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Abstract

It is important to understand how the popular regularization method dropout helps
the neural network training find a good generalization solution. In this work,
we show that the training with dropout finds the neural network with a flatter
minimum compared with standard gradient descent training. We further find that
the variance of a noise induced by the dropout is larger at the sharper direction
of the loss landscape and the Hessian of the loss landscape at the found minima
aligns with the noise covariance matrix by experiments on various datasets, i.e.,
MNIST, CIFAR-10, CIFAR-100 and Multi30k, and various structures, i.e., fully-
connected networks, large residual convolutional networks and transformer. For
networks with piece-wise linear activation function and the dropout is only at the
last hidden layer, we then theoretically derive the Hessian and the covariance of
dropout randomness, where these two quantities are very similar. This similarity
may be a key reason accounting for the goodness of dropout.

1 Introduction

Dropout is used with gradient-descent-based algorithms for training DNNs (Hinton et al., 2012;
Srivastava et al., 2014), which drives the state-of-the-art test performance in deep learning (Tan and
Le, 2019; Helmbold and Long, 2015). During training, the output of each neuron is multiplied with a
random variable with probability p as 1/p and 1− p as zero. Note that p is called dropout rate, and
every time for computing concerned quantity, the variable is randomly sampled at each feedforward
operation. Dropout has been an indispensable trick in the training of deep neural networks (DNNs).

The noise structure in the training dynamics is important. For example, the noise structure of SGD
helps find a flat solution (Keskar et al., 2016; Feng and Tu, 2021; Zhu et al., 2018). Similar to SGD,
training with dropout is equivalent to that with some specific noise. The implicit regularization behind
this specific noise structure finds solutions with better generalization (Hinton et al., 2012; Srivastava
et al., 2014; Wei et al., 2020).

To understand what kind of noise benefits the generalization of training, in this work, we first study
the characteristic of the minima found with the dropout regularization. We show that compared with
the standard gradient descent (GD), the GD with dropout selects flatter minima. As suggested by
many existing works (Keskar et al., 2016; Neyshabur et al., 2017; Zhu et al., 2018), flatter minima
are more likely to have better generalization and stability.

To explain why dropout can find flat minima, we then explore the relation between the flatness of
the loss landscape and the noise structure induced by dropout at minima through three methods and
obtain consistent results as follows: i) Inverse variance-flatness relation: The noise is larger at the
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sharper direction of the loss landscape; ii) Hessian-variance alignment relation: The Hessian of the
loss landscape at the found minima aligns with the noise covariance matrix.

These two relations are intuitively consistent and may help the training select flatter minima. Our
experiments are conducted over several representative datasets, i.e., MNIST (LeCun et al., 1998),
CIFAR-100 (Krizhevsky et al., 2009) and Multi30k (Elliott et al., 2016), and network structures, i.e.,
fully-connected neural networks, ResNet-20 (He et al., 2016) and transformer (Vaswani et al., 2017),
thus our conclusion is a rather general result.

Finally, we theoretically show that, at a point close to a minimum, the covariance matrix of the
noise induced by dropout and the Hessian matrix of the loss landscape is similar in the sense of the
expectation with respect to the dropout randomness. The similarity between covariance and Hessian is
consistent with experiments, i.e., the inverse variance-flatness relation and Hessian-variance alignment
relation.

2 Related works

Dropout is proposed as a simple way to prevent neural networks from overfitting, and thus improving
the generalization of the network (Hinton et al., 2012; Srivastava et al., 2014). Many works aim
to find an explicit form of dropout. McAllester (2013) presents PAC-Bayesian bounds, and Wan
et al. (2013), Mou et al. (2018) derive Rademacher generalization bounds. These results show that
the reduction of complexity brought by dropout is O(p), where p is the probability of keeping an
element in dropout. Mianjy and Arora (2020) show that dropout training with logistic loss achieves
ε-suboptimality in test error in O(1/ε) iterations. All of the above works need specific settings, such
as norm assumptions and logistic loss, and they only give a rough estimate of the generalization error
bound, which usually consider the worst case. However, it is not clear what is the characteristic of
the dropout training process and how to bridge the training with the generalization. In this work, we
show that dropout noise has a special structure, which closely relates with the loss landscape. The
structure of the effective noise induced by the dropout may be a key reason why dropout can find
solutions with better generalization.

Some works attribute the improvement in flatness to the similarity between the covariance matrix
and the Hessian matrix of the loss function of SGD (Papyan, 2018, 2019). For example, Feng and
Tu (2021) investigate the inverse variance-flatness relation for SGD and Zhu et al. (2018) study the
Hessian-variance alignment for SGD.

