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Implicit Regularization of Dropout
Zhongwang Zhang and Zhi-Qin John Xu

Abstract—It is important to understand how dropout, a popular
regularization method, aids in achieving a good generalization
solution during neural network training. In this work, we present
a theoretical derivation of an implicit regularization of dropout,
which is validated by a series of experiments. Additionally, we
numerically study two implications of the implicit regularization,
which intuitively rationalizes why dropout helps generalization.
First, we find that input weights of hidden neurons tend to condense
on isolated orientations trained with dropout. Condensation is a
feature in the non-linear learning process, which makes the network
less complex. Second, we find that the training with dropout leads
to the neural network with a flatter minimum compared with
standard gradient descent training, and the implicit regularization
is the key to finding flat solutions. Although our theory mainly
focuses on dropout used in the last hidden layer, our experiments
apply to general dropout in training neural networks. This work
points out a distinct characteristic of dropout compared with
stochastic gradient descent and serves as an important basis for
fully understanding dropout.

Index Terms—Neural networks, dropout, condensation, flatness,
implicit regularization.

I. INTRODUCTION

DROPOUT is used with gradient-descent-based algorithms
for training neural networks (NNs) [1], [2], which can im-

prove the generalization in deep learning [3], [4]. For example,
common neural network frameworks such as PyTorch default to
utilizing dropout during transformer training. Dropout works by
multiplying the output of each neuron by a random variable with
probability p being 1/p and 1− p being zero during training.
Note that every time the concerning quantity is calculated, the
variable is randomly sampled at each feedforward operation.
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A series of works have studied the explicit and implicit
regularizations of dropout from various perspectives, such as
complexity analysis [5], [6] and low-rank bias for matrix com-
pletion [7], etc. Detailed discussions can be found in Section II.
In this work, we aim to study the implicit regularization of
dropout by analyzing the properties of neural network weights,
instead of connecting dropout with generalization directly.
The approach used in this work, consisting of phenomenon-
driven analysis and theory-driven analysis, reveals more de-
tails of dropout and provides more perspectives for future
study.

The effect of dropout is equivalent to adding a specific noise
to the gradient descent training. Theoretically, based on the
method of the modified gradient flow [8], we derive implicit
regularization terms of the dropout training for networks with
dropout on the last hidden layer. The implicit regularization
of dropout can lead to two important implications, condensed
weights and flat solutions, verified by a series of experiments1

under general settings.
First, we study weight feature learning in dropout training.

Previous works [9], [10], [11] find that, in the nonlinear training
regime, input weights of hidden neurons (the input weight of a
hidden neuron is a vector consisting of the weight from its input
layer to the hidden layer and its bias term) are clustered into
several groups under gradient flow training. The weights in each
group have similar orientations, which is called condensation.
By analyzing the implicit regularization terms, we theoretically
find that dropout tends to find solutions with weight conden-
sation. To verify the effect of dropout on condensation, we
conduct experiments in the linear regime, such as neural tangent
kernel initialization [12], where the weights are in proximity
to the random initial values and condensation does not occur
in common gradient descent training. We find that even in the
linear regime, with dropout, weights show clear condensation in
experiments, and for simplicity, we only show the output here
(Fig. 1(a)). As condensation reduces the complexity of the NN,
dropout may help the generalization by constraining the model’s
complexity.

Second, we study the flatness of the solution in dropout
training. We theoretically show that the implicit regularization
terms of dropout lead to a flat minimum. We experimentally
verify the effect of the implicit regularization terms on flatness
(Fig. 1(b)). As suggested by many existing works [13], [14], [15],
flatter minima have a higher probability of better generalization
and stability.

This work provides a comprehensive investigation into the im-
plicit regularization of dropout and its associated implications.

1Code can be found at: https://github.com/sjtuzzw/torch_code_frame
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Fig. 1. Experimental results of training two-layer ReLU NNs trained with and
without dropout. The width of the hidden layers is 1000, and the learning rate for
all experiments is 1× 10−3. (a) The output of NNs with or without dropout. The
black points represent the target points. (b) The loss value obtained by perturbing
the network with or without dropout in a given random direction. α is the step
size moving in the above direction.

Although our theoretical analysis mainly focuses on the dropout
used in the last hidden layer, our experimental results extend to
the general use of dropout in training NNs. Our results show
that dropout has a distinct implicit regularization for facilitating
weight condensation and finding flat minima, which may jointly
improve the generalization performance of NNs.

II. RELATED WORKS

Dropout is proposed as a simple approach to prevent overfit-
ting in the training of NNs, thus improving the generalization [1],
[2]. Many works aim to understand the regularization of dropout.

Mcallester et al. [16] present PAC-Bayesian bounds for
training with dropout. Wan et al. [17], Mou et al. [5], Zhai and
Wang [18] and Arora et al. [6] derive Rademacher generalization
bounds for training with dropout. Mianjy et al. [19] demon-
strate that dropout training, coupled with logistic loss, achieves
ε-suboptimality in test error in O(1/ε) iterations, relying on an
assumption that the data distribution is separable with a margin
in a particular reproducing kernel Hilbert space. In our work,
we focus on the training process of the model and the behavior
of neurons rather than the complexity analysis.

Baldi et al. [20] introduce a general formalism for studying
dropout on either units or connections, which finds an explicit
formula for the expected loss for networks with sigmoid ac-
tivation and dropout in any layer. Wager et al. [21] analyze
the formulation of the implicit regularization of dropout for
generalized linear models, such as logistic regression, and then
they propose a regularization method that replaces dropout but
can achieve results better than dropout. Wager et al. [22] show
that dropout training can improve the exponent in the gener-
alization bound for empirical risk minimization. Helmbold et
al. [4] theoretically study the dropout regularization in logistic
regression for linear classification, such as its convexity and
monotonicity. Senen-Cerda and Sanders [23] demonstrate that,
for deep neural networks with polynomially bounded activations
with continuous derivatives and subjected to squared loss, the
network weights converge to a unique stationary set of a pro-
jected system of ODEs. Zhang et al. [24] derive the stochastic
modified equations that provide a weak approximation to the
dynamics of two-layer NNs with dropout in training. In this

work, we do not utilize ODE/SDE to study dropout but focus on
the modified loss function.

