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Abstract. Along with fruitful applications of Deep Neural Networks (DNNs) to re-
alistic problems, recently, empirical studies reported a universal phenomenon of Fre-
quency Principle (F-Principle), that is, a DNN tends to learn a target function from
low to high frequencies during the training. The F-Principle has been very useful in
providing both qualitative and quantitative understandings of DNNs. In this paper,
we rigorously investigate the F-Principle for the training dynamics of a general DNN
at three stages: initial stage, intermediate stage, and final stage. For each stage, a the-
orem is provided in terms of proper quantities characterizing the F-Principle. Our
results are general in the sense that they work for multilayer networks with general
activation functions, population densities of data, and a large class of loss functions.
Our work lays a theoretical foundation of the F-Principle for a better understanding of
the training process of DNNs.
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1 Introduction

Deep learning has achieved great success as in many fields [15], e.g., speech recognition
[1], object recognition [10], natural language processing [35] and computer game control
[21]. It has also been adopted into algorithms to solve scientific computing problems [8,
11,12,14]. In principle, the universal approximation theorem states that a commonly-used
Deep Neural Network (DNN) of sufficiently large width can approximate any function to
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a desired precision [7]. However, it remains a mystery that how a DNN finds a minimum
corresponding to such an approximation through the gradient-based training process. To
understand the learning behavior of DNNs for the approximation problem, recent works
model the gradient flow of parameters in a two-layer ReLU neural networks by a partial
differential equation (PDE) in the mean-field limit [19, 25, 26]. However, it is not clear
whether this PDE approach, which describes a neural network of one hidden layer of
infinite width, can be extended to general DNNs of multiple hidden layers and limited
neuron number. For further discussion on the mathematical understanding of DNNs, we
refer the readers to a review article [9].

In this work, we take another approach that uses Fourier analysis to study the learn-
ing behavior of DNNs based on the phenomenon of Frequency Principle (F-Principle),
i.e., a DNN tends to learn a target function from low to high frequencies during the train-
ing [23, 31, 32, 36]. Empirically, the F-Principle can be widely observed in general DNNs
for both benchmark and synthetic data [31, 32]. Conceptually, it provides a qualitative
explanation of the success and failure of DNNs [32]. E et al., (2019) [30] propose a contin-
uous viewpoint for studying machine learning and suggest that the F-Principle under-
lying the gradient flows may be a main reason behind the success of modern machine
learning. Empirically, the F-Principle provides us a perspective for quantifying the train-
ing process via the convergence of each frequency component [13, 22, 29, 33]. For exam-
ple, it is used as an important phenomenon to pursue fundamentally different learning
trajectories of meta-learning [22] and provides an understanding of why increasing the
depth of a neural network may accelerate the training [33]. The F-Principle also provides
important theoretical insights to design DNN-based algorithms [2, 3, 5, 16, 17, 20, 27, 28].
For example, Blind et al. [3] designs a loss function with explicit higher priority for high
frequencies to significantly accelerate the simulation of fluid dynamics through DNN ap-
proach; MscaleDNN [16, 17, 28] is developed to accelerate the fitting of high frequency
functions by shifting or rescaling high frequencies to lower ones. These works have sig-
nified the importance of the F-Principle. Theoretically, Xu et al. [32] propose a theorem
for the characterization of the initial training stage of a two-layer tanh network, which
is also adopted in the analysis of DNNs with ReLU activation function [23]. Another
series of works [4, 6, 24, 34, 36] attempt to understand the F-Principle in very wide neu-
ral networks, which can be well approximated by the first-order expansion with respect
to the network parameters (the linear neural tangent kernel (NTK) regime). The stud-
ies [6, 24, 34] from the perspective of eigen-decomposition of DNN dynamics in spatial
domain require assumptions of very large network width and infinite samples. To study
the F-Principle with finite samples, Zhang et al. [36] and Luo et al. [18] study the dynam-
ics in the frequency domain and further obtain an effective model of linear F-Principle dy-
namics, which accurately predicts the learning results of two-layer ReLU neural networks
of large widths, leads to an apriori estimate of the generalization error bound. However,
the explanation of DNN’s F-Principle beyond the NTK regime (non-linear regime) is still
missing.

Following the same direction as in [32], in this work, we propose a theoretical frame-
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work of Fourier analysis for the study of the training behavior of general DNNs in the
following three stages: the initial stage, the intermediate stage, and the final stage. At all
stages, we rigorously characterize the F-Principle by estimating some proper quantities.
At the initial and final stages with the MSE loss (mean-squared error, also known as L2

loss), we show that the change of MSE is dominated by low frequencies. Furthermore, in
these two stages with general Lp (2≤ p<∞) loss, we show that the change of the DNN
output is dominated by the low-frequency part. A key contribution of this work is on
the intermediate stage — with Lp loss, the difference of the MSE over a certain period,
in which the MSE is reduced by half, is dominated by the low frequencies. In summary,
we verify that the F-Principle is universal in the sense that our results not only work for
DNNs of multiple layers with any commonly-used activation function, e.g., ReLU, sig-
moid, and tanh, but also work for a general population density of data and for a general
class of loss functions. The key insight unraveled by our analysis is that the regularity of
DNN converts into the decay rate of a loss function in the frequency domain.

2 Preliminaries

We start with a brief introduction to DNNs and its training dynamics. Under very mild
assumptions, we provide some regularity results which are crucial to the proof of the
main theorems summarized in the next section.

2.1 Deep Neural Networks

Consider a DNN with (L−1)-hidden layers and general activation functions. We regard
the d-dimensional input as the 0-th layer and the one-dimensional output as the L-th
layer. Let ml be the number of neurons in the l-th layer. In particular, m0=d and mL =1.
For any k∈N, we denote [k] :={1,2,··· ,k}.

The hypothesis space H is a family of hypothesis functions parametrized by the parameter

vector θ∈R
M whose entries are called parameters W

[l]
ij ’s (also known as weight) and b

[l]
i ’s

(also known as bias). More precisely, we set

θ=
(

vec(W [1]),vec(b[1]),··· ,vec(W [L]),vec(b[L])
)

, (2.1)

where for W [l]∈R
ml×ml−1 and b[l]∈R

ml for l∈[L]. The size M of the network is the number
of the parameters, i.e.,

M=
L−1

∑
l=0

(ml+1)ml+1. (2.2)

To define the hypothesis functions in H, we need some nonlinear functions which are
known as activation functions:

σ
[l]
i : R→R for l∈ [L−1], i∈ [ml ]. (2.3)
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Given θ∈R
M, the corresponding function fθ(·) (also denoted by f (·,θ) in this paper) in

H is defined by a series of function compositions. First, we set f [0] = id : R
d →R

d, i.e.,
f [0](x)= x for all x∈R

d. Then for l∈ [L−1], f [l] is defined recursively as

f [l] : R
d→R

ml , (2.4)

( f [l])i=σ
[l]
i

{

(W [l] f [l−1]+b[l])i

}

, i∈ [ml ]. (2.5)

Finally, we denote

f [L]=W [L] · f [L−1]+b[L]. (2.6)

We remark that for the most applications, the activation functions σ
[l]
i are chosen to be

the same, i.e., σ
[l]
i =σ, l∈ [L−1], i∈ [ml ].