3 Preliminary

3.1 Deep Neural Networks

Consider L-layer (L ≥ 2) fully-connected DNNs with a general differentiable activation function.
We regard the input as the 0th layer and the output as the Lth layer. Let ml be the number of
neurons in the lth layer. In particular, m0 = d and mL = d′. For any i, k ∈ N and i < k, we
denote [i : k] = {i, i + 1, . . . , k}. In particular, we denote [k] := {1, 2, . . . , k}. Given weights
W [l] ∈ Rml×ml−1 and bias b[l] ∈ Rml for l ∈ [L], we define the collection of parameters θ as a
2L-tuple (an ordered list of 2L elements) whose elements are matrices or vectors

θ =
(
θ|1, · · · ,θ|L

)
=
(
W [1], b[1], . . . ,W [L], b[L]

)
,

where the lth layer parameters of θ is the ordered pair θ|l =
(
W [l], b[l]

)
, l ∈ [L]. We may misuse

of notation and identify θ with its vectorization vec(θ) ∈ RM with M =
∑L−1
l=0 (ml + 1)ml+1.

Given θ ∈ RM , the neural network function fθ(·) is defined recursively. First, we write f [0]
θ (x) = x

for all x ∈ Rd. Then for l ∈ [L−1], f [l]
θ is defined recursively as f [l]

θ (x) = σ(W [l]f
[l−1]
θ (x)+b[l]).

Finally, we denote

fθ(x) = f(x,θ) = f
[L]
θ (x) = W [L]f

[L−1]
θ (x) + b[L].

For notational simplicity, we denote
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f jθ(xi) = W
[L]
j f

[L−1]
θ,j (xi),

where W [L]
j ∈ RmL is the jth column of W [L], and f [L−1]

θ,j (xi) is the jth element of vector

f
[L−1]
θ (xi).

3.2 Loss function

The training data set is denoted as S = {(xi,yi)}ni=1, where xi ∈ Rd, yi ∈ Rd′ . For simplicity, here
we assume an unknown function y satisfying y(xi) = yi for i ∈ [n]. The empirical risk reads as

RS(θ) =
1

n

n∑
i=1

`(f(xi,θ),y(xi)) = ES`(f(x,θ),y),

where the expectation ESh(x) := 1
n

∑n
i=1 h(xi) for any function h : Rd → R and the loss function

`(·, ·) is differentiable and the derivative of `with respect to its first argument is denoted by∇`(y,y∗).
The error with respect to data sample (xi,yi) reads as

ε(fθ(xi),yi) = fθ(xi)− yi.

For notational simplicity, we denote ε(fθ(xi),yi) = εθ,i.

3.3 Dropout

For f [l]
θ (x) ∈ Rml , we sample a scaling vector η ∈ Rml with independent random coordinates,

(η)k =

{
1−p
p with probability p
−1 with probability 1− p,

where k ∈ [ml] indexes a coordinate of f [l]
θ (x). Note that η is a zero mean random variable. We then

apply dropout by computing
f

[l]
θ,η(x) = (1 + η)� f [l]

θ (x),

and using f [l]
θ,η(x) instead of f [l]

θ (x). Here we use� for the Hadamard product of two matrices of the
same dimension. With slight abuse of notation, we let η denote the collection of such vectors over all
layers. fdrop

θ,η (x) denotes the output of model fθ(x) on input x using dropout noise η. Rdrop
S (θ,η)

denotes the empirical risk with respect to network with dropout layer fdrop
θ,η , i.e.,

Rdrop
S (θ,η) =

1

n

n∑
i=1

`(fdrop
θ,η (xi),y(xi)) = ES`(fdrop

θ,η (x),y).

3.4 Randomness induced by dropout

3.4.1 Random trajectory data

The training process of neural networks are usually divided into two phases, fast convergence and
exploration phase (Shwartz-Ziv and Tishby, 2017). In this work, we follow the experimental scheme
in Feng and Tu (2021) to show the similarity between dropout and SGD. This can be understood by
frequency principle (Xu et al., 2019, 2020; Zhang et al., 2021), which states that DNNs fast learn
low-frequency components but slowly learn high-frequency ones.

We collect parameter sets Spara = {θi}Ni=1 from N consecutive training steps in the exploration
phase, where θi is the network parameter set at ith sample point.

3.4.2 Random gradient data

We often need larger time interval for enough sampling to estimate the covariance accurately. Al-
though the network loss is small, compared with the initial sampling parameters, the network
parameters could have large changes during the long-time sampling. Therefore, much extra noise
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may be induced. Meanwhile, for dropout, it is difficult to get a small loss value on large networks and
datasets, therefore, model parameters often have large fluctuations during the sampling. To overcome
this problem, we propose a more appropriate sampling method to avoid additional noise caused by
sampling parameters in a large time interval. We train the network until the loss is small enough
and then freeze the training. We sample N gradients of the loss function w.r.t. the parameters with
different dropout variables, i.e., Sgrad = {gi}Ni=1. In each sample, the dropout rate is fixed. In this
way, we can get the noise structure of dropout without being affected by parameter changes caused
by long-term training.