Mianjy et al. [7] study the implicit bias of dropout for single
hidden-layer linear neural networks. They show that dropout
tends to make the norm of incoming/outgoing weight vectors
of all hidden nodes equal. Bank et al. [25] verify that for
autoencoders with a linear encoder, optimizing the encoder
with dropout regularization leads to an equiangular tight frame.
This result is established through an analogy drawn between
a denoising autoencoder variant with a linear encoder and a
signal encoding scheme. Our results on condensation can be
regarded as a generalized result of those in Mianjy et al. [7]
and Bank et al. [25] to two-layer non-linear networks. Based
on the linear property, Mianjy et al. [7] further provide a
complete characterization of the optimization landscape induced
by dropout, while our work focuses on the sharpness/flatness of
minima found by dropout for non-linear networks. Lengerich et
al. [26] show that dropout acts as a regularizer that penalizes
more on higher-order interactions among variables. Cavazza et
al. [27] and Pal et al. [28] show that in the case of single
hidden-layer linear networks, dropout is a regularizer that in-
duces low-rank solutions. Mirzadeh et al. [29] demonstrate
that the dropout networks behave like a network with a gating
mechanism for continual learning tasks, such that for different
tasks, different paths of the network are active. The sparse coding
discussed in their work is also a potential behavior to reduce
model complexity, which focuses on the number of activated
neurons. In our work, we focus on the orientation similarity of
different neurons, i.e., the condensation of neurons. Blanchet et
al. [30] show that dropout training in generalized linear models
corresponds to the minimax solution of a two-player, zero-sum
game. This game involves an adversarial nature corrupting a
statistician’s covariates using a multiplicative nonparametric
errors-in-variables model. Under the generalized linear model
setting, they justify the ability of dropout training to enhance a
predictor’s out-of-sample performance, implying that dropout is
beneficial to the generalization ability of the model from another
perspective.

Wei et al. [31] formalize the expression of the loss function ex-
pectation for multi-layer networks with dropout and emphasize
its distinctions from the original loss function. Additionally, they
present the first-order moment expression of dropout loss based
on the Jacobian and the Hessian matrices, intuitively suggesting
a preference for the first-order moment to achieve flat solutions,
drawing connections between the first-order moment and the
Hessian matrix. Our theoretical work only focuses on the case
when dropout is applied in the outermost layer, where we are
able to derive an exact explicit formulation of the expectation of
the dropout loss function, including the first-order moment and
the second-order moment. Based on this explicit formulation,
our work further enhances the understanding of the impact of
dropout on flatness and condensation phenomena.

Several works have studied the disparity between the expected
loss values with and without dropout in different situations,
which is similar to the definition ofR1 in this study. In particular,
Mianjy et al. [7] primarily investigate the disparity in the
expected loss values with or without dropout in linear networks,
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while Wei et al. [31], in the context of multi-layer nonlinear
networks, approximates this disparity using Taylor expansion.
In our work, we use experiments to validate the accuracy of the
regularization of dropout obtained in our theoretical analysis.
We further explore its impact on flatness and condensation both
empirically and theoretically, where dropout is applied only in
the final layer of the model.

The modified gradient flow is defined as the gradient flow that
is close to discrete iterations of the original training path up to
some high-order learning rate term [8]. Barrett et al. [32] derive
the modified gradient flow of discrete full-batch gradient descent
training as R̂S,GD(θ) = RS(θ) + (ε/4)‖∇RS(θ)‖2 +O(ε2),
where RS(θ) is the training loss on dataset S, ε is the learning
rate and ‖ · ‖ denotes the l2-norm. In a similar vein, Smith et
al. [33] derive the modified gradient flow of stochastic gradient
descent training as R̂S,SGD(θ) = RS(θ) + (ε/4)‖∇RS(θ)‖2 +
(ε/4m)

∑m−1
i=0 ‖∇RS,i(θ)−∇RS(θ)‖2 +O(ε2), whereRS,i

(θ) is the ith batch loss and the last term is also called “non-
uniform” term [34]. Our work shows that there exist several
distinct features between dropout and SGD. Specifically, in
the limit of the vanishing learning rate, the modified gradient
flow of dropout still has an additional implicit regularization
term, whereas that of SGD converges to the full-batch gradient
flow [35].

The parameter initialization of the network is important to
determine the final fitting result of the network. Luo et al. [9],
Zhou et al. [11] mainly identify the linear regime and the con-
densed regime for two-layer and three-layer wide ReLU NNs,
respectively. In the linear regime, the training dynamics of NNs
are approximately linear and similar to a random feature model
with an exponential loss decay. In the condensed regime, active
neurons are condensed at several discrete orientations, which
may be an underlying reason why NNs outperform traditional
algorithms.

Zhang et al. [36], Zhang et al. [37] show that NNs of
different widths often exhibit similar condensation behavior,
e.g., stagnating at a similar loss with almost the same output
function. Based on this observation, they propose the embedding
principle that the loss landscape of an NN contains all critical
points of all narrower NNs. The embedding principle provides
a basis for understanding why condensation occurs from the
perspective of loss landscape.

Several works study the mechanism of condensation at the ini-
tial training stage, such as for ReLU network [38], [39] and net-
work with continuously differentiable activation functions [10].
However, studying condensation throughout the whole training
process is generally challenging, with dropout training being an
exception. The regularization terms we derive in this work show
that the dropout training tends to condense in the whole training
process.

III. PRELIMINARY

A. Deep Neural Networks

Consider a L-layer (L ≥ 2) fully-connected neural network
(FNN). We regard the input as the 0th layer and the output as
the Lth layer. Let ml represent the number of neurons in the

lth layer. In particular, m0 = d and mL = d′. For any i, k ∈ N
and i < k, we denote [i : k] = {i, i+ 1, . . . , k}. In particular,
we denote [k] := {1, 2, . . . , k}.

Given weights W [l] ∈ Rml×ml−1 and biases b[l] ∈ Rml for
l ∈ [L], we define the collection of parameters θ as a 2L-tuple
(an ordered list of 2L elements) whose elements are matrices
or vectors

θ = (θ|1, . . . ,θ|L) =
(
W [1], b[1], . . . ,W [L], b[L]

)
,

where the lth layer parameters of θ is the ordered pair θ|l =
(W [l], b[l]), l ∈ [L]. We may misuse notation and identify θ

with its vectorization vec(θ) ∈ RM , where M =
∑L−1

l=0 (ml +
1)ml+1.

