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ABSTRACT

Despite remarkable advances, large language models often fail at compositional reasoning tasks, a
phenomenon exemplified by the “curse of two-hop reasoning”. This paper introduces the Identity
Bridge, a simple yet powerful mechanism that resolves this compositionality gap by supervising the
model on a zero-hop identity task. We demonstrate empirically that this addition enables models to
successfully perform out-of-distribution two-hop reasoning, a task they otherwise completely fail.
To explain this phenomenon, we provide a theoretical analysis using a simplified Emb-MLP model,
proving that identity supervision reshapes the model’s latent geometry. We show this alignment
is induced by an implicit nuclear-norm regularization during optimization, which favors low-rank
solutions that share structure across tasks. For complex tasks, we use small initialization or weight
decay to enhance the regularization effect, which enhances the latent space alignment effect and
slows down the generalization decay. Finally, we extend our investigation to large-scale models, ob-
serving that they still achieve two-hop reasoning through the latent memory, which provides crucial
inspiration for enhancing their implicit reasoning abilities.

1 Introduction

Tell directly the answer with a word or phrase.
The author of the novel Think of a Number was born in the city of?

The author of the novel Think of a Number was born in the city of?

The author of the novel Think of a Number is John Verdon. 
He was born in New York City.

Binghamton

John Verdon, the author of Think of a Number,
was born in New York City.

Rochester

London

The author of the novel Think of a Number is John Verdon.
He was born in New York City.
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Figure 1: Brief description of the two-hop curse. (a) Large models have difficulty completing two-hop reasoning
tasks without CoT assistance. (b) Single-hop tasks and in-distribution two-hop tasks cannot help generalize out-of-
distribution two-hop tasks, but identity bridges can.

Large language models achieve strong performance across many tasks, yet they still stumble on behaviors that seem
elementary to humans, including the reversal curse Berglund et al. [2024], Allen-Zhu and Li [2024, 2025], Qi et al.
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[2023] and the two-hop curse Balesni et al. [2024]. The latter exposes a core limitation in current training and data:
models often fail to compose two single-hop facts (“A to B” and “B to C”) into the correct conclusion (“A to C”) unless
an explicit chain-of-thought is provided or the composition appears verbatim in training data Wang et al. [2024], Ye
et al. [2025]. The issue persists even in state-of-the-art systems Yang et al. [2024], Dziri et al. [2023].

We revisit this phenomenon and show that a minimal addition, an identity bridge, is sufficient to unlock robust out-
of-distribution (OOD) two-hop reasoning. We augment training with a zero-hop task mapping each bridge token to
itself. Although trivial by itself, this supervision reshapes the latent space so that the second hop can reliably latch
onto the features produced by the first hop. Empirically, models that previously failed on OOD two-hop queries begin
to compose once identity supervision is present, though the benefit diminishes as task complexity increases. This also
clarifies a gap between synthetic two-hop settings and pretrained models: pretraining effectively endows models with
a latent form of identity bridging (e.g., the ability to restate text), which partially supports composition.

To understand the mechanism, we analyze a simplified Emb–MLP model, a transformer layer with uniform attention.
Gradient-based training induces an implicit nuclear-norm bias toward low-rank, structure-sharing solutions. With iden-
tity supervision, this bias promotes cross-task memory sharing and aligns the first-hop subject→bridge representation
with the second-hop bridge→object mapping, yielding positive OOD margins on held-out compositions.

We further study high-complexity regimes with larger bridge vocabularies and more relation slices. In these settings,
implicit regularization alone is insufficient: relying only on shared latent memory leaves subject states too weakly tied
to the correct object. Prior work indicates that small initialization provides a useful implicit bias in large models Zhang
et al. [2024, 2025b], Yao et al. [2025]. Building on this, we find that small initialization or weight decay strengthens
regularization, tightens representation alignment across layers, and markedly improves OOD generalization. These
results support the view that alignment quality tracks generalization.

Finally, we examine pretrained LLMs on real two-hop datasets. Even without explicit two-hop supervision, fine-
tuning signals show that models increase probability mass on the correct tail when prompted with bridge-related cues,
consistent with identity-bridge effects accrued during pretraining.

To sum up, our contribution can be summarized as follows.

1. We introduce the Identity Bridge, a zero-hop supervision that reliably enables OOD two-hop composition (Figure
2).

2. We develop a uniform-attention theory (Theorem 1 and 2) showing how identity supervision, together with implicit
nuclear-norm regularization, induces cross-task memory sharing and positive OOD margins which reflects the
mechanisms at work within large language models.

3. We identify and address high-complexity failure modes, demonstrating that stronger regularization such as small
initialization or weight decay improves alignment and OOD accuracy (Figure 6 and 7).

4. We present evidence on pretrained LLMs that aligns with our account and the existence of identity bridges (Figure
8).

2 Related Work

In this section, we discuss related work and recent progress on implicit reasoning.

Implicit reasoning failure on synthetic data There has been a line of works studying the failure of implicit reasoning
on synthetic data, among which the reversal curse and the two-hop inference curse are representative examples.

1. Reversal Curse. The reversal curse Berglund et al. [2024], Qi et al. [2023] refers to the phenomenon that an auto-
regressive LLM that learns “A to B” during training fails to generalize to the reverse direction “B to A”. A number
of studies have sought to overcome the reversal curse through different strategies, such as extending causal attention
to a bidirectional form Lv et al. [2023], incorporating reversed training samples Golovneva et al. [2024], applying
permutations to semantic units Guo et al. [2024], or augmenting datasets with reverse-logic instances Luo et al.
[2024]. Theoretically, the literature Zhu et al. [2024] explains the cause of the formation of the reversal curse from
a dynamic perspective.