3.5 Inverse variance-flatness relation

We study the inverse variance flatness relation for both random trajectory data and random gradient
data. For convenience, we denote data as S and its covariance as Σ.

3.5.1 Variance vs. interval flatness

The definitions of variance and interval flatness are as follows:

Definition 1 (Variance of data at an eigen direction). For data S and its covariance Σ, by denoting
λi(Σ) as the ith eigenvalue of Σ, we write λi(Σ) as the variance of the data at the corresponding
eigen direction.

Definition 2 (Interval flatness). 2 For a specific solution θ∗0 , the loss function profile Lv along the
direction v is:

Lv(δθ) ≡ L(θ∗0 + δθv),

where δθ represents the distance moved in the v direction. The interval flatness Fv is defined as the
width of the region within which Lv(δθ) ≤ 2Lv(0). We determine Fv by finding two closest points
θlv < 0 and θrv > 0 on each side of the minimum that satisfy Lv(θlv) = Lv(θrv) = 2Lv(0). The
interval flatness is defined as:

Fv ≡ θrv − θlv. (1)

Remark. The experiments show that the result is not sensitive to the selection of the pre-factor 2. A
larger value of Fv means a flatter landscape in the direction v.

Denote λi(Σ) as the ith eigenvalue of Σ, and denote its corresponding eigen-vector as vi(Σ).
The interval flatness of the loss landscape in the direction vi(Σ) is denoted as Fvi(Σ). We then
experimentally explore the relation of {λi(Σ), Fvi(Σ)}Ni=1.

3.5.2 Projected variance vs. Hessian flatness

The definitions of projected variance and Hessian flatness are as follows:

Definition 3 (Projected variance). For a given direction v ∈ Rdθ and a parameter set S = {θi}nS
i=1,

where θi ∈ Rdθ , the inner product of v and θi is denoted by Projv(θi) := θTi v, then we can define
the projected variance at direction v with respect to the sample set S as follows,

Var(Projv(S)) =

∑nS

i=1(Projv(θi)− µ)2

nS
,

where µ is the mean value of {Projv(θi)}nS
i=1.

Definition 4 (Hessian flatness). For Hessian matrix H , by denoting λi(H) as the ith eigenvalue of
H , we write λi(H) as the Hessian flatness.

To obtain the variance induced by the dropout at a fixed position θ, we propose another way to
characterize the inverse variance-flatness relation. For given data S and Hessian matrix H , we
experimentally explore the relation of {Var(Projvi(H)(S)), λi(H)}Ni=1, where λi(H) and vi(H) is
the ith eigenvalue and eigenvector of H , respectively.

2This definition is also used in Feng and Tu (2021)
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Table 1: Three types of experiments explain why dropout finds flat minima.

DROPOUT COVARIANCE Σ

TRAJECTORY
VARIANCE Σt

GRADIENT
VARIANCE Σg

INTERVAL
FLATNESS Fv

{λi(Σ), Fvi(Σ)}, FIG. 2

HESSIAN
FLATNESS λ(H)

{Var(Projvi(H)(S)), λi(H)}, FIG. 3

\ ALIGNMENT:
Tr(HΣg), FIG. 4.

3.6 Hessian-variance alignment

Similar to Zhu et al. (2018), we quantify the alignment between the noise structure and the curvature
of loss landscape by

Ti = Tr(HiΣi),

where Σi is the ith-step covariance matrix of dropout layers and Hi is the Hessian matrix of the loss
landscape at network parameters of the ith-step.

4 Experimental setup

To understand the effect of dropout, we train a number of networks with different structures. We
consider the following types of neural networks: 1) Fully-connected neural networks (FNNs) trained
by MNIST (LeCun et al., 1998). 2) Convolutional neural networks (CNNs) trained by CIFAR-10
(Krizhevsky et al., 2009). 3) Deep residual neural networks (ResNets) (He et al., 2016) trained by
CIFAR-100 (Krizhevsky et al., 2009). 4) Transformer (Vaswani et al., 2017) trained by Multi30k
(Elliott et al., 2016). The loss of all our experiments is cross entropy loss.

It is worth noting that, to avoid the influence of SGD in our experiments, all our networks are trained
using GD, so it is difficult for us to verify on larger datasets such as ImageNet.