Given θ ∈ RM , the FNN function fθ(·) is defined re-
cursively. First, we denote f

[0]
θ (x) = x for all x ∈ Rd.

Then, for l ∈ [L− 1], f [l]
θ is defined recursively as f

[l]
θ (x) =

σ(W [l]f
[l−1]
θ (x) + b[l]), where σ is a non-linear activation

function. Finally, we denote

fθ(x) = f(x,θ) = f
[L]
θ (x) = W [L]f

[L−1]
θ (x) + b[L].

For notational simplicity, we denote

f j
θ(xi) = W

[L]
j f

[L−1]
θ,j (xi),

where f j
θ(xi),W

[L]
j ∈ RmL is the jth column of W [L], and

f
[L−1]
θ,j (xi) is the jth element of vector f [L−1]

θ (xi). In this work,
we denote the l2-norm as ‖ · ‖ for convenience.

B. Loss Function

The training data set is denoted as S = {(xi,yi)}ni=1, where
xi ∈ Rd and yi ∈ Rd′

. For simplicity, we assume an unknown
function y satisfying y(xi) = yi for i ∈ [n]. The empirical risk
reads as

RS(θ) =
1

n

n∑
i=1

�(f(xi,θ),y(xi)), (1)

where the loss function �(·, ·) is differentiable and the derivative
of � with respect to its first argument is denoted by ∇�(y,y∗).
The error with respect to data sample (xi,yi) is defined as

e(fθ(xi),yi) = fθ(xi)− yi.

For notation simplicity, we denote e(fθ(xi),yi) = eθ,i.

C. Dropout

For f [l]
θ (x) ∈ Rml , we randomly sample a scaling vector η ∈

Rml with coordinates of η are sampled i.i.d that

(η)k =

{ 1−p
p with probability p

−1 with probability 1− p
,

where p ∈ (0, 1], k ∈ [ml] indices the coordinate of f [l]
θ (x). It

is important to note that η is a zero-mean random variable. We
then apply dropout by computing

f
[l]
θ,η(x) = (1+ η)� f

[l]
θ (x),
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and use f
[l]
θ,η(x) instead of f

[l]
θ (x). Here we use � for the

Hadamard product of two matrices of the same dimension.
To simplify notation, we let η denote the collection of such
vectors over all layers. We denote the output of model fθ(x) on
input x using dropout noise η as f drop

θ,η (x). The empirical risk

associated with the network with dropout layer f drop
θ,η is denoted

by Rdrop
S (θ,η), given by

Rdrop
S (θ,η) =

1

n

n∑
i=1

�(f drop
θ,η (xi),y(xi)). (2)

D. Condensation

For a given NN, the input weight of neuron j in the lth layer
(W

[l]
j , b

[l]
j ) is vectorized as θ[l]

j ∈ Rml+1. The condensation for
any two neurons in the same layer in this work is defined as
follows.

Definition 1 (condensation): Neuron i and neuron j in the lth
layer are condensed if θ[l]

i is parallel with θ
[l]
j .

To characterize the degree of condensation for a neural net-
work, we define the effective ratio for each layer.

Definition 2 (effective ratio): Let U [l] = {u[l]
k }m′

l

k=1 be the

set of vectors such that for any input weight θ[l]
j , there exists

an element u ∈ U [l] satisfying u //θ
[l]
j . The effective neuron

number meff
l of the lth layer is defined as the minimal size of all

possible U [l]. The effective ratio is defined as meff
l/ ml.

In our experiments, we use cosine similarity to characterize
the condensation.

Definition 3 (cosine similarity): The cosine similarity be-
tween two vectors u ∈ Rd and v ∈ Rd is defined as

Dcos(u,v) =
uᵀv

(uᵀu)1/2(vᵀv)1/2
. (3)

In this work, we admit u //θ
[l]
j if Dcos(u,θ

[l]
j ) > 0.95. Note

that the selection of the hyper-parameter 0.95 is not sensitive.

IV. MODIFIED GRADIENT FLOW

In this section, we theoretically analyze the implicit regular-
ization effect of dropout. We derive the modified gradient flow
of dropout in the sense of expectation. We first summarize the
settings and provide the necessary definitions used for our the-
oretical results below. Note that, the settings of our experiments
are much more general.

Setting 1 (dropout structure): Consider an L-layer (L ≥ 2)
FNN with only one dropout layer after the (L− 1)th layer of
the network,

f drop
θ,η (x) = W [L](1+ η)� f

[L−1]
θ (x) + b[L].

Setting 2 (loss function): Take the mean squared error (MSE)
as our loss function,

RS(θ) =
1

2n

n∑
i=1

(f(xi,θ)− yi)
2.

Setting 3 (network structure): For convenience, we set the
model output dimension to one, i.e., mL = 1.

In the following, we introduce two key terms that play an
important role in our theoretical results:

R1(θ) :=
1− p

2np

n∑
i=1

mL−1∑
j=1

‖W [L]
j f

[L−1]
θ,j (xi)‖2, (4)

R2(θ) :=
ε

4
Eη‖∇θR

drop
S (θ,η) ‖2, (5)

where W
[L]
j ∈ RmL is the jth column of W [L], f [L−1]

θ,j (xi) is

the jth element off [L−1]
θ (xi), Eη is the expectation with respect

to η, and ε is the learning rate.
Based on the above settings, we obtain a modified equation

based on dropout gradient flow.
Lemma 1 (the expectation of dropout loss): Given an L-layer

FNN with dropout f drop
θ,η (x), under Settings 1–3, we have the

expectation of dropout MSE

Eη(R
drop
S (θ,η)) = RS (θ) +R1(θ).

Based on the above lemma, we proceed to study the discrete
iterate training of gradient descent with dropout, resulting in the
derivation of the modified gradient flow of dropout training.

Modified Gradient Flow of Dropout: Under Settings 1–3, the
mean iterate of θ, with a learning rate ε 	 1, stays close to the
path of gradient flow on a modified loss θ̇ = −∇θR̃

drop
S (θ,η),

where the modified loss R̃drop
S (θ,η) satisfies

EηR̃
drop
S (θ,η) ≈ RS (θ) +R1(θ) +R2(θ). (6)

Contrary to SGD [33], the R1(θ) term is independent of the
learning rate ε, thus the implicit regularization of dropout still
affects the gradient flow even as the learning rate ε approaches
zero. In Section VI, we show the R1(θ) term makes the network
tend to find solutions with lower complexity, that is, solutions
with weight condensation, which is also illustrated and sup-
ported numerically. In Section VII, we show the R1(θ) term
plays a more important role in improving the generalization and
flatness of the model than the R2(θ) term.