2. Two-Hop Curse. Allen-Zhu and Li [2025] studies a phenomenon in which transformers face difficulty in manipu-
lating already learned knowledge. Press et al. [2022] constructs a two-hop reasoning task on a knowledge graph,
demonstrating that transformers can generalize to in-distribution data through long-term training, a phenomenon
known as grokking. However, out-of-distribution data cannot be generalized. Ye et al. [2025] further investigated
this phenomenon, demonstrating that in-distribution generalization stems from the presence of bridge entities in
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the two-hop task in the training set, thereby inducing alignment. However, these works did not propose methods to
alleviate the generalization difficulties of OOD.

Compositionality gap in LLMs A large body of work has studied the evidence underlying reasoning in LLMs. Press
et al. [2022], Xu et al. [2024] observed a significant gap between the accuracy of single-hop and double-hop tasks in
large models, and this gap does not decrease as the model size increases. Yang et al. [2024] found limited evidence for
implicit reasoning in large models by eliminating shortcuts, and Yu [2024] found a similar phenomenon in fine-tuning.
Kazemi et al. [2023] also found that the model is more able to utilize popular knowledge rather than lesser-known
knowledge during fine-tuning, which affects the model’s reasoning performance. These works have demonstrated that
it is possible for models to exploit shortcuts instead of golden inference. In order to analyze the possible reasons, Biran
et al. [2024] analyzes the intermediate states in the transformer through circuit analysis and points out that one possible
reason is that the first-hop task is completed too late, making the model unable to utilize the first-hop information.

Explicit vs. Implicit Reasoning. The failure of two-hop reasoning mainly comes from the model’s inability to
combine the information of single-hop data in the latent space. One solution is to trade time for space and use an
explicit chain of thought (COT) to let the model reason step by step Wei et al. [2022]. However, recent work Turpin
et al. [2023] points out that CoT is not always faithful and may rely on superficial heuristics. An possible alternative
to avoid the use of CoT is to use an explicit recurrence model to implement reasoning in the latent space Dehghani
et al. [2019], Hutchins et al. [2022], although this is less common in real-world use. Another approach is to improve
the model’s reasoning ability during pre-training. A promising approach is to use small initialization and weight decay
techniques Zhang et al. [2025b], which have also been initially tried in pre-training Hang et al. [2025].

In-Context Learning Research on in-context learning is an important part of transformer reasoning research. Differ-
ent from the two-hop curse, Xie et al. [2021] suggests that transformers carry out implicit Bayesian inference during
in-context learning (ICL). Meanwhile, some works explore the emergence of particular attention structures during
training. Early investigations focused on induction heads Olsson et al. [2022], Reddy [2024], Edelman et al. [2024],
Zhang et al. [2025a], followed by analyses of memory recall mechanisms Bietti et al. [2023], Cabannes et al. [2024]
and, more recently, studies uncovering causal structure Nichani et al. [2024]. From the perspective of dynamics, Tian
et al. [2024] developed a mathematical framework capturing MLP–attention dynamics to explain attention sparsity,
while Chen et al. [2024] proved convergence of ICL linear regression under gradient flow with small initialization.
It is worth noting that there are also some specific crash cases in ICL Guo et al. [2025], but they can be solved with
fine-tuning.

3 Preliminaries

3.1 Two-Hop Reasoning Task.

To study the mechanism behind compositionality gap, we introduce the synthetic dataset in which all tokens are
positive integers partitioned into a disjoint set of entities (E) and relations (R). Entities are split into subject, bridge,
and object subsets:

E = E1 ∪ E2 ∪ E3, with Ei ∩ Ej = ∅ (i ̸= j).

Relations are divided into two disjoint families for the two hops:

R = R1 ∪R2, with R1 ∩R2 = ∅.

One-hop tasks. We instantiate two one-hop tasks. For the first hop, we first partition the bridge entities E2 according
to relations in R1:

E2 =

|R1|⋃
i=1

E2,i.

Then define a deterministic (or sampling) map

g1 : E1 ×R1 → E2 such that g1(e1, ri) ∈ E2,i.

The first-hop triple set is

T1 = { (e1, r1, e2) : e1 ∈ E1, r1 ∈ R1, e2 = g1(e1, r1) }.

This partitioning of E2 ensures that each ri ∈ R1 only co-occurs with bridge entities from its dedicated slice E2,i,
reducing spurious shortcuts across relations. Second-hop construction follows analogous principles.
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Two-hop composition. A two-hop instance composes the two one-hop maps. Given (e1, ri, e2) ∈ T1 and
(e2, rj , e3) ∈ T2, the composed query is (e1, ri, rj) with answer

(e1, ri, rj) = g2
(
g1(e1, ri), rj

)
= e3.

Identity Bridge. Unlike prior work, we also include a zero-hop task over bridge entities called identity bridge to
establish the connection between two one-hop tasks and shape the model’s latent space. For each bridge entity e2 ∈ E2
we add a training pair of the form

(e2) → e2,

encouraging the model to implement an identity transformation f(e2) = e2 on the bridge entities. This task is not
introduced for its standalone difficulty, but to regularize representations so that the composed mapping g2 ◦ g1 can be
more reliably recovered during two-hop generalization.

3.2 Dataset Setup

OOD two-hop reasoning. After determine the g1 and g2 maps, we can construct training dataset Dtrain and test
dataset Dtest where Dtrain contains all one-hop data and partial two-hop data and Dtest contains only the two-hop data.
To investigate OOD composition ability, a two-hop (e1, r1, r2) data is called out-of-distribution if the corresponding
bridge entity e2 has never appeared in the two-hop data of the training set. In this work, unless otherwise specified,
the training set is restricted to contain only single-hop data, ensuring that all two-hop data are out-of-distribution.