The detailed experimental setup can be found in Appendix A.

5 Dropout finds flatter minima

Dropout is almost ubiquitous in training deep networks. It is interesting and important to understand
what makes dropout improve the generalization of training neural networks. Inspired by the study of
SGD (Keskar et al., 2016), we explore the flatness of the minima found by dropout.

We adopt the method of Li et al. (2017) in this work as follows. To obtain a direction for a network
with parameters θ, we begin by producing a random Gaussian direction vector d with dimensions
compatible with θ. Then, we normalize each filter in d to have the same norm of the corresponding
filter in θ. For FNN, each layer can be regarded as a filter. The normalization process is equivalent
to normalizing the layer. For CNN, each convolution kernel may have multiple filters. Each filter
is normalized individually. In other words, we make the replacement di,j ← di,j

‖di,j‖ ‖θi,j‖, where
di,j ,θi,j represent the jth filter of the ith layer of the random direction d and the network parameters
θ, and ‖ · ‖ denotes the Frobenius norm. It should be noted that j is not the index of the weight, but
the filter. We use f(α) = L (θ + αd) to characterize the loss landscape around the minima obtained
with dropout layers θ∗d and without dropout layer θ∗.

For all network structures shown in Fig. 1, dropout can improve the generalization of the network
and find a flatter minimum. In Fig. 1(a, b), for both networks trained with and without dropout layers,
the training loss values are all closed to zero, but their flatness and generalization are still different.
In Fig. 1(c, d), due to the complexity of the dataset, i.e., CIFAR-100 and Multi30k, and networks,
i.e., ResNet-20 and transformer, networks with dropout layers does not achieve very small training
error but the ones with dropout find flatter minima with much better generalization.
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Figure 1: The 1D visualization of solutions of different network structures obtained with or without
dropout layers. (a) The FNN is trained on MNIST dataset. The test accuracy for model with dropout
layers is 98.7% while 98.1% for model without dropout layers. (b) The vgg-9 network is trained on
CIFAR-10 dataset using the first 2048 examples as training dataset. The test accuracy for model with
dropout layers is 60.6% while 59.2% for model without dropout layers. (c) The ResNet-20 network
is trained on CIFAR-100 dataset using all examples as training dataset. The test accuracy for model
with dropout layers is 54.7% while 34.1% for model without dropout layers. (d) The transformer is
trained on the Multi30k dataset using the first 2048 examples as training dataset. The test accuracy
for model with dropout layers is 49.33% while 34.73% for model without dropout layers.

Next, we utilize three methods to examine the relation between the covariance of the noise induced
by the dropout randomness and the Hessian of the loss landscape, as summarized in Table 1.

6 Inverse variance-flatness relation

Similar to SGD, the effect of dropout can be equivalent to imposing a specific noise on the gradient. A
random noise, such as isotropic noise, can help the training escape local minima, but can not robustly
improve generalization (An, 1996; Zhu et al., 2018). The noise induced by the dropout should have
certain properties that can lead the training to good minima.

In this section, we show that the noise induced by the dropout satisfies the inverse variance-flatness
relation, that is, the noise variance is larger along the sharper direction of the loss landscape at a
minimum. The landscape-dependent structure helps the training escape sharp minima.

6.1 Variance vs. interval flatness

We use the principal component analysis (PCA) to study the weight variations when the accuracy
is nearly 100%. For FNNs, networks are trained on MNIST with the first 10000 examples as the
training set for computational efficiency. For ResNets, networks are trained on CIFAR-100 with
50000 examples as the training set. For the transformer structure, the network is trained by Multi30k
(Vaswani et al., 2017). The networks are trained with full batch for different learning rates and
dropout rates under the same random seed (that is, with the same initialization parameters). When
the loss is small enough, we sample the parameters or gradients of parameters N times (N = 3000
in this experiment) and use the method introduced in Section 3.4 to construct covariance matrix Σ by
the weights Spara or gradients Sgrad of specific network parameters mentioned in Section 4. The
PCA is done for the covariance matrix Σ. We then compute the interval flatness of the loss function
landscape at eigen-directions, i.e., {Fvi(Σ)}Ni=1. Note that the PCA spectrum {λi(Σ)}Ni=1 indicate
the variance of weights Spara or gradients Sgrad at corresponding eigen-directions.