V. NUMERICAL VERIFICATION OF IMPLICIT REGULARIZATION

TERMS

In this section, we numerically verify the validity of two
implicit regularization terms, i.e., R1(θ) defined in (4) and
R2(θ) defined in (5), under more general settings than out
theoretical results. The detailed experimental settings can be
found in Appendix A, available online.

A. Validation of the Effect of R1(θ)

As R1(θ) is independent of the learning rate and R2(θ)
vanishes in the limit of zero learning rate, we select a small
learning rate to verify the validity ofR1(θ). According to (6), the
modified equation of dropout training dynamics can be approxi-
mated byRS(θ) +R1(θ)when the learning rate ε is sufficiently
small. Therefore, we verify the validity of R1(θ) through the
similarity of the NN trained by the two loss functions, i.e.,
Rdrop

S (θ,η) and RS(θ) +R1(θ) under a small learning rate.
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Fig. 2. Two-layer NNs of width 1000 for the classification of the first 1000
images of MNIST dataset, utilizing two distinct loss functions: Rdrop

S (θ,η)
and RS(θ) +R1(θ). To study the impact of different dropout rates on the
performance of the networks, we conduct experiments with varying dropout
rates while maintaining a constant learning rate of ε = 5× 10−3. (a) The test
accuracy. (b) The value of Rdrop

S (θ,η) and R1(θ).

Fig. 2(a) presents the test accuracy of two losses trained under
different dropout rates. For the network trained with RS(θ) +
R1(θ), there is no dropout layer, and the dropout rate affects the
weight of R1(θ) in the loss function. For different dropout rates,
the networks obtained by the two losses above exhibit similar test
accuracy. It is worth mentioning that for the network trained with
RS(θ), the obtained accuracy is only 79%, which is significantly
lower than the accuracy of the network trained through the two
loss functions above (over 88% in Fig. 2(a)). In Fig. 2(b), we
show the values of RS(θ) and R1(θ) for the two networks at
different dropout rates. Note that for the network obtained by
Rdrop

S (θ,η) training, we can calculate the two terms through the
network’s parameters. It can be seen that for different dropout
rates, the values of RS(θ) and R1(θ) of the two networks are
almost indistinguishable.

B. Validation of the Effect of R2(θ)

As shown in Theorem IV, the modified loss R̃drop
S (θ,η)

satisfies the equation

EηR̃
drop
S (θ,η) = Eη

(
Rdrop

S (θ,η) +
ε

4
‖∇θR

drop
S (θ,η) ‖2

)
.

In order to validate the effect ofR2(θ) in the training process, we
verify the equivalence of the following two training methods: (i)
training networks with a dropout layer by MSE Rdrop

S (θ,η) with
different learning rates ε; (ii) training networks with a dropout
layer by MSE with an explicit regularization

Rregu
S (θ,η) := Rdrop

S (θ,η) + (λ/4)‖∇θR
drop
S (θ,η) ‖2,

with different values of λ and a fixed learning rate much smaller
than ε. The exact form of R2(θ) has an expectation with re-
spect to η, but in this subsection, we ignore this expectation in
experiments for convenience.

As shown in Fig. 3, we train the NNs by the MSE
Rdrop

S (θ,η) with different learning rates (blue), and the regu-
larized MSE Rregu

S (θ,η) with a fixed small learning rate and
different values of λ (orange). In Fig. 3(a), the learning rate
ε and the regularization coefficient λ are close when they
reach their corresponding maximum test accuracy (red point).
In addition, as shown in Fig. 3(b), we study the value of

Fig. 3. Classify the first 1000 images of CIFAR-10 by training VGG-9
under a specific loss function by GD. For loss function R

drop
S (θ,η), we

train the NNs with various learning rates ε. For loss function R
drop
S (θ,η) +

(λ/4)‖∇θR
drop
S (θ,η)‖2, we train the NNs with various regularization coeffi-

cient λ, while keeping the learning rate fixed at a small value of ε = 5× 10−3.
(a) The test accuracy of the network under different learning rates and regu-
larization coefficients. The red dots indicate the location of the maximum test
accuracy of the NNs obtained by training with both two loss functions. (b) The
(Eη‖Rdrop

S (θ,η)‖)/(Eη‖∇θR
drop
S (θ,η)‖2) value of the resulting model in

(a) under different learning rates ε or regularization coefficients λ.

Eη‖Rdrop
S (θ,η)‖/Eη‖∇θR

drop
S (θ,η)‖2 under different learn-

ing rates (blue) and regularization coefficients (orange). In
practical experiments, we take 3,000 different dropout noises
η to approximate the expectation after the training process. The
results indicate that the same learning rate ε and regularization
coefficient λ result in similar ratios.

Due to the computational cost of full-batch GD, we only use a
few training samples in the above experiments. We conduct sim-
ilar experiments with dropout under different learning rates and
regularization coefficients using SGD as detailed in Appendix
D-A, available online.

VI. DROPOUT FACILITATES CONDENSATION

A condensed network, which refers to a network with neurons
having aligned input weights, is equivalent to another network
with a reduced width [9], [10]. Therefore, the effective complex-
ity of the network is smaller than its superficial appearance. Such
low effective complexity may be an underlying reason for good
generalization. In addition, the embedding principle [36], [37],
[40] shows that although the condensed network is equivalent
to a smaller one in the sense of approximation, it has more
degeneracy and more descent directions that may lead to a
simpler training process.

In this section, we experimentally and theoretically study the
effect of dropout on the condensation phenomenon.

A. Experimental Results

To empirically validate the effect of dropout on condensation,
we examine ReLU and tanh activations in one-dimensional and
high-dimensional fitting problems, as well as image classifica-
tion problems. Due to space limitations, detailed experimental
settings and some experimental results are left in Appendices A,
D, available online.