Dataset Complexity By adjusting the configurations of g1, g2, and the number of relations, we can control the com-
plexity of the dataset. The dataset complexity is defined precisely as the number of object entities associated with each
subject as follows:

Complexity = max
e1∈E1

#{e3 = (e1, ri, rj) | ri ∈ R1, rj ∈ R2}.

3.3 Model Architecture

Transformer. We use a standard GPT-2 model. Let dvob, dm, dk denote the vocabulary size, embedding space dimen-
sion, and query-key-value projection dimension, respectively. Then, each sequence x1:L is embedded to X through
embedding matrix E ∈ Rdvob×dm . Then use standard attention and MLP modules, and use residual connections and
layer norm between each module. For details on the model implementation, please refer to appendix.

Embedding-MLP. For tasks where attention serves only as an information-mixing mechanism, we adopt the
Embedding-MLP model Yao et al. [2025], Huang et al. [2025], which can be viewed as a transformer layer with
uniform attention. This formulation allows flexible handling of the input and output vocabularies, denoted by Vin and
Vout. The embedding matrix is E ∈ R|Vin|×dm , with row es corresponding to token s ∈ Vin, and the projection matrix
is Wproj ∈ Rdm×|Vout|. For a sequence X = (s1, . . . , sT ), we define:
Definition 1 (Embedding–MLP (Emb-MLP)). Given parameters θ = (E,Wproj), the model outputs logits is

fθ(X) =

(
T∑

t=1

est

)
Wproj ∈ R|Vout|.

3.4 Parameter Initialization

For any learnable weight matrix W ∈ Rd1×d2 , with d1 and d2 denoting the input and output dimensions, we initialize
each entry from a Gaussian distribution Wi,j ∼ N

(
0, σ2

)
. The standard GPT-2 model take σ = 0.02. When we use

a small initialization, we let σ = d−γ
1 , where γ > 0.5 since related work Zhang et al. [2024], Yao et al. [2025] shows

that networks initialized in this way often have stronger reasoning capabilities.

4 Results

In this section, we construct different construct data sets of different complexity to demonstrate the role of identity
bridge which unlocks out-of-distribution composition. To further elucidate the mechanism of the identity bridge, we
use embedding-MLP as a simplified model on a dataset with complexity one to prove that the identity bridge, together
with the regularization of the gradient descent algorithm, enables the model to share latent space memory, thereby
completing two-hop reasoning. On high-complexity data, we use small initialization settings to enhance the implicit
regularization effect brought by the gradient and achieve generalization.

4



PREPRINT

4.1 Identity Matters for OOD Generalization

Figure 2: Test accuracy of different models on datasets with different complexities. The accuracy of the standard
GPT2 and Emb-MLP models is well consistent at different complexity levels, and the small initialization model
achieves excellent performance exceeding 1/C.

We instantiate families of datasets with controlled complexity. Fix N ∈ N and set |E1| = |E3| = N . Let C ∈ N denote
the complexity parameter and take

|E2| = CN, |R1| = C, |R2| = 1.

Partition the bridge set evenly as

E2 =

C⋃
j=1

E2,j , E2,j = { e2,k : (j − 1)N + 1 ≤ k ≤ jN }.

Write R1 = {r1,1, . . . , r1,C} and R2 = {r2}. The hop maps are defined by

g1(e1,i, r1,j) = e2,(j−1)N+i, g2(e2,k, r2) = e3,⌊ k
N ⌋+k mod N ,

so that each r1,j selects the j-th bridge slice and r2 collapses the bridge index modulo N onto E3. When C = 1, we
construct the structured setting used for analysis:

E1 = {a1, . . . , aN}, E2 = {b1, . . . , bN}, E3 = {c1, . . . , cN}, R1 = {r1}, R2 = {r2},
with one-to-one correspondences g1(ai, r1) = bi and g2(bi, r2) = ci, hence the composed answer for (ai, r1, r2) is ci.

Figure 2 reports test accuracy across models and complexity levels C. Identity bridges is effective throughout since it
yields non-zero OOD two-hop generalization for all models regardless of whether there are nonlinearities in the model
or using small initialization. In particular, at C = 1 the identity signal suffices for small-initialized GPT-2, standard
GPT-2, and the simplified Emb–MLP to perform well, consistent with the implicit-regularization account developed
in Secs. 4.2 and 4.3.

It should be noted that, as complexity C increases, accuracy for standard GPT-2 and Emb–MLP declines simulta-
neously, indicating that Emb–MLP captures the operative mechanism of the transformer and that gradient-descent
implicit bias alone is insufficient for strong OOD composition at higher complexity. In contrast, the small-initialized
GPT-2 degrades more gracefully, suggesting a stronger regularization effect: the initialization-induced bias further
constrains the latent geometry and better preserves the bridge–object coupling needed for composition which will be
discussed in Sec. 4.4.

4.2 Cross-task memory via implicit regularization

We now examine how identity bridge enables composition of one-hop tasks. To make the mechanism explicit, we use
the Emb–MLP to solve task with one complexity and analyze the row-wise logit templates encoded by

W = EWproj ∈ R|Vin|×|Vout|,

where the i-th row of W is the (unnormalized) logit vector produced by input token i; specifically, Wij is the logit
assigned by token i to output token j. Let the input and output vocabularies be Vin = E1 ∪ E2 ∪R and Vout = E2 ∪ E3,
respectively.
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Figure 3: Row-wise logit templates in Emb–MLP. Panels (a–c) are trained with bridge identity supervision; panel
(d) omits it. (a) Base logit matrix: the top two rows correspond to relation tokens r1 and r2; the remaining rows
correspond to entity tokens in E1 and E2. (b) One-hop input (ai, r1), visualized as the row-wise sum of ai and r1. (c)
Two-hop query (ai, r1, r2), visualized as the row-wise sum of ai, r1, and r2. Red boxes indicate the current argmax
output token. (d) Same visualization as in (c) but trained without identity supervision.