As shown in Fig. 2, for different learning rates and dropout rates, there is an inverse relationship
between the interval flatness of the loss function landscape {Fvi(Σ)}Ni=1 and the dropout variance,
i.e., the PCA spectrum {λi(Σ)}Ni=1. We can approximately see a power-law relationship between
{Fvi(Σ)}Ni=1 and {λi(Σ)}Ni=1. More detailed, for the small flatness part, the variance of noise induced
by dropout is generally large, which indicates that the noise induced by dropout has larger variance in
sharp directions; for the large flatness part, as the loss landscape gets flatter, the linear relationship is
more obvious, and we can see a clearer asymptotic behavior in the results. Overall, we can observe
the negative correlation between the variance and flatness in Fig. 2.
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Figure 2: The inverse relation between the variance {λi(Σ)}Ni=1 and the interval flatness {Fvi(Σ)}Ni=1
for different choices of dropout rate p and learning rate lr with different network structures. The PCA
is done for different datasets S sampled from parameters for the top line and sampled from gradients
of parameters for the bottom line. The dash lines give the approximate slope of the scatter.

6.2 Projected variance vs. Hessian flatness

The eigenvalues of the Hessian of the loss at a minimum are also often used to indicate the flatness. A
large eigenvalue corresponds to a sharper direction. In this section, we study the relationship between
eigenvalues of Hessian H of loss landscape at the end point of training and the variances of dropout
at corresponding eigen-directions. As mentioned in the Preliminary, we sample the parameters or
gradients of parameters 1000 times, that is N = 1000. For each eigen-direction vi of Hessian H , we
project the sampled parameters or the gradients of sampled parameter to direction vi by inner product,
denoted by Projvi(S). Then, we compute the variance of the projected data, i.e., Var(Projvi(S)).

As shown in Fig. 3, we find that there is also a power-law relationship between {λi(H)}Di=1 and
{Var(Projvi(S))}Di=1 for different dropout rates and learning rates, no matter S is sampled from
parameters or gradients of parameters. The positive correlation between the eigenvalue and the
projection variance show the structure of the dropout noise, which helps the network escape the bad
minima. At the same time, as shown in Figs. 2 and 3, we can see that gradient sampling has a more
clear linear structure than that of parameter sampling.

7 Hessian-variance alignment

In this section, we study the alignment between the Hessian and the random gradient covariance
at each training step, i.e., Hessian-variance alignment. Note that the training is performed by GD
without dropout. At step i, we sample the gradients of parameters {gji }Nj=1 by tentatively adding a
dropout layer between the hidden layers. For each step i, we the compute Tr(HiΣi), where Hi is the
Hessian of the loss at the parameter set at step i and Σi is the covariance of {gji }Nj=1.

In order to show the anisotropic structure, we construct the isotropic noise for comparison, i.e.,
Σ̄i = Tr Σi

D I of the covariance matrix Σi, where D is the number of parameters. In our experiments,
D = 2500. As shown in Fig. 4, in the whole training process under different learning rates and
dropout rates, Tr(HiΣi) is much larger than Tr(HiΣ̄i), indicating the anisotropic structure of dropout
noise and its high alignment with the Hessian matrix.
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Figure 3: The relation between the variance {Var(Projvi(S))}Di=1 and the eigenvalue {λi(H)}Di=1
for different choices of dropout rate p and learning rate lr with different network structures. The
projection is done for different datasets S sampled from parameters for the top line and sampled from
gradients of parameters for the bottom line. The dash lines give the approximate slope of the scatter.
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Figure 4: Comparison between Tr(HiΣi) and Tr(HiΣ̄i) in each training epoch i for different choices
of dropout rate p and learning rate lr. The FNN is trained on MNIST dataset using the first 10000
examples as training dataset. The solid and the dotted lines represent the value of Tr(HiΣi) and
Tr(HiΣ̄i), respectively.

8 Theoretical analysis

In this section, we summarize key theoretical results on the similarity between Hessian and covariance
matrices under dropout regularization. The proofs are in the Appendix B. We first summarize the
specific settings and the assumptions required for our theoretical results:

Setting 1 (Dropout structure). Consider a L-layer (L ≥ 2) fully-connected DNN has only one
dropout layer after the L− 1th layer of the network,

fdropθ,η (x) = W [L](1 + η)� f [L−1]
θ (x) + b[L].
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Setting 2 (Loss function). Take the mean squared error (MSE) as our loss function,

RS(θ) = ES`(f(x,θ),y) =
1

2n

n∑
i=1

(f(xi,θ)− yi)2.

Setting 3 (Network structure). Take the piece-wise linear function as our activation function. For
convenience, we further set that the model output is an one-dimensional vector, i.e. mL = 1.
Assumption 1. We examine the loss landscape after training reaches a stable stage, so we assume
that the gradient of the loss function in the average sense is small enough, i.e.

∇θEηRdrop
S (θ,η) ≈ 0.