1) Network With One-Dimensional Input: We train a tanh
NN with 1,000 hidden neurons for the one-dimensional fitting
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Fig. 4. Tanh NNs outputs and features under different dropout rates. The width of the hidden layers is 1,000, and the learning rate for different experiments is
1× 10−3. In (c, d, g, h), blue dots and orange dots are for the weight feature distribution at the initial and final training stages, respectively. The top row is the
result of two-layer networks, with the dropout layer after the hidden layer. The bottom row is the result of three-layer networks, with the dropout layer between the
two hidden layers and after the last hidden layer. Refer to Appendix D-B, available online, for further experiments on ReLU NNs.

problem to fit the data shown in Fig. 4 with MSE. Additional
experimental verifications on ReLU NNs are provided in Ap-
pendix D, available online. The experiments performed with and
without dropout under the same initialization can both well fit the
training data. In order to clearly study the effect of dropout on
condensation, we take the parameter initialization distribution
in the linear regime [9], where condensation does not occur
without additional constraints. The dropout layer is used after
the hidden layer of the two-layer network (top row) and used
between the hidden layers and after the last hidden layer of the
three-layer network (bottom row). Upon close inspection of the
fitting process, we find that the output of NNs trained without
dropout in Fig. 4(a) and (e) has much more oscillation than the
output of NNs trained with dropout in Fig. 4(b) and (f). To better
understand the underlying effect of dropout, we study the feature
of parameters.

The parameter pair (aj ,wj) of each neuron can be sepa-
rated into a unit orientation feature ŵj = wj/‖wj‖2 and an
amplitude Aj = |aj |‖wj‖2 indicating its contribution2 to the
output, i.e., (ŵj , Aj). For a one-dimensional input, wj is two-
dimensional due to the incorporation of bias. Therefore, we use
the angle to the x-axis in [−π, π) to indicate the orientation
of each ŵj . For simplicity, for the three-layer network with
one-dimensional input, we only consider the input weight of
the first hidden layer. The scatter plots of {(ŵj , |aj |)}mj=1 and
{(ŵj , ‖wj‖2)}mj=1 of tanh activation are presented in Appendix
D-C, available online, to eliminate the impact of the non-
homogeneity of tanh activation.

2Due to the homogeneity of ReLU neurons, this amplitude can accurately
describe the contribution of ReLU neurons. For tanh neurons, the amplitude has
a certain positive correlation with the contribution of each neuron.

Fig. 5. Compared dynamics are initialized at model found by RS(θ), marked
by the vertical dashed line in iteration 200000 with two-layer tanh NN. Left:
The loss trajectory under different loss functions. MIddle: The output of the
model trained by RS(θ) (blue) and the model trained by R

drop
S (θ) (orange)

and RS(θ) +R1(θ) (green) initialized at model found by RS(θ). The black
points are the target points. Right: The feature of the model trained by RS(θ)

(blue) and the model trained byRdrop
S (θ) (orange) andRS(θ) +R1(θ) (green)

initialized at model found by RS(θ).

The scatter plots of {(ŵj , Aj)}mj=1 of the NNs are shown
in Fig. 4(c), (d), (g), and (h). For convenience, we normalize
the feature distribution of each model parameter such that the
maximum amplitude of neurons in each model is 1. Compared
with the initial weight distribution (blue), the weight trained
without dropout (orange) is close to its initial value. However, for
the NNs trained with dropout, the parameters after training are
significantly different from the initialization, and the non-zero
parameters tend to condense on several discrete orientations,
showing a condensation tendency.

In addition, we study the stability of the model trained with
the loss function RS(θ) under the two loss functions Rdrop

S (θ)
and RS(θ) +R1(θ). As shown in the left panel of Fig. 5, we
use RS(θ) as the loss function to train the model before the
dashed line where when RS(θ) is small, and we then replace
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Fig. 6. Two-layer tanh NN output and feature with a batch size of 2. The width
of the hidden layer is 1,000, and the learning rate is 1× 10−3. In (b), blue dots
and orange dots are for the weight feature distribution at the initial and final
training stages, respectively.

the loss function by Rdrop
S (θ) or RS(θ) +R1(θ). The outputs

and features of the models trained with these three loss functions
are shown in the middle and right panels of Fig. 5, respectively.
The results reveal that dropout (R1(θ) term) aids the training
process in escaping from the minima obtained byRS(θ) training
and finding a condensed solution.

One may wonder if any noise injected into the training process
could lead to condensation. We also perform similar experiments
for SGD. As shown in Fig. 6, no significant condensation occurs
even in the presence of noise during training. Therefore, the
experiments in this section reveal the special characteristic of
dropout that facilitate condensation.

2) Network With High-Dimensional Input: We conducted
further investigation into the effect of dropout on high-
dimensional two-layer tanh NNs under the teacher-student set-
ting. Specifically, we utilize a two-layer tanh NN with only one
hidden neuron and 10-dimensional input as the target function.
The orientation similarity of two neurons is calculated by taking
the inner product of their normalized weights. As shown in
Fig. 7(a) and (b), for the NN with dropout, the neurons of the
network have only two orientations, indicating the occurrence
of condensation, while the NN without dropout does not exhibit
such a phenomenon.

To visualize the condensation during the training process, we
define the ratio of effective neurons as follows.

We study the training process of using ResNet-18 to learn
CIFAR-10. As shown in Fig. 7(c), NNs with dropout tend to have
lower effective ratios, and thus tend to exhibit condensation.

3) Dropout Improves Generalization: As the effective neu-
ron number of a condensed network is much smaller than its
actual neuron number, it is expected to generalize better. To
verify this, we use a two-layer tanh network with 1,000 neurons
to learn a teacher two-layer tanh network with two neurons. The
number of free parameters in the teacher network is 6. As shown
in Fig. 8, the model with dropout generalizes well when the
number of samplings is larger than 6, while the model without
dropout generalizes badly. This result is consistent with the rank
analysis of non-linear models [41].

4) Dropout is an Ideal Way to Induce Condensation: Ex-
isting literatures show that condensation is an important and
general phenomenon in the non-linear training process of neu-
ral networks. Condensed neurons have highly similar outputs.