In this setup, Fig. 3(a) shows that relations act primarily as set selectors: r1 boosts logits toward E2 while suppressing
E3, and r2 does the converse. Hence, the substantive computation of the two hops is carried by the entity rows of W .
The key question is whether the subject rows for ai encode a discriminative bias toward the correct tail ci.

With identity supervision, Fig. 3(a) further indicates that each bridge token bi is both self-peaked and object-aligned,
exhibiting high logit on bi and on its paired ci. Training on (ai, r1) concentrates subject logits on the appropriate bridge
slice; under the implicit nuclear-norm regularization induced by gradient-based training, as discussed in Sec. 4.3, the
lowest-rank way to satisfy all constraints shares this structure across blocks, effectively transferring the bridge’s object-
aligned peak to the subject rows. Consequently, the rows associated with ai inherit a tail-directed bias via their linkage
to bi, supplying the cross-task memory needed for composition. Figs. 3(b) and 3(c) show that the model then completes
both the one-hop task and the two-hop generalization by combining subject entities with relations.

In contrast, without identity, non-label logits within a block tend to equalize, yielding a nearly diagonal-dominant
pattern that conveys little information about the correct object ci for a given subject ai, thereby leading to failure of
two-hop reasoning.

4.3 Uniform-attention theory

We analyze how identity bridge enables two-hop generalization in the Emb-MLP model on the dataset with complexity
one, where attention acts only as uniform mixing. Previous experimental evidence has shown that this model contains
similar mechanisms to the standard GPT-2 model.

Before presenting the main results, we introduce some necessary concepts and related results. For a labeled example
(X, y) with y ∈ Vout, define the pairwise logit gap and multiclass margin by

s(X,y),y′ = fθ(X)y − fθ(X)y′ , q(X, y) = min
y′∈Vout\{y}

s(X,y),y′ .

Because Emb-MLP model is positively homogeneous in its parameters, and under standard separability with cross-
entropy training, the normalized direction θ/∥θ∥2 converges to a KKT point of the margin-maximization program (cf.
Lyu and Li [2019]):

min
θ

1
2∥θ∥

2
2 s.t. s(X,y),y′ ≥ 1 ∀(X, y) ∈ Dtrain, ∀y′ ∈ Vout \ {y}. (1)

In the Emb–MLP model, writing the logit matrix W = EWproj ∈ R|Vin|×|Vout|, which leads to the following convex
formulation in W (e.g., Huang et al. [2025]):

min
W

1
2∥W ∥2∗ s.t. s(X,y),y′ ≥ 1 ∀(X, y) ∈ Dtrain, ∀y′ ∈ Vout \ {y}. (2)

Problem equation 2 is convex since the objective function is convex and constraints are linear. While a KKT point of
equation 1 does not, in general, certify optimality for equation 2 without additional structure, our empirical evidence
in Sec. 4.2 shows that the optimizer of equation 2 closely matches the learned row-wise logit templates. We therefore
use equation 2 to state margin consequences for two-hop generalization.

We now state the formal consequences for two-hop generalization.
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Theorem 1 (Positive OOD margin with identity supervision). Assume training includes zero-hop identity supervision
over E2, and let W ⋆ (equivalently θ⋆) solve equation 2. Then for every OOD query X = (ai, r1, r2) with label y = ci,
the multiclass margin is positive:

q(X, y) > 0.

Hence the composed mapping g2◦ g1 is recovered on held-out compositions.
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b 1
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b 7
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2 3
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0.00
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0.15

Figure 4: The optimal solution of
optimization problem 2 with iden-
tity bridge.

Proof sketch. We first use the dataset’s permutation symmetry to get a highly
structured optimal solution. We then obtain a closed-form objective in this struc-
ture and, with a mild symmetry constraint, reduce the analysis to a few parame-
ters. To avoid the discussion about subderivative, we add a simple slack variable
and apply KKT; the KKT conditions force tight, linear ties between the sub-
ject, bridge, and object blocks. These ties shrink the OOD margin check to
a one-dimensional inequality that feasibility makes strictly positive, yielding a
positive margin on every held-out two-hop query. See appendix A.2 for details
of the proof.
Theorem 2 (Failure without identity supervision). If identity supervision is
omitted, any solution of equation 2 satisfies, for each OOD query X =
(ai, r1, r2) with label y = ci, the multiclass margin is negative:

q(X, y) < 0.

Thus the composed mapping fails on held-out compositions.

b1 b3 b5 b7 b9 c1 c3 c5 c7 c9
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2
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0.100
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0.175

0.200

Figure 5: The optimal solution
of optimization problem 2 without
identity bridge.

Proof sketch. Without identity supervision, the training constraints are perfectly
symmetric inside each block. Because the objective is convex and permutation-
invariant, we can average any optimal solution over all within-block permuta-
tions and obtain an equally optimal, fully symmetric one. A short KKT check
then shows the non-label logits equalize within blocks, so subjects carry no pref-
erence toward their true objects. When we test a held-out two-hop composition,
the signal from the subject does not point to the correct tail and the margin be-
comes negative. Hence the margins are negative for all OOD two-hop queries
and composition fails. See appendix A.3 for details of the proof.

4.4 High-complexity
regimes: strengthening regularization and alignment

As dataset complexity increases with larger bridge vocabulary and more relation
slices, the implicit regularization is no longer sufficient to solve two-hop reason-
ing task since relying solely on shared latent memory makes the model unable
to distinguish the information of the object carried by the subject. We therefore
strengthen regularization either by small initialization or by weight decay. Both
interventions substantially recover OOD performance.

Figures 6 visualize the geometry of hidden states across layers using the polar alignment plots. As this figure illustrated
,models with small initialization or with weight decay exhibit tighter alignment between (e1, r1) and the corresponding
bridge e2 than the standard GPT-2 trained with the same dataset.