Example 2.1. For instance, if a one-hidden layer neural network is used, then L=2 and
the hypothesis function can be written into the following form:

f [2](x,θ)=
m

∑
i=1

w
[2]
i σ(w

[1]
i ·x+b

[1]
i ), w

[2]
i ,b

[1]
i ∈R, w

[1]
i ∈R

d. (2.7)

Thus the size of the network M=(d+2)m which is consistent with (2.2).

We are only interested in the target function ftarget in a compact domain Ω, i.e., Ω⊂⊂
R

d. A bump function χ is used to truncate both hypothesis and target functions:

fθ(x)= f (x,θ)= f [L](x,θ)χ(x), (2.8)

f (x)= ftarget(x)χ(x). (2.9)

In the sequel, we will also refer to fθ and f as the hypothesis and target functions, respec-
tively.

2.2 Loss function and training dynamics

In this work, we investigate the training dynamics of parameters in DNNs with two cases
of loss functions:

(i) The MSE loss function with population measure D, i.e.,

RD(θ)=Ex∼D( f (x,θ)− f (x))2. (2.10)

In this case, the training dynamics of θ follows the gradient flow:







dθ

dt
=−∇θRD(θ),

θ(0)=θ0.
(2.11)
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(ii) A general loss function with population measure D, i.e.,

R̃D(θ)=Ex∼Dℓ( f (x,θ)− f (x)), (2.12)

where the function ℓ satisfies some mild assumptions to be explained later. In this case,
the training dynamics of θ becomes:







dθ

dt
=−∇θR̃D(θ),

θ(0)=θ0.
(2.13)

In the case of MSE loss function, we have

RD(θ)=
∫

Rd
| fD(x,θ)− fD(x)|2dx

=
∫

Rd
| f̂D(ξ,θ)− f̂D(ξ)|2dξ, (2.14)

where ρ, satisfying D(dx)=ρ(x)dx, is called the population density and

fD(·,θ)= f (·,θ)
√

ρ(·), fD(·)= f (·)
√

ρ(·). (2.15)

The second equality is due to the Plancherel theorem. Here and in the sequel, we use the
following conventions for the Fourier transform and its inverse transform on R

d:

F [g](ξ)= ĝ(ξ)=
∫

Rd
g(x)e−2πiξ·x dx, g(x)=

∫

Rd
ĝ(ξ)e2πiξ·xdξ.

For the convenience of proofs, we denote

RD(θ)=
∫

Rd
qD(ξ,θ)dξ, (2.16)

qD(ξ,θ)= | f̂D(ξ,θ)− f̂D(ξ)|2. (2.17)

2.3 Assumptions

The requirements on χ, f , σ, and D are summarized here.

Assumption 2.1 (regularity). The bump function χ satisfies χ(x)=1, x∈Ω and χ(x)=0,
x ∈ R

d\Ω′ for domains Ω and Ω′ with Ω ⊂⊂ Ω′ ⊂⊂ R
d. There is a positive integer k

(can be ∞) such that ftarget∈Wk,∞
loc (Rd;R), χ∈Wk,∞

loc (Rd;[0,+∞)), and σ
[l]
i ∈Wk,∞

loc (R;R) for
l∈ [L−1], i∈ [ml ].

Assumption 2.2 (bounded population density). There exists a function ρ∈L∞
(

R
d;[0,+∞)

)

satisfying D(dx)=ρ(x)dx.
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Example 2.2. Here we list some commonly-used activation functions:

1. ReLU (Rectified Linear Unit): ReLU(x)=max(0,x), x∈R;

2. tanh (hyperbolic tangent): tanh(x)= ex−e−x

ex+e−x , x∈R;

3. sigmoid function (also known as logistic function): S(x)= 1
1+e−x , x∈R.

Remark 2.1. It is also allowed that k = ∞ where the functions f and σ
[l]
i are all C∞ by

Sobolev embedding inequalities. This case includes tanh and sigmoid activation func-
tions.

Remark 2.2. If an activation function is ReLU, then k=1.

Remark 2.3. For x∈Ω, we have f (x,θ)− f (x)= f [L](x,θ)− ftarget(x).

For the training dynamics (2.11) or (2.13), we suppose the parameters are bounded.

Assumption 2.3 (bounded trajectory). The training dynamics is nontrivial, i.e., θ(t) 6≡
const. There exists a constant C0 > 0 such that supt≥0|θ(t)| ≤ C0 where the parameter
vector θ(t) is the solution to (2.11) or (2.13).

Remark 2.4. The bound C0 depends on initial parameter θ0.

In the case of MSE loss function, we will further take the following assumption.

Assumption 2.4. The density ρ satisfies
√

ρ∈Wk,∞
loc (Rd;[0,+∞)).

The general loss function considered in this work satisfies the following assumption.

Assumption 2.5 (general loss function). The function ℓ in the general loss function
R̃D(θ) satisfies ℓ ∈ C2(R;[0,+∞)) and there exist positive constants C and r0 such that
C−1[ℓ′(z)]2 ≤ ℓ(z)≤C|z|2 for |z|≤ r0.

Example 2.3. The Lp (2≤p<∞) loss function satisfies Assumption 2.5. Here the Lp (1≤p<
∞) loss functions used in machine learning are defined as R̃D(θ)=Ex∼D| f (x,θ)− f (x)|p
which is a little bit different from the Lp norm used in mathematics.

2.4 Regularity

Based on the above assumptions, some regularity results can be obtained in terms of the
“Japanese bracket” of ξ:

〈ξ〉 :=(1+|ξ|2)1/2. (2.18)

Lemma 2.1. Suppose that the Assumption 2.1 holds. Given any θ∈R
M, the hypothesis function

fθ∈Wk,2(Rd;R) and its gradient with respect to the parameters ∇θ fθ∈Wk−1,2(Rd;RM). Also,
we have the target function f ∈Wk,2(Rd;R).
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Proof. Recall that f (x) = ftarget(x)χ(x) and fθ(x) = f [L](x,θ)χ(x) given θ∈ R
M. By As-

sumption 2.1, ftarget ∈ Wk,∞
loc (Rd;R) and χ ∈ Wk,∞

loc (Rd;[0,+∞)) with a compact support.