Therefore, a network with a large number of condensed neurons
has a rather small effective complexity that can control the
generalization of a model. However, previous studies require the
network parameters with very small initialization to achieve con-
densation, where the learning trajectory will experience regions
that are very close to saddle points, resulting in an extremely
long training time. For example in Fig. 9(a), the model with a
small initialization is trapped by a saddle point and takes 9× 105

epochs to escape by gradient descent training.
Dropout offers an ideal training method to induce condensa-

tion phenomena without suffering from the long training pro-
cess. For example in Fig. 9(a), with the same setup as Fig. 4,
the model trained by gradient descent with dropout reaches
a small loss (10−5) in approximately 1× 105 epochs, which
is much less than that trained by gradient descent with small
initialization. Meanwhile, the model with dropout exhibits a flat
output function, as shown in Fig. 9(b). In contrast, as illustrated
in Fig. 4, a model with such a large initialization without dropout
produces an oscillating output function with no condensation.

B. The Effect of R1(θ) on Condensation

As can be seen from the implicit regularization term R1(θ),
dropout regularization imposes an additional l2-norm constraint
on the output of each neuron. The constraint has an effect on
condensation. We illustrate the effect of R1(θ) by a toy example
of a two-layer ReLU network.

We use the following two-layer ReLU network to fit a one-
dimensional function:

fθ(x) =
m∑
j=1

ajσ(wj · x) =
m∑
j=1

ajσ(wjx+ bj),

where aj , wj , bj are the trainable parameters of the two-layer
network, x := (x, 1)ᵀ ∈ R2, wj := (wj , bj) ∈ R2, σ(x) =
ReLU(x). For simplicity, we set m = 2, and suppose the net-
work can perfectly fit a training data set of two data points
generated by a target function of σ(w∗ · x), denoted as o∗ :=
(σ(w∗ · x1), σ(w

∗ · x2)). We further assume w∗ · xi > 0, i =
1, 2. Denote the output of the jth neuron over samples as

oj = (ajσ(wj · x1), ajσ(wj · x2)).

The network output should equal to the target on the training
data points after long enough training, i.e.,

o∗ = o1 + o2.

There are infinitely many pairs of o1 and o2 that can fit o∗ well.
However, the R1(θ) term leads the training to a specific pair.
R1(θ) can be written as

R1(θ) = ‖o1‖2 + ‖o2‖2,
and the components ofoj perpendicular too∗ need to cancel each
other at the well-trained stage to minimize R1(θ). As a result,
o1 and o2 need to be parallel with o∗, i.e.,w1//w2//w

∗, which
is the condensation phenomenon.

In the following, we show that minimizing R1(θ) term can
lead to condensation under several settings. We first give some
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Fig. 7. Sparsity in High-Dimensional NNs with different dropout rates. (a, b) Parameter features of the two-layer tanh NNs with and without dropout. (c) Effective
ratio with and without dropout under the task of CIFAR-10 classification with ResNet-18. Conv2-1 and conv3-1 represent the parameters of the first convolutional
layer of the second block and the third block of the ResNet, respectively.

Fig. 8. Average test error of the two-layer tanh NNs (color) versus the number
of samples (abscissa) for different dropout rates (ordinate). For all experiments,
the width of the hidden layer is 1,000, and the learning rate is 1× 10−4 with
the Adam optimizer. Each test error is averaged over 10 trials with random
initialization. Refer to Appendix D-B, available online, for further experiments
on ReLU NNs.

Fig. 9. Comparison of loss and output between the model trained by gradient
descent with small initialization (orange) and the model trained by dropout with
normal scale initialization (blue). The setup is the same as Fig. 4.

definitions that capture the characteristic of ReLU neurons (also
shown in Fig. 10).

Definition 4 (convexity change of ReLU NNs): Consider
piecewise linear function f(t), t ∈ R, and its linear interval sets
{[ti, ti+1]}Ti=1. For any two intervals [ti, ti+2], [ti+1, ti+3], i ∈
[T − 3], if on one of the intervals, f is convex and on the other
f is concave, then we call there exists a convexity change.

Definition 5 (direction and intercept point of ReLU neurons):
For a one-dimensional ReLU neuron ajσ(wjx+ bj), its direc-
tion is defined as sign(wj), and its intercept point is defined as
x = − bj

wj
.

Drawing inspiration from the methodology employed to es-
tablish the regularization effect of label noise SGD [42], we

Fig. 10. Schematic diagram of some definitions associated with ReLU
neurons.

show that under the setting of two-layer ReLU NN and one-
dimensional input data, the implicit bias of R1(θ) term corre-
sponds to “simple” functions that satisfy two conditions: (i) they
have the minimum number of convexity changes required to fit
the training points, and (ii) if the intercept points of neurons
are in the same inner interval, and the neurons have the same
direction, then their intercept points are identical.

Theorem 1 (the effect of R1(θ) on facilitating condensation).
Consider the following two-layer ReLU NN,

fθ(x) =

m∑
j=1

ajσ(wjx+ bj) + ax+ b,

trained with a one-dimensional dataset S = {(xi, yi)}ni=1,
where x1 < x2 < · · · < xn. When the MSE of training data
RS(θ) = 0, if any of the following two case happens:

(i) the number of convexity changes of NN in (x1, xn) can be
reduced while RS(θ) = 0;

(ii) there exist two neurons with indexes k1 �= k2,
such that they have the same sign, i.e., sign(wk1

) =
sign(wk2

), and different intercept points in the same inter-
val, i.e., −bk1

/wk1
,−bk2

/wk2
∈ [xi, xi+1], and −bk1

/wk1
�=

−bk2
/wk2

for some i ∈ [2 : n− 2];
then there exists parameters θ′, an infinitesimal perturbation

of θ, s.t.,
(i) RS(θ

′) = 0;
(ii) R1(θ

′) < R1(θ).
Remark 1: Theorem 1 implies that for an over-parameterized

network with many global minima, if one of the two cases above
occurs, there will be a global minimum with a smaller value of
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Fig. 11. Schematic diagram of the effect of R1(θ) on the constraint of the
convexity changes (left figure, case (i) in Theorem 1) and the intercept points
(right figure, case (ii) in Theorem 1).

R1 than the current one. In other words, if a global minimum
minimizes R1 over all minima, then, both cases in the theorem
can not happen, that is, the number of convexity changes of NN
in (x1, xn) is minimal, and the model has at most 2 intercept
points between any interval [xi, xi+1], for any i ∈ [2 : n− 2].