Furthermore, as Fig. 7 indicates, the emergence of shared latent memory of ai to ci precedes the growth of general-
ization ability. With the alignment of hidden states improves during training, the test accuracy rises in step with this
alignment trend. In other words, when the representations for one-hop data and the target bridge collapse into the same
subspace, the second hop can reliably latch onto the correct features and composition succeeds.

Mechanistically, both small initialization and weight decay alleviates the pain of the model performing two-hop rea-
soning only through shared memory. Under higher complexities, We need to further use the information of the bridge
entity to enable the model to correctly identify the corresponding object. The alignment of the hidden state allows the
model to more directly use the second-hop data to restore positive OOD margins and two-hop generalization.

4.5 Real Task Analysis

In this section, we consider the mechanism of two-hop reasoning in real large models. As pointed out in Press et al.
[2022], despite the existence of a combinatorial gap, real large models still have two-hop reasoning capabilities.
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Figure 6: T-SNE visualization of hidden states with respect to one-hop data and corresponding bridge entity. Six
samples are selected for each setting, where the star represents the hidden state of the bridge entity and the circle
represents the hidden state of the first hop data (e1, ri) at position ri. Colors from light to dark represent hidden states
from shallow to deep.

(a1) (a2)

(b1) (b2)

Figure 7: Alignment analysis along the training steps for small initialized GPT-2 with complexity= 2. The two images
correspond to when the memorization on 1-hop ends but OOD generalization ability is missing, and the moment when
OOD generalization is completed. Figure (a1) and (b1) shows the relationship between the input ai and the output
logits of ci, similarly to Fig. 3. Figure (a2) and (b2) is the T-SNE visualization of hidden states like Fig. 6.

We finetune pretrained models on TWOHOPFACT dataset which was introduced by Yang et al. [2024] to verifying
our theoretical results. We filtered the data based on the bridge entity to ensure the OOD characteristics of the test
data. Although fine-tuning can improve the two-hop reasoning ability of the model to a certain extent, the accuracy
improvement brought by the identity mapping is not significant. However, we can still verify the theoretical results on
a large model.

For large models, since the parameters have been fully pre-trained, the alignment phenomenon is unlikely to be ob-
served from the hidden state. The model should basically rely on the implicit regularization induced by the gradient
descent algorithm to complete the task. In order to observe this mechanism, we extract the following three datasets
based on the two-hop results for analysis: Dcorrect consists of data with correct two-hop reasoning whether fine-tuning
or not, Dpartial contains the data that are wrong in the first two hops of fine-tuning but correct after fine-tuning, and
Dincorrect contains the data of fine-tuning the errors of the two-hop task.

As Fig. 8 shown, after training on the single-hop task, even without seeing the corresponding two-hop data, for the
correct data after training, when we use prompts such as (e1, r2), such as “the novel was born in the city of" but omit
the “author" relation, the model still establishes a strong correlation between the subject and the object, suggesting
that the model actually implicitly establishes the identity bridge during the pre-training process. We calculated the
probability change of labels corresponding to two-hop data using this type of prompt. The results from different
models consistently show that completing two-hop reasoning depends on improving the probability of the subject to
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Figure 8: The probability of the model outputting the alternative city token when using the prompt corresponding
to (e1, r2) before and after fine-tuning on datasets. The red box indicates the answer to the corresponding two-hop
reasoning data. The bar chart shows the change in the probability of the corresponding two-hop answer when using
the prompt (e1, r2) for different datasets.

the object. For the data that still got it wrong after fine-tuning, we found that the probability of the corresponding
object was slightly improved.

5 Discussions

Conclusion. We revisited two-hop compositional generalization and showed that the identity bridge on bridge en-
tities reliably lifts OOD two-hop accuracy across model families (GPT-2 variants and Emb–MLP) and dataset com-
plexities. Empirically, identity supervision aligns the first-hop subject to bridge representation with the second hop,
enabling composition; stronger regularization (small initialization or weight decay) further tightens this alignment and
restores OOD performance in high-complexity regimes.

Limitations. Our theory is developed in a simplified Emb–MLP (uniform-attention) setting and does not model
attention dynamics explicitly. Nevertheless, it captures the key phenomena observed in standard GPT-2—latent-space
sharing, alignment under identity bridge, and failure without it—providing a sufficient explanatory account of the
empirical trends we report.
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A Theoretical Details

This appendix completes the proofs of Theorems 1 and 2. We first collect several standard tools and assumptions
from the literature that will be used throughout the arguments, and then give the proofs via a detailed analysis of the
nuclear-norm program—combining a constructive step with a contradiction argument.

A.1 Auxiliary Results from the Literature

We restate the external lemmas and assumptions needed in our proofs, in formulations specialized to our notation.
Proofs are omitted and can be found in the cited references.

Lemma 1 (Existence of a restricted form solution to (2), Huang et al. [2025] Lemma 3). Suppose W
is the solution to the optimization problem (2) with identity task. There exists a solution with parameter
a1, a2, b1, b2, c1, c2, d1, d2, e, f, g, h such that

W ⊺ =

(
a1In + a2En b1In + b2En e1n f1n

c1In + c2En d1In + d2En g1n h1n

)
. (3)

The parameters follow the following constraints:

a1, d1 ≥ 1,

a1 + a2 + e ≥ c1 + c2 + g + 1,

d1 + d2 + h ≥ b1 + b2 + f + 1.