Thus f ∈ Wk,2(Rd;R). In order to show fθ ∈ Wk,2(Rd;R), it is sufficient to prove that

f [L] ∈Wk,∞
loc (Rd;R). Indeed, we prove f [l] ∈Wk,∞

loc (Rd;Rml) for l ∈ [L] by induction. For

l=0, f [0]∈Wk,∞
loc (Rd;Rm0) because f [0](x)=x and m0=d. Suppose that for l (0≤ l≤H−2)

we have f [l] ∈Wk,∞
loc (Rd;Rml). Now let us consider f [l+1] with ( f [l+1])i = σ

[l+1]
i

{

(W [l+1] ·
f [l]+b[l+1])i

}

, i ∈ [ml+1]. By the induction assumption, we have (W (l+1) · f [l]+b[l+1])i ∈
Wk,∞

loc (Rd;R). By Assumption 2.1, σ
[l]
i ∈Wk,∞

loc (R;R). Note that σ
[l]
i ∈Ck−1(R;R) by Sobolev

embedding. Then ( f [l+1])i ∈Wk,∞
loc (Rd;R) because of the chain rule and the fact that the

composition of continuous functions is still continuous. Finally, for l = L−1, we have

f [L]=W [L] · f [L−1]+b[L]∈Wk,∞
loc (Rd;R).

The proof for ∇θ fθ is similar if we note that (σ
[l]
i )′∈Wk−1,∞

loc (R;R).

Remark 2.5. The continuity of σ
[l]
i is necessary because the composition of two Lebesgue

measurable functions need not be Lebesgue measurable.

Lemma 2.2. Suppose that the Assumptions 2.1 and 2.2 hold. Then

(a). For any 0≤ r≤ k, we have

〈·〉r| f̂ (·,θ)|∈L2(Rd;R), (2.19)

〈·〉r| f̂ (·)|∈L2(Rd;R). (2.20)

(b). For any 0≤ r≤ k−1, we have

〈·〉r|∇θ f̂ (·,θ)|∈L2(Rd;R). (2.21)

(c). For any 0≤ r≤2k−1, we have

〈·〉r|∇θq(·,θ)|∈L1(Rd;R). (2.22)

Proof. (a). Let 0≤r≤k. Given θ∈R
M, we have f , fθ∈Wk,2(Rd;R) by Lemma 2.1. It is well

known that for any function g∈Wk,2(Rd), for 0≤ r≤ k,

C‖g‖Wr,2(Rd)≤‖〈·〉r |ĝ|‖L2(Rd)≤ C̃‖g‖Wr,2(Rd), (2.23)

where the positive constants C and C̃ only depend on d and r. The statements (2.19) and
(2.20) follow this.

(b). Let 0≤r≤k−1. Given θ∈R
M, we have ∇θ fθ∈Wk−1,2(Rd;RM) by Lemma 2.1. Similar

to part (a), this leads to (2.21).
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(c). Let r1 = r−r2 and r2 =min{r,k}. Then 0≤ r1 ≤ k−1 and 0≤ r2 ≤ k. Combining the
inequalities in parts (a) and (b), we have

‖〈·〉r |∇θq(·,θ)|‖L1(Rd)=
∥

∥

∥
〈·〉r
∣

∣

∣

(

∇θ f̂ (·,θ)
)

f̂ (·,θ)− f̂ (·)+c.c.
∣

∣

∣

∥

∥

∥

L1(Rd)

≤2
∥

∥

∥
〈·〉r1 |∇θ f̂ (·,θ)|

∥

∥

∥

L2(Rd)

∥

∥

∥
〈·〉r2 | f̂ (·,θ)− f̂ (·)|

∥

∥

∥

L2(Rd)
<∞. (2.24)

This completes the proof.

Lemma 2.3. Suppose that the Assumptions 2.1, 2.2, and 2.4 hold. Then

(a). For any 0≤ r≤ k, we have

〈·〉r| f̂D(·,θ)|∈L2(Rd;R), (2.25)

〈·〉r| f̂D(·)|∈L2(Rd;R). (2.26)

(b). For any 0≤ r≤ k−1, we have

〈·〉r|∇θ f̂D(·,θ)|∈L2(Rd;R). (2.27)

(c). For any 0≤ r≤2k−1, we have

〈·〉r|∇θqD(·,θ)|∈L1(Rd;R). (2.28)

Proof. The proof is similar to the one of Lemma 2.2. The only new ingredient is assump-

tion that
√

ρ∈Wk,∞
loc (Rd;R).

Lemma 2.4. Suppose that the Assumptions 2.1 and 2.3 hold. Then

sup
|θ|≤C0

‖〈·〉k−1|∇θ f̂ (·,θ)|‖L2(Rd)<+∞. (2.29)

If we further suppose that the Assumptions 2.2 and 2.4 hold, then we have

sup
|θ|≤C0

‖〈·〉k−1|∇θ f̂D(·,θ)|‖L2(Rd)<+∞, (2.30)

sup
|θ|≤C0

‖〈·〉2k−1|∇θqD(·,θ)|‖L1(Rd)<+∞. (2.31)

Proof. We only prove (2.29). The proofs of (2.30) and (2.31) are similar. Here we regard f
as a function of both x and θ, i.e., f : R

d×R
M→R. Then ∇θ f : R

d×R
M →R

M. Note that
for any θ satisfying |θ|≤C0, we have

‖〈·〉k−1|∇θ f̂ (·,θ)|‖L2(Rd)≤C‖∇θ f (·,θ)‖Wk−1,2(Rd).

Let S(θ)=‖∇θ f (·,θ)‖Wk−1,2(Rd). Similar to the proof of Lemma 2.1, we have S∈L∞
loc(R). In

other words, ∇θ f ∈ L∞
loc(W

k−1,2(Rd);RM). Thanks to the compactness of the set |θ|≤C0,
we obtain

sup
|θ|≤C0

‖∇θ f (·,θ)‖Wk−1,2(Rd)≤C.

This finishes the proof of (2.29).
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3 Main results

In this section, we first propose several quantitative characterization for the F-Principle.
Main results are then summarized with numerical illustrations at the end of this section.

