perturbed term

when classifier accuracy on perturbed term increase from 50% sharply gets smaller, which means the distance between the true boundary and surrogate

boundary gets smaller, i.e., the performance of classifier is better; (b) The classifier values on the points uniformly distributed along the radial direction.

As the iteration proceeds, the classifier is more closed to the real classification function I(r� 1).

https://doi.org/10.1371/journal.pone.0270191.g007
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Fig 7(b), throughout the DNN-based adaptive fitting, the surrogate classifier approximates the

true feasible region I(r� 1) better and better.

5.3 Objective function learned by a DNN model

By algorithm 3, we use the classifier fθcðxÞ obtained above to generate a training set Dobj of size

nt0 = 5, 000 and train a GELU-DNN fθoðxÞ of hidden layer size 2000-1000-600-400-200.

Remark that in algorithm 3, the ratio of the data in true feasible region to the data obtained by

LMC is close to 1 since the classfier is about accurate. The test accuracy of the DNN fθoðxÞ is

evaluated on a test set consisting of 2000 samples. As shown in Fig 8, after training, the nor-

malized RMSE training error is*0.01 whereas the normalized RMSE test error is *0.04.

5.4 Deep optimization

With DNN surrogate fθoðxÞ and the well-trained DNN classifier fθcðxÞ, by algorithm 4, we

obtain a set of candidates from different initial points. Note that we set the training samples

Fig 8. Training trajectory of DNN loss functions. Trajectory of training loss and test loss through training DNN surrogate fθo ðxÞ for fitting objective

function of 100-dimensional toy optimization problem. In the end of training, the test loss is significantly larger than the training loss, indicating the

DNN training is close to convergence.

https://doi.org/10.1371/journal.pone.0270191.g008
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used for learning DNN surrogate as initial points. For visualization, in Fig 9, we show the dis-

tribution of the objective function values of the initial points as well as that of the correspond-

ing candidates of optimal parameters. Note that the minimum objective function value among

training samples used for learning DNN surrogate *−0.1, whereas the objective function val-

ues of the candidates of optimal parameters concentrate around −0.98 very close to the true

minimum −1 of this problem.

6 Conclusion and discussion

In this paper, we explore the application of DNN to solve a specific class of data-informed opti-

mization problems with implicit constraints and objective function, emphasizing on DNN-

based adaptive fitting approach to deal with potentially high-dimensional and complex con-

straints. Our results reaffirm deep learning as the key technique to solve high-dimensional

problems suffering from the curse of dimensionality for both sampling and fitting. Moreover,

our work shows that adapting to the problem is the key to the design of a DNN-based method.

Fig 9. The distribution of the objective function values obtained by DiDo. Comparison between the objective function values on the initial points,

i.e., the training samples used for learning DNN surrogate, and that on final candidates of optimal parameters. The minimum objective function value

among training samples used for learning DNN surrogate*−0.1, whereas the objective function values of the candidates of optimal parameters

concentrate around −0.98 very close to the true minimum −1 of this problem.

https://doi.org/10.1371/journal.pone.0270191.g009
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It is hoped that our DiDo approach not only help solve the data-informed optimization prob-

lems, but also inspire the future design of DNN-based algorithms in face of the curse of

dimensionality for sampling.

For a type of high dimensional optimization problems, whose optimal points located in the

interior region, e.g., maximize the Gaussian function in a unit ball, we find that it is more diffi-

cult to sample sufficient useful points to fit the objective function well. This phenomenon is

due to the concentration phenomena in high dimension space [47]. For example, if we uni-

formly sample data in an unit ball, the samples concentrate at an O(1/d) shell of the surface. In

practice, this phenomenon can be alleviated by using a proper sampling distribution, say radial

uniform sampling, according to prior knowledge.

In the DNN-based adaptive fitting process, the hyperparameter β in LMC is important to

sample diverse points close to the surrogate boundary. If β is too large, we observe that the

added points concentrate at the surrogate decision boundary and the new classifier can even

become less accurate. This phenomenon is related to frequency principle, i.e., the points close

to the boundary are high frequency in nature, thus may result in worse generalization perfor-

mance [34]. Empirically, proper β is needed for a steady improvement of accuracy of the DNN

classifier.

Our DiDo approach as a data-driven approach requires sufficient data to obtain accurate

surrogates for both constraints and objective functions which can be expensive for certain real

application problems. We have demonstrated that DiDo with adaptive sampling can help over-

come the curse of dimensionality in sampling, however, how much it can help in practice to

improve the state of the art design in industrial problems remains to be evaluated due to the

lack of benchmark [56].

In the future work, it is important to further improve the data efficiency of our approach,

i.e. obtaining more accurate DNN surrogates with less sampling data. An important direction

for the future study is to incorporate the structural information, such as duality, symmetry,

conservation, etc, into the design of neural network methods for specific problems and appli-

cation scenarios. The more structural information is incorporated, the less data is required for

an accurate DNN fitting. Moreover, developing benchmarks for evaluation of the optimization

methods for industrial problems is highly demanded. We will strengthen cooperation with the

industry to gradually improve the situation.
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