Remark 2: The additional linear function ax+ b in Theo-
rem 1 is added for maintaining zero loss when studying certain
situations in case (i). In this theorem, we reduce R1 by mov-
ing the intercept points of both neurons in different directions
simultaneously. Since the two neurons have opposite directions
in some situations, i.e., their input weights have opposite signs,
the movement of the intercept points of the two neurons will
affect the network output globally (one neuron will affect one
side). To cancel this global effect in order to maintain zero loss,
one has to add a global function. We prove by construction that
a linear function can do the trick. Due to the additivity of linear
functions, the linear functions required for reducing multiple
convexity changes can be equivalent to one linear function. It
should be noted that this linear function can be composed of two
ReLUs, which means that the original network is still essentially
a two-layer ReLU neural network. However, for the convenience
of proof, we use the network with ax+ b in the output. More
discussion about the conditions in the theorem can be found in
Appendix B, available online.

The example in the left curve in Fig. 11 shows the case (i)
of Theorem 1, that is, the convexity change can be reduced
while the loss stays zero. The example in the right curve in
Fig. 11 shows the case (ii) of Theorem 1, that is, there are more
than two intercept points without convexity change between the
third and the fourth points. Both right and left curves can be
reduced to the middle one with smaller R1 and zero training
loss. Therefore, the situation in which both case (i) and case (ii)
do not happen can facilitate condensation. It’s also worth noting
that condensation can occur in either case. However, the effective
ratio can be further reduced (more condensed) when either case
is reduced to the middle one. Meanwhile, not all functions
trained with dropout exhibit obvious condensation. For example,
a function with dropout shows no condensation when trained
using only one data point. However, for general datasets, such
as the example shown in Figs. 1 and 4, NNs reach the condensed
solution due to the constraint of the convexity changes and the
intercept points (also illustrated in Fig. 11).

Although the current study only demonstrates the result for
ReLU NNs, it is expected that for general activation functions,
such as tanh, the R1(θ) term also has the effect on facilitat-
ing condensation, which is left for future work. This is also

confirmed by the experimental results conducted on the tanh
NNs above. Furthermore, it is believed that the linear term
ax+ b utilized to ensure RS(θ) = 0 in certain cases is not a
fundamental requirement. Our experiments illustrate that neural
networks without the linear term also exhibit the condensation
phenomenon.

VII. IMPLICIT REGULARIZATION OF DROPOUT ON THE

FLATNESS OF SOLUTION

Understanding the mechanism by which dropout improves
the generalization of NNs is of great interest and significance.
In this section, we study the flatness of the minima found by
dropout as inspired by the study of SGD on generalization [13].
Our primary focus is to study the effect of R1(θ) and R2(θ) on
the flatness of loss landscape and network generalization.

A. Dropout Finds Flatter Minima

We first study the effect of dropout on model flatness and
generalization. For a fair comparison of the flatness between
different models, we employ the approach used in Li et al. [43]
as follows. To obtain a direction for a network with parametersθ,
we begin by producing a random Gaussian direction vector d
with dimensions compatible with θ. Then, we normalize each
filter in d to have the same norm as the corresponding filter in
θ. For FNNs, each layer can be regarded as a filter, and the nor-
malization process is equivalent to normalizing the layer, while
for convolutional neural networks (CNNs), each convolution
kernel may have multiple filters, and each filter is normalized
individually. Thus, we obtain a normalized direction vector d by
replacing di,j with di,j

‖di,j‖‖θi,j‖, where di,j and θi,j represent
the jth filter of the ith layer of the random direction d and
the network parameters θ, respectively. Here, ‖ · ‖ denotes the
Frobenius norm. It is crucial to note that j refers to the filter
index. We use the function L(α) = RS(θ + αd) to characterize
the loss landscape around the minima obtained with and without
dropout layers.

For all network structures shown in Fig. 12, dropout improves
the generalization of the network and finds flatter minima. In
Fig. 12(a) and (b), for both networks trained with and without
dropout layers, the training loss values are all close to zero, but
their flatness and generalization are still different. In Fig. 12(c)
and (d), due to the complexity of the dataset, i.e., CIFAR-100
and Multi30 k, and network structures, i.e., ResNet-20 and trans-
former, networks with dropout do not achieve zero training error
but the ones with dropout find flatter minima with much better
generalization. The accuracy of different network structures is
shown in Table I.

B. The Effect of R1(θ) on Flatness

In this subsection, we study the effect of R1(θ) on flatness
under the two-layer ReLU NN setting. Different from the flatness
described above by loss interpolation, we define the flatness of
the minimum as the sum of the eigenvalues of the Hessian matrix
H in this section, i.e., Tr(H). Note that when RS(θ) = 0, we
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Fig. 12. 1D visualization of solutions of different network structures obtained
with or without dropout layers. (a) The FNN is trained on MNIST dataset. The
test accuracy for the model with dropout layers is 98.7% while 98.1% for the
model without dropout layers. (b) The VGG-9 network is trained on CIFAR-10
dataset using the first 2048 examples as the training dataset. The test accuracy
for the model with dropout layers is 60.6% while 59.2% for the model without
dropout layers. (c) The ResNet-20 network is trained on CIFAR-100 dataset
using all examples as the training dataset. The test accuracy for the model with
dropout layers is 54.7% while 34.1% for the model without dropout layers. (d)
The transformer is trained on Multi30 k dataset using the first 2048 examples
as the training dataset. The test accuracy for the model with dropout layers is
49.3% while 34.7% for the model without dropout layers.

TABLE I
THE EFFECT OF DROPOUT ON MODEL ACCURACY

have,

Tr(H) = Tr

(
1

n

n∑
i=1

∇θfθ(xi)∇ᵀ
θfθ(xi)

)

=
1

n

n∑
i=1

‖∇θfθ(xi)‖22,

thus the definition of flatness above is equivalent to
1
n

∑n
i=1 ‖∇θfθ(xi)‖22.

Theorem 2 (the effect of R1(θ) on facilitating flatness): Con-
sider a two-layer ReLU NN,

fθ(x) =

m∑
j=1

ajσ(wjx),

trained with dataset S = {(xi, yi)}ni=1 with MSE loss. Under
the gradient flow training with the loss functionRS(θ) +R1(θ),

if θ0 satisfying RS(θ0) = 0 and ∇θR1(θ0) �= 0, we have

d
(
1
n

∑n
i=1 ‖∇θfθ0

(xi)‖22
)

dt
< 0.

The regularization effect of R2(θ) also has a positive effect
on flatness by constraining the norm of the gradient. In the next
subsection, we compare the effect of these two regularization
terms on generalization and flatness.