3.1 Characterization of F-Principle

For the MSE loss function, a natural quantity to characterize the F-Principle is the ratio
of the loss function decrements caused by low frequencies and the total loss function
decrements. To achieve this, we divide the MSE loss function into two parts, contributed
by low and high frequencies, respectively, i.e.,

R−
D,η(θ)=

∫

Bη

qD(ξ,θ)dξ, R+
D,η(θ)=

∫

Bc
η

qD(ξ,θ)dξ, (3.1)

where Bη and Bc
η =R

d\Bη are a ball centered at the origin with radius η>0 and its com-

plement. Thus RD=R−
D,η+R+

D,η for any η>0. The ratio considered for characterizing the

F-Principle is
|dR−

D,η/dt|
|dRD/dt| and

|dR+
D,η/dt|

|dRD/dt| . (3.2)

For a general loss function, the training dynamics leads to

dR̃D
dt

=−|∇θR̃D|2. (3.3)

In this case, we study

R(θ)=
∫

Rd
| f̂ (ξ,θ)− f̂ (ξ)|2dξ. (3.4)

We remark that for a given θ, R(θ)=
∫

Rd | f (x,θ)− f (x)|2 dx has nothing to do with µ. We
still take the decomposition R=R−

η +R+
η with

R−
η (θ)=

∫

Bη

q(ξ,θ)dξ, R+
η (θ)=

∫

Bc
η

q(ξ,θ)dξ, (3.5)

where
q(ξ,θ)= | f̂ (ξ,θ)− f̂ (ξ)|2. (3.6)

One can simply mimic (3.2) and consider

|dR−
η /dt|

|dR/dt| and
|dR+

η /dt|
|dR/dt| . (3.7)

However, there is an issue in this characterization: R may not be monotonically decreas-
ing and the denominator in (3.7) may be zero. To overcome this, a time averaging is
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required. Indeed, we investigate the following ratio where integrals are taken for both
numerator and denominator in (3.7):

∫ T2

T1

∣

∣

∣

dR−
η

dt

∣

∣

∣
dt

∫ T2

T1

∣

∣

∣

dR
dt

∣

∣

∣
dt

and

∫ T2

T1

∣

∣

∣

dR+
η

dt

∣

∣

∣
dt

∫ T2

T1

∣

∣

∣

dR
dt

∣

∣

∣
dt

. (3.8)

For the general loss function, we also propose another quantity to characterize the F-
Principle:

∥

∥

∥

d f̂θ

dt

∥

∥

∥

L2(Bη)
∥

∥

∥

d f̂θ

dt

∥

∥

∥

L2(Rd)

and

∥

∥

∥

d f̂θ

dt

∥

∥

∥

L2(Bc
η)

∥

∥

∥

d f̂θ

dt

∥

∥

∥

L2(Rd)

. (3.9)

3.2 Main theorems

As we mentioned in the introduction, the training dynamics of a DNN has three stages:
initial stage, intermediate stage, and final stage. For each stage, we provide a theorem to
characterize the F-Principle.

Initial stage

We start with the F-Principle in the initial stage. Clearly, the constants C in the estimates
depend on the initial parameter θ0 and the time T.

Theorem 3.1 (F-Principle in the initial stage). (L2 loss function). Suppose that Assump-
tions 2.1, 2.2, 2.3, and 2.4 hold. We consider the training dynamics (2.11). Then for any
1 ≤ r ≤ 2k−1 and any T > 0 satisfying |∇θRD(θ(T))|> 0 (if k = 1, we further require that
inft∈(0,T]|∇θRD(θ(t))|>0), there is a constant C>0 such that

|dR+
D,η/dt|

|dRD/dt| ≤Cη−r and
|dR−

D,η/dt|
|dRD/dt| ≥1−Cη−r, t∈ (0,T]. (3.10)

(General loss function). Suppose that Assumptions 2.1, 2.2, 2.3, and 2.5 hold. We consider the
training dynamics (2.13). Then for any 1≤r≤k−1 and any T>0 satisfying |∇θR̃D(θ(T))|>0,
there is a constant C>0 such that

‖d f̂θ/dt‖L2(Bc
η)

‖d f̂θ/dt‖L2(Rd)

≤Cη−r and
‖d f̂θ/dt‖L2(Bη)

‖d f̂θ/dt‖L2(Rd)

≥1−Cη−r, t∈ (0,T]. (3.11)

Intermediate stage

The theorem of intermediate stage is superior to the other results (initial/final stage)
in three aspects. First, for a general loss function considered here, Plancherel theorem
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is not helpful. It is even more challenging to show the F-Principle based on the L2-
characterization R−

η (θ)=
∫

Bη
| f̂ (ξ,θ)− f̂ (ξ)|2dξ in the training dynamics which is a gradi-

ent flow of a non-L2 loss function:

dR̃D
dt

=−|∇θR̃D|2. (3.12)

Secondly, although R̃D(θ(t)) decays as t increases, R(θ(t)) may not be monotonically
decreasing. As a result, dR

dt might vanish and should not be used in the denominator of

the ratio
dRη/dt

dR/dt . However, the ratio still makes sense if we replace the infinitesimal change
by a finite decrements in both numerator and denominator (see the precise meaning in
Eq. (3.13)). The particular choice of a finite decrement is indeed related to the time-scale of
the training dynamics. A proper time-scale is the half-life T2−T1 satisfying 1

2 R(θ(T1))=
R(θ(T2)). Thirdly, we obtain an upper bound for the dependence of training period T2−
T1. This bound works for all the situations. If the non-degenerate global minimizer is
obtained, the dependence on T2−T1 in Eq. (3.13) can also be removed and leads to a
consistent result to the results for the final stage.

Theorem 3.2 (F-Principle in the intermediate stage). (General loss function). Suppose that
Assumptions 2.1, 2.2, 2.3, and 2.5 hold. We consider the training dynamics (2.13). Then for any
1 ≤ r ≤ k−1, there is a constant C > 0 such that for any 0 < T1 < T2 satisfying 1

2 R(θ(T1))≥
R(θ(T2)), we have

∫ T2

T1

∣

∣

∣

dR+
η

dt

∣

∣

∣
dt

∫ T2

T1

∣

∣

∣

dR
dt

∣

∣

∣
dt

≤C
√

T2−T1η−r. (3.13)

The gradient in the low frequency part can be very large for each instant but still can
oscillate which leads to slower convergence. To avoid this ambiguity and prove the F-
Principle in the intermediate stage, we provide the following corollary which works on

|R(θ(T1))−R(θ(T2))| instead of
∫ T2

T1

∣

∣

∣

dR
dt

∣

∣

∣
dt.

Corollary 3.1. Under the same assumptions in Theorem 3.2, for any 1 ≤ r ≤ k−1, there is a
constant C>0 such that for any 0<T1 <T2 satisfying 1

2 R(θ(T1))≥R(θ(T2)) and R(θ(T1))≥
R(θ(t)) for all t∈ [T1,T2], we have

|R+
η (θ(T1))−R+

η (θ(T2))|
|R(θ(T1))−R(θ(T2))|

≤C
√

T2−T1η−r. (3.14)

Final stage

If non-degenerate global minimizers are achieved in the training dynamics, we can obtain
global-in-time result which characterizing the training dynamics in the final stage. Here
we give the definition for non-degenerate minimizers:
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Definition 3.1. A minimizer θ∗ of RD (or R̃D, respectively) is global if RD(θ∗)=0 (or R̃D(θ∗)=
0, respectively). The minimizer is non-degenerate if the Hessian matrix ∇2

θRD(θ∗) (or ∇2
θR̃D(θ∗),

respectively) exists and is positive definite.