Under the above assumptions and settings, we can theoretically calculate the Hessian matrix and
covariance matrix of the loss function as follows.
Theorem 1 (Hessian matrix with dropout regularization). Based on the Setting 1-3 and Assump-
tion 1, the Hessian matrix of the loss function with respect to fdrop

θ,η (x) can be written in the mean
sense as:

H(θ) = Eη∇2
θR

drop
S =

1

n

n∑
i=1

∇θfθ (xi)∇ᵀ
θfθ (xi) +

1− p
p

mL−1∑
j=1

∇θf jθ (xi)∇ᵀ
θf

j
θ (xi)

 .
Theorem 2 (Covariance matrix with dropout regularization). Based on the Setting 1-3 and
Assumption 1, the covariance matrix of the loss function under the randomness of dropout variable η
and data x can be written as:

Σdrop
θ =

1

n

n∑
i=1

ai∇θfθ(xi)∇ᵀ
θfθ(xi) + bi

1− p
p

mL−1∑
j=1

∇θf jθ(xi)∇ᵀ
θf

j
θ(xi)

 ,
where ai = 2Eη`(fdrop

θ,η (xi),yi), bi = 2`(fθ(xi),yi).

Proposition 1. Based on the Setting 1-3 and Assumption 1, we further restrict the problem to a binary
classification problem, i.e. yi ∈ {0, 1}, ∀i ∈ [n], and assume the model output fθ(xi) ∈ [δ, 1− δ]
(we can limit the network output using a threshold activation function), where δ is a small positive
constant, then we have:

(i) Σdrop
θ � δ2H(θ), almost everywhere in RM , M is the dimension of θ;

(ii) For any ε > 0, and a network parameter θ ∈ Ω = {θ : Eη`(fdrop
θ,η (xi),yi) ≤

(δ+ε)2

2 , `(fθ(xi),yi) ≤ (δ+ε)2

2 ,∀i ∈ [n]}, we have Σdrop
θ � (δ + ε)2H(θ) almost everywhere

in Ω.
Remark. A � B means that (B −A) is semi-positive definite.
Remark. The results in Proposition 1 are consist with the results under SGD setting studied in
Papyan (2018, 2019); Zhu et al. (2018).

From above analysis, we can see the Hessian and the covariance are very similar. Especially, when
the training is approaching the end, the error of all samples has similar magnitude, then, H and Σdrop

θ
has an approximately linear relation.

9 Conclusion and discussion

In this work, we find that dropout training selects flatter minima compared with standard gradient
descent training. We further show inverse variance-flatness relation and Hessian-variance alignment.
These two relations may help the training select flatter minima and leads the training to good
generalization. We then theoretically show the similarity between the Hessian and covariance to
further support the goodness of dropout. The dropout and the SGD are common in sharing the
these two relations. As a starting point, our work shows a promising and reasonable direction for
understanding the stochastic training of neural networks.
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A Detailed experimental setup

For Fig. 1(a), we use the FNN with size 784− 1024− 1024− 10. We add dropout layers behind the
first and the second layers with dropout rate of 0.8 and 0.5, respectively. We train the network using
default Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0001.

For Fig. 1(b), we use vgg-9 (Simonyan and Zisserman, 2014) to compare the loss landscape flatness
w/o dropout layers. For experiment with dropout layers, we add dropout layers after the pooling
layers, the dropout rates of dropout layers are 0.8. Models are trained using GD with Nesterov
momentum, training-size 2048 for 300 epochs. The learning rate is initialized at 0.1, and divided
by a factor of 10 at epochs 150, 225 and 275. We only use the first 2048 examples for training to
compromise with the computational burden.

For Fig. 2(a, d), Fig. 3(a, d), Fig. 4, we use the FNN with size 784 − 50 − 50 − 10. We train the
network using GD with the first 10,000 training data as the training set. We add a dropout layer
behind the second layer. The dropout rate and learning rate are specified and unchanged in each
experiment. We only consider the parameter matrix corresponding to the weight and the bias of the
fully-connected layer between two hidden layers.

For Fig. 1(c), Fig. 2(b, e), Fig. 3(b, e), we use ResNet-20 (He et al., 2016) to compare the loss
landscape flatness w/o dropout layers. For experiment with dropout layers, we add dropout layers
after the convolutional layers, the dropout rates of dropout layers are 0.8. We only consider the
parameter matrix corresponding to the weight of the first convolutional layer of the first block of
the ResNet-20. Models are trained using GD, training-size 50000 for 1200 epochs. The learning
rate is initialized at 0.01. Since the Hessian calculation of ResNet takes much time, for the ResNet
experiment, we only perform it at a specific dropout rate and learning rate.