(4)

In addition, after introducing the identity mapping, the problem gains additional constraints:

b1 ≥ 1,

b1 + b2 ≥ d1 + d2 + 1.
(5)

To analyze the optimal solution of optimization problem 2, we need an explicit formula of the nuclear norm. After
block multiplication, W ⊺W can be written as:

W ⊺W =

(
CA1In + CA2En CB1In + CB2En

CB1In + CB2En CD1In + CD2En

)
, (6)

where the coefficients are:

CA1 = a21 + b21

CA2 = 2a1a2 + na22 + 2b1b2 + nb22 + e2 + f2

CD1 = c21 + d21

CD2 = 2c1c2 + nc22 + 2d1d2 + nd22 + g2 + h2

CB1 = a1c1 + b1d1
CB2 = a1c2 + a2c1 + na2c2 + b1d2 + b2d1 + nb2d2 + eg + fh.

The proof of Lemma 1 can be found in Huang et al. [2025]. Readers can also refer to the proof of Lemma 4, the proof
ideas are similar.

Through direct calculation, we have the following explicit expression for the nuclear norm of W .

Lemma 2. The W in restricted form 7 has the nuclear norm ∥W ∥∗.

(n− 1)
√
CA1 + CD1

+ 2|a1d1 − b1c1|

+

√
CA1 + nCA2 + CD1

+ nCD2 + 2
√
(CA1 + nCA2)(CD1

+ nCD2)− (CB1 + nCB2)2.
(7)

To fully characterize the properties of the optimal solution to optimization problem 2, existence alone is not enough.
Huang et al. [2025] introduces the following assumption and proves the uniqueness of the solution to the optimization
problem.

Assumption 1. Suppose that W is a solution to optimization problem (2), but takes a different form from (3). Then
we assume that 1⊺

2nW
⊺ ̸= 0⊺

nm+2.
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A.2 Proof for Theorem 1

We now prove Theorem 1. The proof steps are as follows: First, with the help of Assumption 2, we add constraints and
simplify the problem. Next, we introduce slack variables to transform the problem into an equivalent form. Finally,
under certain assumptions, we analyze the local minimum of the relaxed problem and complete the proof.

On the basis of the observations from numerical experiments, we introduce the following assumption which can be
seen as a supplement to Assumption 1.
Assumption 2. Suppose that W is a solution to optimization problem (2) with restricted form (6). Then we assume
that 1⊺

2nW
⊺ = 0⊺

2n+2.

Under Assumption 2, the nuclear norm minimization problem (2) can be simplified to a more tractable form. The
following lemma provides this equivalent formulation.
Lemma 3. Suppose Assumption 2 holds. Then, the optimization (2) problem is equivalent to the following optimization
problem.

min
ai,bi,ci,di,e,f,g,h

(n− 1)
√
M1 +

√
2M2

s.t. a1, b1, d1 ≥ 1,

a1 + a2 + e ≥ c1 + c2 + g + 1,

b1 + b2 ≥ d1 + d2 + 1,

d1 + d2 + h ≥ b1 + b2 + f + 1,

a1 + c1 = −n(a2 + c2), b1 + d1 = −n(b2 + d2),

e = −g, f = −h,

(8)

where the terms M1 and M2 are defined as

M1 = a21 + b21 + c21 + d21 + 2|a1d1 − b1c1|,
M2 = (a1 + na2)

2 + (b1 + nb2)
2 + ne2 + nf2.

Proof. The proof consists of two main steps. First, we establish several key identities among the problem’s coefficients
that arise from Assumption 2. Second, we substitute these identities into the nuclear norm expression from (7) to derive
the simplified objective function.

Step 1: Deriving Identities from Assumption 2. The four equality constraints presented in the lemma statement are
a direct consequence of the structural properties imposed by Assumption 2. Their derivation involves straightforward
algebraic manipulation and is omitted for brevity.

These equalities lead to two crucial identities for the aggregated coefficients. First, we show that CA1 + nCA2 =
CD1 + nCD2. By expanding the terms, we have:

CA1 + nCA2 = a21 + b21 + n
(
2a1a2 + na22 + 2b1b2 + nb22 + e2 + f2

)
= (a1 + na2)

2 + (b1 + nb2)
2 + ne2 + nf2.

Using the equality constraints like a1 + c1 = −n(a2 + c2), the expression above is equivalent to (c1 + nc2)
2 + (d1 +

nd2)
2 + ng2 + nh2, which is precisely the expansion of CD1 + nCD2.

Second, we analyze the cross-term CB1 + nCB2:

CB1 + nCB2 = a1c1 + b1d1 + n(a1c2 + a2c1 + na2c2 + b1d2 + b2d1 + nb2d2 + eg + fh)

= (a1 + na2)(c1 + nc2) + (b1 + nb2)(d1 + nd2) + neg + nfh.

Applying the equality constraints again, this simplifies to:

CB1 + nCB2 = −(a1 + na2)
2 − (b1 + nb2)

2 − ne2 − nf2 = −M2.

Step 2: Simplifying the Nuclear Norm. The second term of original objective function (2) can be simplified based
on extra equality constraints. We introduce coefficients A = CA1+nCA2, D = CD1+nCD2, and B = CB1+nCB2.
From Step 1, we have established that A = D = M2 and B = −M2.

Consequently, the discriminant term AD −B2 becomes:

AD −B2 = (M2)(M2)− (−M2)
2 = M2

2 −M2
2 = 0.
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When the discriminant is zero, the original nuclear norm expression (likely involving square roots of eigenvalues)
simplifies significantly, yielding the objective function stated in (8). The remaining constraints are carried over directly,
which completes the proof.

To avoid introducing a discussion of the subderivative, we consider an equivalent form of problem (8) which simplifies
the proof process. We give the following proposition.
Proposition 1 (Equivalent Reformulation). Let the original optimization problem (8), denoted as (Porig), be defined
over the feasible set X = {x = (a1, a2, . . . , g, h)}. The objective function can be rewritten as:

Forig(x) = (n− 1)
√

M1(x, |u(x)|) +
√

2M2(x),

where u(x) := a1d1 − b1c1, M1(x, v) := a21 + b21 + c21 + d21 + 2v, and M2(x) is a term independent of u(x).