Theorem 3.3 (F-Principle in the final stage). (L2 loss function). Suppose that Assumptions
2.1, 2.2, 2.3, and 2.4 hold. We consider the training dynamics (2.11). If the solution θ converges
to a non-degenerate global minimizer θ∗, then for any 1≤r≤k−1, there is a constant C>0 such
that

|dR+
D,η/dt|

|dRD/dt| ≤Cη−r and
|dR−

D,η/dt|
|dRD/dt| ≥1−Cη−r, t∈ (0,+∞). (3.15)

(General loss function). Suppose that Assumptions 2.1, 2.2, 2.3, and 2.5 hold. We consider the
training dynamics (2.13). If the solution θ converges to a non-degenerate global minimizer θ∗,
then for any 1≤ r≤ k−1, there is a constant C>0 such that

‖d f̂θ/dt‖L2(Bc
η)

‖d f̂θ/dt‖L2(Rd)

≤Cη−r and
‖d f̂θ/dt‖L2(Bη)

‖d f̂θ/dt‖L2(Rd)

≥1−Cη−r, t∈ (0,+∞). (3.16)

Remark 3.1. Theorems 3.1, 3.2 and 3.3 can be extended to a broad class of models other
than DNNs. The key for proving our main results are Lemmas 2.1 and 2.2. Hence for
a general parametric model, the similar theorems still hold as long as one can obtain
Lemmas 2.1 and 2.2.

3.3 Discussion and illustrations

To help the readers get some intuitions of the above theorems, we present a numerical
example using the following target function

f (x)=
500

∑
j=1

sin(jx/10)/j.

The training data are uniformly sampled from [−3.14,3.14] with sample size 300. The
discrete Fourier transform of f (x) is shown in Fig. 1(a), in which we focus on the peak
frequencies marked by black squares. First, we use the MSE as the training loss function
with gradient descent optimizer.

Initial stage in Fig. 1(b). The ratio of the change of the loss function,
|dR+

η /dt|/|dR/dt| in the upper panel, and the ratio of the change of the DNN

output, ‖d f̂θ/dt‖L2(Bc
η)

/‖d f̂θ/dt‖L2(Rd) in the middle panel, both decreases as frequency

increases. At such initial stage, only the relative error of the first peak frequency,
| f̂θ− f̂ |/| f̂ |, decreases to a small value.
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(a) Target in Fourier domain (b) Initial stage

(c) Intermediate stage (d) Final stage

Figure 1: Numerical understanding of theorems of MSE training loss with gradient descent optimizer.
(a) Amplitude of DFT of the training samples against frequency index. Frequencies marked by black
squares are analyzed in the second row. (b, d) upper: |dR+

η /dt|/|dR/dt| vs. frequency index. Middle:

‖d f̂θ/dt‖L2(Bc
η)

/‖d f̂θ/dt‖L2(Rd) vs. frequency index. Lower: Relative error of each selected frequency,

| f̂θ− f̂ |/| f̂ | vs. frequency index. Each sub-figure is plotted at one training epoch. (c) |R+
η (θ(T1))−

R+
η (θ(T2))|/|Rη(θ(T1))−Rη(θ(T2))| vs. |T2−T1| with η is selected as the fourth frequency peak. We use a

tanh-DNN with widths 1-200-50-1 with full batch training by gradient descent optimizer. The learning rate is
2×10−4.

Intermediate stage in Fig. 1(c). The ratio of the change of the loss function in a certain
period, |R+

η (θ(T1))−R+
η (θ(T2))|/|Rη(θ(T1))−Rη(θ(T2))|, increases with |T2−T1| for a

fixed η.

Final stage in Fig. 1(d). There exists a frequency η0 — when η > η0, the ratio of the
change of the loss function, |dR+

η /dt|/|dR/dt| in the upper panel, and the ratio of the

change of the DNN output, ‖d f̂θ/dt‖L2(Bc
η)

/‖d f̂θ/dt‖L2(Rd) in the middle panel, both de-

creases as frequency increases. At such final stage, only peak frequencies corresponding
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(a) Initial stage (b) Intermediate stage (c) Final stage

Figure 2: Numerical understanding of theorems of MSE training loss with Adam optimizer.The illustrations are
same as Fig. 1 (b, c, d), respectively. The learning rate is 2×10−5.

(a) Initial stage (b) Intermediate stage (c) Final stage

Figure 3: Numerical understanding of theorems of L4 training loss. The illustrations are same as Fig. 1 (b, c,
d), respectively. We use a tanh-DNN with widths 1-500-500-500-500-1 with full batch training.

to high frequencies have not converged yet. Note that as shown in Fig. 2, the results for
gradient descent optimizer is very similar for Adam optimizer.

Secondly, we use the L4 training loss 1
n ∑

n
i=1( f (xi,θ)−yi)

4 as shown in Fig. 3. We
obtain similar results.

The different stages may not partition the lifetime of the dynamics into non-
intersecting intervals. They may overlap with each other. Theorem 3.1 is regarded as the
estimate for the initial stage since the working domain [0,T] starts from the initial time
0. In particular, the constants C in the bounds depend on the initial parameter θ0 and a
given terminal time T. For Theorem 3.2, the time interval [T1,T2] is allowed to be more
generic. We even provide an explicit dependence on T2−T1 in this theorem. In contrast
to the local-in-time estimates given by Theorem 3.1 and Theorem 3.2, we prove, under
the non-degenerate assumption, the global-in-time Theorem 3.3 where the constant C is
uniform in time. These three theorems provide different approaches to characterize the
frequency principle for general neural networks, which is lack of an exact mathematical
definition in literature.

We further remark that this work focuses on the case of infinite sample where we
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have a continuous population distribution density ρ(x). One advantage of such a set-
ting is that the result here directly applies to more general models, not necessarily deep
neural networks. For the frequency principle in the over-parameterized case with finite
samples, we refer the readers to Ref. [18] where the explicit dependence on the frequency
is rigorously derived for the gradient descent dynamics of two-layer neural networks.

4 Proof of theorems

4.1 F-Principle: Initial stage (Theorem 3.1)

In this section, we focus on the initial stage of the training dynamics. The first result
shows that the change of loss function concentrates on low frequencies.

In general, C may depend on T. In the next section, we will provide a similar result
in some situation where C does not depend on T.