For Fig. 1(d), Fig. 2(c, f), Fig. 3(c, f), we use transformer (Vaswani et al., 2017) with dmodel =
50, dk = dv = 20, dff = 256, h = 4, N = 3, the meaning of the parameters is consistent with the
original paper. In order to calculate the Hessian matrix and eigendecomposition more accurately and
quickly, we reasonably reduce the number of network parameters. We only consider the parameter
matrix corresponding to the weight of the fully-connected layer whose output is queries in the
Multi-Head Attention layer of the first block of the decoder. For experiment with dropout layers, we
apply dropout to the output of each sub-layer, before it is added to the sub-layer input and normalized.
In addition, we apply dropout to the sums of the embeddings and the positional encodings in both the
encoder and decoder stacks. The dropout rates of dropout layers are 0.9. For the English-German
translation problem, we use the cross-entropy loss with label smoothing trained by full-batch Adam
based on the Multi30k dataset. The learning rate strategy is the same as that in the article. The warm
up step is 4000 epochs, the training step is 10000 epochs. We only use the first 2048 examples for
training to compromise with the computational burden.

B Derivations and Proofs for Main Paper

B.1 Proof of Theorem 1

Theorem (Theorem 1: Hessian matrix with dropout regularization). Based on the Setting 1-3
and Assumption 1, the Hessian matrix of the loss function with respect to fdrop

θ,η (x) can be written in
the mean sense as:

H(θ) = Eη∇2
θR

drop
S =

1

n

n∑
i=1

∇θfθ (xi)∇ᵀ
θfθ (xi) +

1− p
p

mL−1∑
j=1

∇θf jθ (xi)∇ᵀ
θf

j
θ (xi)

 .
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Proof. We first compute the Hessian matrix after taking expectation with respect to the dropout
variable,

Eη∇2
θR

drop
S (θ,η) = ∇2

θRS(θ) +
1− p
2np

n∑
i=1

mL−1∑
j=1

∇2
θ(f jθ(xi))

2. (2)

The first and second terms on the RHS of the Equ.(2) are as follows,

∇2
θRS(θ) =

1

n

n∑
i=1

(
∇θfθ (xi)∇ᵀ

θfθ (xi) + (fθ (xi)− yi) · ∇2
θfθ (xi)

)
1− p
2np

n∑
i=1

mL−1∑
j=1

∇2
θ(f jθ(xi))

2 =
1− p
np

n∑
i=1

mL−1∑
j=1

(
∇θf jθ (xi)∇ᵀ

θf
j
θ (xi) + f jθ (xi) · ∇2

θf
j
θ (xi)

)
.

Note that for linear activate function, ∇2
θfθ (xi) = ∇2

θf
j
θ (xi) = 0, a.e. ∀i ∈ [n],∀j ∈ [m], we

have

∇2
θRS(θ) =

1

n

n∑
i=1

∇θfθ (xi)∇ᵀ
θfθ (xi)

1− p
2np

n∑
i=1

mL−1∑
j=1

∇2
θ(f jθ(xi))

2 =
1− p
np

n∑
i=1

mL−1∑
j=1

∇θf jθ (xi)∇ᵀ
θf

j
θ (xi) .

Thus the Equ.(2) can be rewritten as

Eη∇2
θR

drop
S (θ,η) =

1

n

n∑
i=1

∇θfθ (xi)∇ᵀ
θfθ (xi) +

1− p
p

m∑
j=1

∇θf jθ (xi)∇ᵀ
θf

j
θ (xi)

 .

B.2 Proof of Theorem 2

Theorem (Theorem 2: Covariance matrix with dropout regularization). Based on the Setting
1-3 and Assumption 1, the covariance matrix of the loss function under the randomness of dropout
variable η and data x can be written as:

Σdrop
θ =

1

n

n∑
i=1

ai∇θfθ(xi)∇ᵀ
θfθ(xi) + bi

1− p
p

mL−1∑
j=1

∇θf jθ(xi)∇ᵀ
θf

j
θ(xi)

 ,
where ai = 2Eη`(fdrop

θ,η (xi),yi), bi = 2`(fθ(xi),yi).

Proof. For simplicity, we approximate the loss function through Taylor expansion, which is also used
in Wei et al. (2020),

`(fdrop
θ,η (xi),yi) ≈ `(fθ(xi),yi) + (fθ(xi)− yi)

mL−1∑
j=1

W
[L]
j (η)jf

[L−1]
θ,j (xi),

where W [L]
j ∈ RmL is the jth column of W [L], and f [L−1]

θ,j (xi) is the jth element of vector

f
[L−1]
θ (xi). The covariance matrix obtained using SGD under dropout regularization is

Σdrop
θ =

1

n

n∑
i=1

Eη∇θ`(fdrop
θ,η (xi),yi)∇ᵀ

θ`(f
drop
θ,η (xi),yi)−∇θEηRdrop

S (θ,η)∇ᵀ
θEηR

drop
S (θ,η)