C. Effect of Two Implicit Regularization Terms on
Generalization and Flatness

Although the modified gradient flow is noise-free during
training, the model trained with the modified gradient flow can
also find a flat minimum that generalizes well, due to the effect
ofR1(θ) andR2(θ). However, the magnitude of their impact on
flatness is not yet fully understood. In this subsection, we study
the effect of each regularization term through training networks
by the following four loss functions:

L1(θ) := RS(θ) +R1(θ)

:= RS(θ) +
1− p

2np

n∑
i=1

mL−1∑
j=1

‖W [L]
j f

[L−1]
θ,j (xi)‖2,

L2(θ,η) := RS(θ) + R̃2(θ,η)

:= RS(θ) +
ε

4

∥∥∥∇θR
drop
S (θ,η)

∥∥∥2 ,
L3(θ,η) := Rdrop

S (θ,η)− R̃2(θ,η)

:= Rdrop
S (θ,η)− ε

4

∥∥∥∇θR
drop
S (θ,η)

∥∥∥2 ,
L4(θ,η) := Rdrop

S (θ,η)−R1(θ)

:= Rdrop
S (θ,η)− 1− p

2np

n∑
i=1

mL−1∑
j=1

‖W [L]
j f

[L−1]
θ,j (xi)‖2,

(7)

where R̃2(θ,η) is defined as (ε/4)‖∇θR
drop
S (θ,η)‖2 for conve-

nience, and we have EηR̃2(θ,η) = R2(θ). For eachLi, i ∈ [4],
we explicitly add or subtract the penalty term of either R1(θ)
or R̃2(θ,η) to study their effect on dropout regularization.
Therefore, L1(θ) and L3(θ,η) are used to study the effect of
R1(θ), while L2(θ,η) and L4(θ,η) are for R2(θ).

We first study the effect of two regularization terms on the
generalization of NNs. As shown in Fig. 13, we compare the
test accuracy obtained by training with the above four distinct
loss functions under different dropout rates and utilize the re-
sults of RS(θ) and Rdrop

S (θ,η) as reference benchmarks. Two
different learning rates are considered, with the solid and dashed
lines corresponding to ε = 0.05 and ε = 0.005, respectively. As
shown in Fig. 13(a), both approaches show that the training with
theR1(θ) regularization term finds a solution that almost has the
same test accuracy as the training with dropout. For R̃2(θ,η),
as shown in Fig. 13(b), the effect of R̃2(θ,η) only marginally
improves the generalization ability of full-batch gradient descent
training in comparison to the utilization of R1(θ).
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Fig. 13. Classification task on the MNIST dataset (the first 1000 images)
using the FNN with size 784-1000-10. The test accuracy obtained by training
with L1(θ), . . . , L4(θ) and RS(θ), R

drop
S (θ,η) under different dropout rates

and learning rates. The solid line represents the test accuracy of the network
under a large learning rate (ε = 0.05), and the dashed line represents the test
accuracy of the network under a small learning rate (ε = 0.005).

Fig. 14. Classification task on the MNIST dataset (the first 1,000 images) using
the FNN with size 784-1000-10. The RS(θ) value for interpolation between
models withα interpolation factor. ForLi&amp;Lj , there is one trained model
at α = 0 (trained by loss function Li), and the other is at α = 1 (trained by loss
functionLj ). Different curves represent different dropout rates used for training.

Then we study the effect of two regularization terms on
flatness. To this end, we show a one-dimensional cross-section of
the loss RS(θ) by the interpolation between two minima found
by the training of two different loss functions. For either R1(θ)
or R̃2(θ,η), we use addition or subtraction to study its effect. As
shown in Fig. 14(a), forR1(θ), the loss value of the interpolation
between the minima found by the addition approach (L1) and
the subtraction approach (L3) stays near zero, which is similar
for R̃2(θ,η) in Fig. 14(b), showing that the higher-order terms
of the learning rate ε in the modified equation have less influence
on the training process. We then compare the flatness of minima
found by the training with R1(θ) and R̃2(θ,η) as illustrated
in Fig. 14(c)–(f). The results indicate that the minima obtained
by the training with R1(θ) exhibit greater flatness than those
obtained by training with R̃2(θ,η).

The experiments in this section show that, compared with
SGD, the unique implicit regularization of dropout,R1(θ), plays
a significant role in improving the generalization and finding flat
minima.

VIII. CONCLUSION AND DISCUSSION

In this work, we theoretically study the implicit regulariza-
tion of dropout and its role in improving the generalization
performance of neural networks. Specifically, we derive two

implicit regularization terms, R1(θ) and R2(θ), and validate
their efficacy through numerical experiments. One important
finding of this work is that the unique implicit regularization
term R1(θ) in dropout, unlike SGD, is a key factor in improving
the generalization and flatness of the dropout solution. We also
found that R1(θ) can facilitate the weight condensation during
training, which may establish a link among weight condensation,
flatness, and generalization for further study. This work reveals
rich and unique properties of dropout, which are fundamental to
a comprehensive understanding of dropout.

Our study also sheds light on the broader issue of simplicity
bias in deep learning. We observed that dropout regularization
tends to impose a bias toward simple solutions during training, as
evidenced by the weight condensation and flatness effects. This
is consistent with other perspectives on simplicity bias in deep
learning, such as the frequency principle [44], [45], [46], [47],
[48], [49], [50], [51], which reveals that neural networks often
learn data from low to high frequency. Our analysis of dropout
regularization provides a detailed understanding of how simplic-
ity bias works in practice, which is essential for understanding
why over-parameterized neural networks can fit the training data
well and generalize effectively to new data. So far, we do not have
any concrete evidence to establish a connection between these
two implicit biases. However, we believe that studying their
connection would be an interesting topic. We have some clues to
suggest their connection may not be simple. For example, it has
been observed that SGD can find a flat solution [13]. However, as
shown in Fig. 18 in the appendix, available online, this solution
does not appear to be a condensed one.

Finally, our work highlights the potential benefits of dropout
regularization in training neural networks, particularly in the
linear regime. As we have shown, dropout regularization can
induce weight condensation and avoid the slow training speed
often encountered in highly nonlinear networks due to the fact
that the training trajectory is close to the stationary point [36],
[37]. This may have important implications for the development
of more efficient and effective deep learning algorithms.
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