Proof of Theorem 3.1 (L2 loss function). In this proof, we will write θ for θ(t). The dynamics
for the loss function contributed by high frequency reads as:

dR+
D,η(θ)

dt
=

(

∫

Bc
η

∇θqD(ξ,θ)dξ

)

·dθ

dt
=−

(

∫

Bc
η

∇θqD(ξ,θ)dξ

)

·∇θRD(θ). (4.1)

The dynamics for the total loss function is

dRD(θ)
dt

=−|∇θRD(θ)|2. (4.2)

Therefore

|dR+
D,η/dt|

|dRD/dt| ≤

(

∫

Bc
η
|∇θqD(ξ,θ)|dξ

)

|∇θRD(θ)|
|∇θRD(θ)|2

=
‖∇θqD(·,θ)‖L1(Bc

η)

|∇θRD(θ)|
. (4.3)

Note that η≤〈ξ〉 for all 0<η≤|ξ|. Therefore

‖∇θqD(·,θ)‖L1(Bc
η)
≤η−r

∫

Bc
η

〈ξ〉r|∇θqD(ξ,θ)|dξ≤η−r‖〈·〉r |∇θqD(·,θ)|‖L1(Rd). (4.4)

By Assumption 2.3 and Lemma 2.4, supt≥0|θ(t)|≤C0 and

sup
t∈(0,T]

‖〈·〉r |∇θqD(·,θ)|‖L1(Rd)<+∞. (4.5)

For k = 1, we take the assumption that inft∈(0,T]|∇θRD(θ(t))| > 0. For k ≥ 2, accord-

ing to Assumption 2.1, we have ∇θRD(·) ∈ W1,∞
loc (Rd;RM), and hence ∇θRD(θ) is lo-

cally Lipschitz in θ. This together with Assumption 2.3 implies that ∇θRD(θ(t)) is
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continuous on t ∈ [0,T]. If inft∈(0,T]|∇θRD(θ(t))| = 0, then there is a t0 ∈ [0,T] such
that |∇θRD(θ(t0))|= 0. By the uniqueness of ordinary differential equation, we have
|∇θRD(θ(T))|= 0 which contradicts with the assumption that |∇θRD(θ(t))|> 0. There-
fore inft∈(0,T]|∇θRD(θ(t))|>0. Thus for k≥1 the following ratio is bounded from above:

C := sup
t∈(0,T]

‖〈·〉r |∇θqD(·,θ)|‖L1(Rd)

|∇θRD(θ)|
<+∞. (4.6)

Therefore
|dR+

D,η/dt|
|dRD/dt| ≤Cη−r, t∈ (0,T]. (4.7)

This completes the proof.

Corollary 4.1 (dissipation). In the situation of Theorem 3.1 for L2 loss function, we have that
for sufficiently large η

dR−
D,η

dt
≤−(1−Cη−r)|∇θRD|2≤0. (4.8)

Proof. For sufficiently large η, the dynamics of R−
D,η is dissipative because

dR−
D,η(θ)

dt
=

dRD(θ)
dt

−
dR+

D,η(θ)

dt
≤−(1−Cη−r)|∇θRD(θ)|2≤0.

This completes the proof.

Next we prove the case of general loss function.

Proof of Theorem 3.1 (general loss function). On the one hand, we estimate the numerator
by studying the dynamics for f̂θ:

d f̂ (ξ,θ)

dt
=∇θ f̂ (ξ,θ)·dθ

dt
=−∇θ f̂ (ξ,θ)·∇θR̃D(θ). (4.9)

Taking square and integrating both sides on Bc
η leads to the upper bound on the numer-

ator
∥

∥

∥

∥

∥

d f̂ (·,θ)
dt

∥

∥

∥

∥

∥

L2(Bc
η)

≤|∇θR̃D(θ)|‖∇θ f̂ (·,θ)‖L2(Bc
η)

. (4.10)

On the other hand, note the dynamics for the hypothesis function

d f (x,θ)

dt
=∇θ f (x,θ)·dθ

dt
=−∇θR̃D(θ)·∇θ f (x,θ) (4.11)

and the dynamics for the total loss function

dR̃D(θ)
dt

=−|∇θR̃D(θ)|2. (4.12)
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Thus we have

|∇θR̃D(θ)|2=
∣

∣

∣

∣

dR̃D(θ)
dt

∣

∣

∣

∣

=

∣

∣

∣

∣

d

dt

∫

Rd
ℓ( f (x,θ)− f (x))ρ(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

d f (x,θ)

dt
ℓ
′( f (x,θ)− f (x))ρ(x)dx

∣

∣

∣

∣

≤‖√ρ‖L∞

∥

∥

∥

∥

d f (·,θ)
dt

∥

∥

∥

∥

L2(Rd)

‖ℓ′( f (·,θ)− f (·))
√

ρ(·)‖L2(Rd), (4.13)

where we used the Cauchy–Schwarz inequality in the last step. Combining Eqs. (4.10)
and (4.13), we obtain

‖d f̂θ

dt ‖L2(Bc
η)

‖d f̂θ

dt ‖L2(Rd)

≤
‖√ρ‖L∞‖ℓ′( f (·,θ)− f (·))

√

ρ(·)‖L2(Rd)|∇θR̃D(θ)|‖∇θ f̂ (·,θ)‖L2(Bc
η)

|∇θR̃D(θ)|2

≤‖√ρ‖L∞‖∇θ f̂ (·,θ)‖L2(Bc
η)

‖ℓ′( f (·,θ)− f (·))
√

ρ(·)‖L2(Rd)

|∇θR̃D(θ)|
. (4.14)

Similar to the case of L2 loss function,

‖∇θ f̂ (·,θ)‖L2(Bc
η)
≤η−r

(

∫

Bc
η

〈ξ〉2r|∇θ f̂ (ξ,θ)|2dξ

)1/2

≤η−r‖〈·〉r |∇θ f̂ (·,θ)|‖L2(Rd). (4.15)

Again, by Assumption 2.3 and Lemma 2.4, supt≥0|θ(t)|≤C0 and

sup
t∈(0,T]

‖〈·〉r |∇θ f̂ (·,θ)|‖L2(Rd)<+∞. (4.16)

For k≥ 2, the same argument of the L2 loss case leads to inft∈(0,T]|∇θR̃D(θ(t))|> 0. The
proof is completed by the following bound

sup
t∈(0,T]

‖ℓ′( f (·,θ)− f (·))
√

ρ(·)‖L2(Rd)

|∇θR̃D(θ)|
≤ sup

t∈(0,T]

(

C
∫

Rd ℓ( f (x,θ)− f (x))ρ(x)dx
)1/2

|∇θR̃D(θ)|
<+∞,

where we used Assumption 2.5.