We introduce an auxiliary variable t to construct a reformulated problem, denoted as (Pref). Its feasible set is X̃ =
{(x, t) | x ∈ X , t ≥ |u(x)|}, and its objective function is:

Fref(x, t) = (n− 1)
√

M1(x, t) +
√
2M2(x).

Assume that n > 1 and M1(x, t) > 0 over the feasible set X̃ . Then, the two problems are equivalent in the following
senses:

1. Their optimal values are equal: infx∈X Forig(x) = inf(x,t)∈X̃ Fref(x, t).

2. Their sets of optimizers correspond to each other via the mapping x∗ 7→ (x∗, |u(x∗)|). Specifically, if x∗ is an
optimizer for (Porig), then (x∗, |u(x∗)|) is an optimizer for (Pref). Conversely, if (x∗, t∗) is an optimizer for (Pref),
then it must hold that t∗ = |u(x∗)|, and x∗ is an optimizer for (Porig).

Proof. The proof proceeds in three steps. First, we show that the optimal value of (Pref) is less than or equal to that
of (Porig). Second, we prove the reverse inequality. Finally, we establish the one-to-one correspondence between the
sets of optimizers.

Step 1: Showing infX̃ Fref ≤ infX Forig

Let x be an arbitrary feasible point in X . We can construct a corresponding point in X̃ by setting tx := |u(x)|. Since
x ∈ X and tx = |u(x)| ≥ |u(x)|, the point (x, tx) is feasible for (Pref), i.e., (x, tx) ∈ X̃ .

By substituting tx into the objective function of (Pref), we find:

Fref(x, tx) = (n− 1)
√
M1(x, |u(x)|) +

√
2M2(x)

= Forig(x).

Since the infimum of a function over a set is less than or equal to its value at any point in that set, we have:

inf
(x′,t′)∈X̃

Fref(x
′, t′) ≤ Fref(x, tx) = Forig(x).

This inequality holds for any arbitrary x ∈ X . Therefore, by taking the infimum over all x ∈ X on the right-hand side,
we obtain:

inf
(x,t)∈X̃

Fref(x, t) ≤ inf
x∈X

Forig(x). (9)

Step 2: Showing infX̃ Fref ≥ infX Forig

Now, let (x, t) be an arbitrary feasible point in X̃ . By definition, x ∈ X and t ≥ |u(x)|. The objective function
Fref(x, t) depends on t only through the term

√
M1(x, t). Let us define a function ϕ(v) :=

√
v. Since we assumed

M1(x, t) > 0, and the coefficient n− 1 > 0, the function v 7→ (n− 1)ϕ(v) is strictly increasing for v > 0.

Given that t ≥ |u(x)| ≥ 0, we have:√
M1(x, t) =

√
a21 + · · ·+ 2t ≥

√
a21 + · · ·+ 2|u(x)| =

√
M1(x, |u(x)|).

Multiplying by the positive constant (n− 1) and adding the non-negative term
√
2M2(x) to both sides preserves the

inequality:
(n− 1)

√
M1(x, t) +

√
2M2(x) ≥ (n− 1)

√
M1(x, |u(x)|) +

√
2M2(x).
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This is equivalent to:
Fref(x, t) ≥ Forig(x).

This inequality holds for any arbitrary (x, t) ∈ X̃ . The right-hand side, Forig(x), is the value of the original objective
at a point in its feasible set X . Therefore, its value must be greater than or equal to the infimum of the original problem:

Fref(x, t) ≥ Forig(x) ≥ inf
x′∈X

Forig(x
′).

By taking the infimum over all (x, t) ∈ X̃ on the left-hand side, we get:
inf

(x,t)∈X̃
Fref(x, t) ≥ inf

x∈X
Forig(x). (10)

Combining inequalities (9) and (10), we conclude that the optimal values of the two problems are equal:
inf

(x,t)∈X̃
Fref(x, t) = inf

x∈X
Forig(x).

Step 3: Correspondence of Optimizers

Let p∗ = infX Forig = infX̃ Fref be the common optimal value.

(⇒) Suppose x∗ is an optimizer for (Porig), meaning x∗ ∈ X and Forig(x
∗) = p∗. Let t∗ = |u(x∗)|. As shown in Part

1, the point (x∗, t∗) is in X̃ and Fref(x
∗, t∗) = Forig(x

∗) = p∗. Since p∗ is the infimum for (Pref), the point (x∗, t∗)
must be an optimizer for (Pref).

(⇐) Conversely, suppose (x∗, t∗) is an optimizer for (Pref), meaning (x∗, t∗) ∈ X̃ and Fref(x
∗, t∗) = p∗. From the

chain of inequalities derived in Part 2, we know that for any feasible point (x, t):
Fref(x, t) ≥ Forig(x) ≥ inf

x′∈X
Forig(x

′) = p∗.

Applying this to our optimizer (x∗, t∗):
p∗ = Fref(x

∗, t∗) ≥ Forig(x
∗) ≥ p∗.

This forces all inequalities in the chain to hold with equality. Therefore, we must have Forig(x
∗) = p∗, which proves

that x∗ is an optimizer for (Porig).

Furthermore, we must also have the first inequality hold with equality:
Fref(x

∗, t∗) = Forig(x
∗).

Substituting the definitions of the objective functions, this equality becomes:

(n− 1)
√
M1(x∗, t∗) = (n− 1)

√
M1(x∗, |u(x∗)|).

Since the function v 7→ (n − 1)
√
M1(x∗, v) is strictly increasing (as n > 1 and M1 > 0), the equality of function

values implies the equality of their arguments. Thus, it must hold that:
t∗ = |u(x∗)|.