≈ 1

n

n∑
i=1

Eη∇θ`(fdrop
θ,η (xi),yi)∇ᵀ

θ`(f
drop
θ,η (xi),yi).
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Combining the properties of the dropout variable η, we have,

Σdrop
θ =

1

n

n∑
i=1

∇θ`(fθ(xi),yi)∇ᵀ
θ`(fθ(xi),yi)

+
1

n

n∑
i=1

Eη

mL−1∑
j=1

(η)j∇θ(f jθ(xi)εθ,i)

mL−1∑
j=1

(η)j∇ᵀ
θ(f jθ(xi)εθ,i)


=

1

n

n∑
i=1

∇θ`(fθ(xi),yi)∇ᵀ
θ`(fθ(xi),yi) +

1− p
p

mL−1∑
j=1

∇θ(f jθ(xi)εθ,i)∇ᵀ
θ(f jθ(xi)εθ,i)


:=

1

n

n∑
i=1

(
Σdrop
θ,1 (xi,yi) +

1− p
p

Σdrop
θ,2 (xi,yi)

)
.

(3)

We calculate the two terms on the RHS of the Equ.(3) separately:

Σdrop
θ,1 (xi,yi) = (εθ(xi))

2 · ∇θfθ(xi)∇ᵀ
θfθ(xi),

Σdrop
θ,2 (xi,yi) = (εθ,i)

2

mL−1∑
j=1

∇θf jθ(xi)∇ᵀ
θf

j
θ(xi) +∇θfθ(xi)∇ᵀ

θfθ(xi)

mL−1∑
j=1

(f jθ(xi))
2

+ 2

mL−1∑
j=1

εθ,if
j
θ(xi) · ∇θεθ,i∇θf jθ(xi)

= (εθ,i)
2

mL−1∑
j=1

∇θf jθ(xi)∇ᵀ
θf

j
θ(xi) +∇θfθ(xi)∇ᵀ

θfθ(xi)

mL−1∑
j=1

(f jθ(xi))
2

+
1

2

mL−1∑
j=1

∇θ(εθ,i)
2∇θ(f jθ(xi))

2.

Under the assumption that∇θ(εθ,i)
2 = 2 · ∇θ`(fθ(xi),yi) = 0, ∀i ∈ [n], we have

Σdrop
θ,2 (xi,yi) = (εθ,i)

2

mL−1∑
j=1

∇θf jθ(xi)∇ᵀ
θf

j
θ(xi) +∇θfθ(xi)∇ᵀ

θfθ(xi)

mL−1∑
j=1

(f jθ(xi))
2.

Thus the Equ.(3) can be rewritten as

Σdrop
θ =

1

n

n∑
i=1

∇θfθ(xi)∇ᵀ
θfθ(xi)

(εθ(xi))
2 +

1− p
p

mL−1∑
j=1

(f jθ(xi))
2


+

1− p
np

n∑
i=1

mL−1∑
j=1

(εθ,i)
2 · ∇θf jθ(xi)∇ᵀ

θf
j
θ(xi).

Note that

(εθ(xi))
2 +

1− p
p

mL−1∑
j=1

(f jθ(xi))
2 = Eη2`(fdrop

θ,η (xi),yi),

we have

Σdrop
θ =

2

n

n∑
i=1

Eη`(fdrop
θ,η (xi),yi) · ∇θfθ(xi)∇ᵀ

θfθ(xi)

+
2(1− p)
np

n∑
i=1

mL−1∑
j=1

(`(fθ(xi),yi)) · ∇θf jθ(xi)∇ᵀ
θf

j
θ(xi).
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B.3 Proof of Proposition 1

Proposition (Proposition 1). Based on the Setting 1-3 and Assumption 1, we further restrict the
problem to a binary classification problem, i.e. yi ∈ {0, 1}, ∀i ∈ [n], and assume the model output
fθ(xi) ∈ [δ, 1− δ] (we can limit the network output using a threshold activation function), where δ
is a small positive constant, then we have:

(i) Σdrop
θ � δ2H(θ), almost everywhere in RM , M is the dimension of θ;

(ii) For any ε > 0, and a network parameter θ ∈ Ω = {θ : Eη`(fdrop
θ,η (xi),yi) ≤

(δ+ε)2

2 , `(fθ(xi),yi) ≤ (δ+ε)2

2 ,∀i ∈ [n]}, we have Σdrop
θ � (δ + ε)2H(θ) almost everywhere

in Ω.

Proof. The properties (i)–(ii) are direct consequences of Thm. 1, 2.
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