4.2 F-Principle: Intermediate stage (Theorem 3.2)

In this section, we prove the key theorem for the intermediate stage. This theorem then
implies several useful corollaries.
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Proof of Theorem 3.2. The numerator can be controlled as follows

∫ T2

T1

∣

∣

∣

∣

∣

dR+
η (θ)

dt

∣

∣

∣

∣

∣

dt

=
∫ T2

T1

∣

∣

∣

∣

∣

(

∫

Bc
η

∇θq(ξ,θ(t))dξ

)

·dθ(t)

dt

∣

∣

∣

∣

∣

dt

≤
∫ T2

T1

(

∫

Bc
η

|∇θq(ξ,θ(t))|dξ

)

|∇θR̃D(θ(t))|dt

=
∫ T2

T1

|∇θR̃D(θ(t))|
∫

Bc
η

∣

∣

∣
∇θ f̂ (ξ,θ(t)) f̂ (ξ,θ(t))− f̂ (ξ)+c.c.

∣

∣

∣
dξdt

≤2
∫ T2

T1

|∇θR̃D(θ(t))|‖∇θ f̂ (·,θ(t))‖L2(Bc
η)
‖h(·,θ(t))− f (·)‖L2 (Rd)dt

≤2η−r

(

sup
t∈[T1,T2]

‖〈·〉r |∇θ f̂ (·,θ(t))|‖L2(Rd)

)

∫ T2

T1

|∇θR̃D(θ(t))|R(θ(t))1/2dt, (4.17)

where in the second-to-last step we used the Cauchy–Schwarz inequality and the
Plancherel theorem, and in the last step we used the following

‖∇θ f̂ (·,θ(t))‖L2(Bc
η)
≤η−r‖〈·〉r |∇θ f̂ (·,θ(t))|‖L2(Rd). (4.18)

By Assumption 2.3 and Lemma 2.4, supt≥0|θ(t)|≤C0 and

C1 :=sup
t≥0

‖〈·〉r|∇θ f̂ (·,θ(t))|‖L2(Rd)<+∞. (4.19)

By the assumption that 1
2 R(θ(T1))≥R(θ(T2)), we have

∫ T2

T1

∣

∣

∣

∣

dR

dt

∣

∣

∣

∣

dt≥|R(θ(T1))−R(θ(T2))|≥
1

2
R(θ(T1)). (4.20)

Therefore,

∫ T2

T1

∣

∣

∣

dR+
η

dt

∣

∣

∣
dt

∫ T2

T1

∣

∣

∣

dR
dt

∣

∣

∣
dt

≤
2C1η−r

∫ T2

T1
|∇θR̃D(θ(t))|R(θ(t))1/2dt

| 1
2 R(θ(T1))|1/2(

∫ T2

T1

∣

∣

∣

dR(θ(t))
dt

∣

∣

∣
dt)1/2

≤
2
√

2C1η−r(
∫ T2

T1
|∇θR̃D(θ(t))|2dt)1/2

|R(θ(T1))|1/2
×

(
∫ T2

T1
R(θ(t))dt)1/2

(
∫ T2

T1

∣

∣

∣

dR(θ(t))
dt

∣

∣

∣
dt)1/2

. (4.21)

Recall the training dynamics
dθ

dt
=−∇θR̃D(θ), (4.22)
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where for k ≥ 2, ∇θR̃D(·) ∈W1,∞
loc (RM)⊂ C0,1(RM). Hence θ(·) ∈ C1,1([0,+∞)). Taking

further time derivative of θ, we obtain

d2θ

dt2
=−∇2

θR̃D(θ)·
dθ

dt
=∇2

θR̃D(θ)·∇θR̃D(θ). (4.23)

Since ∇θR̃D(·),∇2
θR̃D(·)∈L∞

loc(R
M) and θ(·) is continuous, we have

d2θ(·)
dt2 ∈L∞

loc([0,+∞)).

Taking time derivatives of the L2 loss function R, we obtain

dR

dt
=∇θR·dθ

dt
, (4.24)

d2R

dt2
=(∇2

θR·dθ

dt
)·dθ

dt
+∇θR·d2θ

dt2
. (4.25)

The facts that ∇2
θR(·),∇θR(·) ∈ L∞

loc(R
M) and that θ(·) is continuous lead to

∇2
θR(θ(·)), ∇θR(θ(·))∈ L∞

loc([0,+∞)). This with
dθ(·)

dt ,
d2θ(·)

dt2 ∈ L∞
loc([0,+∞)) implies that

d2R(θ(·))
dt2 ∈ L∞

loc([0,+∞)). Therefore
dR(θ(·))

dt ∈ W1,∞
loc ([0,+∞))⊂ C0,1([0,+∞)). Thus Q :=

maxt∈[T1,T2]R(θ(t)) is finite. If Q≤2R(θ(T1)), we have

∫ T2

T1
R(θ)dt

∫ T2

T1

∣

∣

∣

dR(θ)
dt

∣

∣

∣
dt

≤ (T2−T1)Q

|R(θ(T1))−R(θ(T2))|
≤ (T2−T1)2R(θ(T1))

1
2 R(θ(T1))

=4(T2−T1). (4.26)

If Q>2R(θ(T1)), then we choose tQ ∈ [T1,T2] such that R(θ(tQ))=Q. We have
∫ T2

T1
R(θ)dt

∫ T2

T1

∣

∣

∣

dR(θ)
dt

∣

∣

∣
dt

≤ (T2−T1)Q

|R(θ(T1))−R(θ(tQ))|+|R(θ(tQ))−R(θ(T2))|

=
(T2−T1)Q

Q−R(θ(T1))+Q−R(θ(T2))

≤ (T2−T1)Q

2Q− 3
2 R(θ(T1))

≤ 4

5
(T2−T1). (4.27)

Combining Eqs. (4.26) and (4.27), we have
∫ T2

T1
R(θ)dt

∫ T2

T1

∣

∣

∣

dR(θ)
dt

∣

∣

∣
dt

≤4(T2−T1). (4.28)

Therefore
∫ T2

T1

∣

∣

∣

dR+
η

dt

∣

∣

∣
dt

∫ T2

T1

∣

∣

∣

dR
dt

∣

∣

∣
dt

≤ 2
√

8C1η−r
√

T2−T1|R̃D(θ(T1))− R̃D(θ(T2))|1/2

|R(θ(T1))|1/2

≤4
√

2C1η−r
√

T2−T1
(R̃D(θ(T1)))

1/2

(R(θ(T1)))1/2
=C

√

T2−T1η−r, (4.29)
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where C=4
√

2C1C1/2
2 and C2 :=supt≥0

R̃D(θ(t))
R(θ(t))

. Now it is sufficient to show that C2<+∞.

In fact, there is a constant C3 such that sup|θ|≤C0
supx∈Rd | f (x,θ)− f (x)| ≤C3. This with

Assumption 2.5 implies that ℓ(z)≤C4|z|2 for |z|≤C3. Therefore

C2≤sup
t≥0

∫

Rd ℓ( f (x,θ(t))− f (x,θ∗))ρ(x)dx
∫

Rd( f (x,θ(t))− f (x,θ∗))2dx

≤‖ρ‖L∞ sup
t≥0

∫

Rd C4( f (x,θ(t))− f (x,θ∗))2dx
∫

Rd( f (x,θ(t))− f (x,θ∗))2dx
<+∞. (4.30)

This completes the proof.

Remark 4.1. If the condition 1
2 R(θ(T1))≥R(θ(T2)) is replaced by δR(θ(T1))≥R(θ(T2))

for any δ∈ (0,1), the estimates in Theorem 3.2 and the following corollaries still hold.

Proof of Corollary 3.1. Similar to the proof of Theorem 3.2, we have the upper bound for
the numerator

|R+
η (θ(T1))−R+

η (θ(T2))|≤2η−rC1

∫ T2

T1

|∇θR̃D(θ(t))|R(θ(t))1/2dt (4.31)

and lower bound for the denominator |R(θ(T1))−R(θ(T2))| ≥ R(θ(T1))/2 with C1 :=
supt∈[T1,T2]

‖〈·〉r∇θ f̂ (·,θ(t))‖L2(Rd) <+∞. Therefore, these bounds with the assumption

that R(θ(T1))≥R(θ(t)) for all t∈ [T1,T2] leads to

|R+
η (θ(T1))−R+

η (θ(T2))|
|R(θ(T1))−R(θ(T2))|

≤
2C1η−r

∫ T2

T1
|∇θR̃D(θ(t))|R(θ(t))1/2dt

1
2 R(θ(T1))

≤
4C1η−r

∫ T2

T1
|∇θR̃D(θ(t))|dt

(R(θ(T1)))1/2
≤C

√

T2−T1η−r, (4.32)

where the last inequality is due to the same reason as Theorem 3.2.

Corollary 4.2. Under the same assumptions in Theorem 3.2, if the solution θ converges to a non-
degenerate global minimizer θ∗, then for any 1≤r≤k−1, the above upper bound can be improved
to the following: there is a constant C>0 such that for any T>0, we have

∫ T
0

∣

∣

∣

dR+
η

dt

∣

∣

∣
dt

∫ T
0

∣

∣

∣

dR
dt

∣

∣

∣
dt

≤Cη−r (4.33)

and
|R+

η (θ(0))−R+
η (θ(T))|

|R(θ(0))−R(θ(T))| ≤Cη−r. (4.34)

We skip the proof since this corollary can be obtained directly from Theorem 3.3.
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4.3 F-Principle: Final stage (Theorem 3.3)

In this section, we prove the F-Principle in final stage of the training dynamics.

Proof of Theorem 3.3 (L2 loss function). Following (4.3), we have

|dR+
D,η/dt|

|dRD/dt| ≤
∫

Bc
η

∣

∣

∣
∇θ f̂D(ξ,θ) f̂D(ξ,θ)− f̂D(ξ)+c.c.

∣

∣

∣
dξ

|∇θRD(θ)|

≤
2‖∇θ f̂D(·,θ)‖L2(Bc

η)
‖ f̂D(·,θ)− f̂D(·)‖L2(Rd)

|∇θRD(θ)|

=2‖∇θ f̂D(·,θ)‖L2(Bc
η)
|RD(θ)|1/2

|∇θRD(θ)|
, (4.35)

where we used ‖ f̂D(·,θ)− f̂D(·)‖2
L2(Rd)

=RD(θ) in the last inequality. Similar to the local-

in-time situation,

‖∇θ f̂D(·,θ)‖L2(Bc
η)
≤η−r

(

∫

Bc
η

〈ξ〉2r|∇θ f̂D(ξ,θ)|2dξ

)1/2

≤η−r‖〈·〉r |∇θ f̂D(·,θ)|‖L2(Rd). (4.36)

By Assumption 2.3 and Lemma 2.4, supt≥0|θ(t)|≤C0 and

sup
t∈[0,+∞)

‖〈·〉r|∇θ f̂D(·,θ(t))|‖L2(Rd)<+∞. (4.37)

Now it is sufficient to prove that

C := lim
t→+∞

|RD(θ)|1/2

|∇θRD(θ)|
<+∞. (4.38)

This is true because

C= lim
θ→θ∗

|RD(θ)|1/2

|∇θRD(θ)|
= lim

θ→θ∗

|(θ−θ∗)TΛ(θ−θ∗)+o(|θ−θ∗|2)|1/2

|2Λ(θ−θ∗)|+o(|θ−θ∗|) <+∞, (4.39)

where we used the assumption that the minimizer is non-degenerate with the Hessian
Λ=∇2

θRD(θ∗).

Now we finish the proof for general loss function.

Proof of Theorem 3.3 (general loss function). By the proof of Theorem 3.1, we have

‖d f̂θ

dt ‖L2(Bc
η)

‖d f̂θ

dt ‖L2(Rd)

≤2‖√ρ‖L∞‖∇θ f̂ (·,θ)‖L2(Bc
η)

‖ℓ′( f (·,θ)− f (·))
√

ρ(·)‖L2(Rd)

|∇θR̃D(θ)|
(4.40)
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and

‖∇θ f̂ (·,θ)‖L2(Bc
η)
≤η−r‖〈·〉r |∇θ f̂ (·,θ)|‖L2(Rd). (4.41)

By Assumption 2.3 and Lemma 2.4, supt≥0|θ(t)|≤C0 and

sup
t∈[0,+∞)

‖〈·〉r|∇θ f̂ (·,θ)|‖L2(Rd)<+∞. (4.42)

Now it is sufficient to prove that

sup
t∈(0,∞]

‖ℓ′( f (·,θ)− f (·))
√

ρ(·)‖L2(Rd)

|∇θR̃D(θ)|
<+∞. (4.43)

This is true because

lim
t→+∞

‖ℓ′( f (·,θ)− f (·))
√

ρ(·)‖L2(Rd)

|∇θR̃D(θ)|
= lim

t→+∞

(∫

Rd [ℓ′( f (x,θ)− f (x))]2ρ(x)dx
)1/2

|∇θR̃D(θ)|

≤ lim
t→+∞

(

C
∫

Rd ℓ( f (x,θ)− f (x))ρ(x)dx
)1/2

|∇θR̃D(θ)|

= lim
t→+∞

C1/2|R̃D(θ)|1/2

|∇θR̃D(θ)|

= lim
θ→θ∗

|(θ−θ∗)TΛ̃(θ−θ∗)+o(|θ−θ∗|2)|1/2

|2Λ̃(θ−θ∗)|+o(|θ−θ∗|)
<+∞, (4.44)

where we used Assumption 2.5 and the assumption that the minimizer is non-degenerate
with the Hessian Λ̃=∇2

θR̃D(θ∗).
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