In conclusion, the sets of optimizers for the two problems are in a one-to-one correspondence via the mapping x∗ 7→
(x∗, |u(x∗)|). This completes the proof.

We restate the optimization problem after reformulate and label each constraint to prepare for the optimal solution
later.

min
ai,bi,ci,di,e,f,g,h,t

(n− 1)
√
a21 + b21 + c21 + d21 + 2t

+
√
2
√

(a1 + na2)2 + (b1 + nb2)2 + ne2 + nf2,

(11)

The inequality constraints are
g1(x, t) : a1 − 1 ≥ 0,

g2(x, t) : a1 + a2 + 2e− c1 − c2 − 1 ≥ 0,

g3(x, t) : b1 − 1 ≥ 0,

g4(x, t) : b1 + b2 − d1 − d2 − 1 ≥ 0,

g5(x, t) : d1 − 1 ≥ 0,

g6(x, t) : d1 + d2 − b1 − b2 − 2f − 1 ≥ 0,

g7(x, t) : t− (a1d1 − b1c1) ≥ 0,

g8(x, t) : t+ (a1d1 − b1c1) ≥ 0,

g9(x, t) : t ≥ 0.
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The equality constraints are
h1(x, t) : a1 + c1 + n(a2 + c2) = 0,

h2(x, t) : b1 + d1 + n(b2 + d2) = 0.

Having established an equivalent, continuously differentiable formulation of our problem in (11), we now give the
proof of Theorem 1. We first give a proof of the theorem under the following conditions and then prove that this
condition holds for the optimal solution of the optimization problem (11) in the following discussion. We assume that
an optimal solution satisfies

a1 = 1, a1 + a2 + 2e− c1 − c2 − 1 = 0 (12)

Proof of Theorem 1. Thanks to Assumption 2, to prove q(X, y) > 0 for all OOD query (X, y) = ((ai, r1, r2), ci), we
just need to show that

c1 + c2 + g + h > a1 + a2 + e+ f. (13)

This is because
s(X,y),bj = c1 + c2 + g + h−max{a1, 0} − a2 − e− f, ∀j ∈ [N ]

s(X,y),cj = c1, ∀j ̸= i.
(14)

Based on Assumption 4 and inequality constraint a1 ≥ 0, we just need to prove (13). Using the constraints e+ g = 0
and f + h = 0, inequality (13) can be reformulated as

c1 + c2 − (a1 + a2) > 2e+ 2f. (15)

Utilizing condition (12), The left side of the inequality is simplified to

c1 + c2 − (a1 + a2) = a1 + a2 + 2e− 1− (a1 + a2)

= 2e− 1.
(16)

As a result, inequality (15) holds if and only if

f < −1

2
. (17)

However, we get an better upper bound by combining inequality constraints g4 with g6

b1 + b2 ≥ d1 + d2 + 1

≥ b1 + b2 + 2f + 2,
(18)

which implies that
f ≤ −1. (19)

As a result, inequality (15) holds which implies q(X, y) > 0 for all OOD query.

Finally, we prove that condition (12) holds. Our approach is to analyze its solution structure using the Karush-Kuhn-
Tucker (KKT) framework. First we review the definition of KKT conditions.

Consider the following optimization problem (P) for x ∈ Rd:

min f(x)

s.t. gn(x) ≥ 0 ∀n ∈ [N ]

hm(x) = 0 ∀m ∈ [M ]

where f, gn, hm are continuously differentiable functions. We say that x ∈ Rd is a feasible point of (P) if x satisfies
gn(x) ≤ 0 for all n ∈ [N ] and hm(x) = 0 for all m ∈ [M ].
Definition 2 (KKT point). A feasible point x of (P) is a KKT point if x satisfies KKT conditions: there exists
λ1, . . . , λN ≥ 0 and µ1, . . . , µM ∈ R such that

1. Stationarity: ∇f(x)−
∑N

n=1 λn∇gn(x)−
∑M

m=1 µm∇hm(x) = 0.

2. Complementary slackness: ∀n ∈ [N ] : λngn(x) = 0.

In general, global minimizers of (P) need not meet KKT condition. But with appropriate regularity assumption, the
KKT conditions become necessary. To ensure the validity and specificity of following analysis, we introduce the
following standard assumptions.
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Assumption 3 (Regularity Assumption). Any optimal solution to the reformulated optimization problem (11) satisfies
the Karush-Kuhn-Tucker (KKT) conditions.

Since the optimization problem characterizes the behavior of the network’s normalized parameters, we introduce the
following assumptions to rule out degeneracies.

Assumption 4 (Solution Non-degeneracy). Any optimal solution (a∗1, . . . , h
∗, t∗) of the reformulated optimization

problem (11) is non-degenerate, which means the coefficient c∗1 is strictly positive and solution does not degenerate as
n increases, i.e., a∗1, . . . , h

∗, t∗ = Θ(1).

The non-degeneracy assumption is motivated by the underlying nuclear norm minimization objective. Intuitively,
given the constraints a1, b1, d1 ≥ 1, a solution where c1 ≤ 0 would imply a significant imbalance in the matrix
structure, likely leading to a suboptimal, larger nuclear norm. Our analysis therefore focuses on the more representative
case where c1 > 0.

With the help of the Assumption 3, we get the useful proposition which provides identity relationships between pa-
rameters.

Proposition 2. Suppose Assumption 3 holds. All optimal solution (x∗, t∗) of reformulated optimization problem
satisfy:

a∗1 + na∗2 = e∗, c∗1 + nc∗2 = −e∗ (20)

Proof. Using stationarity property for parameter c2, a2 and e, we find that the optimal solution satisfies

c2: 0 + λ2 − µ1n = 0 ⇒ λ2 = µ1n. (S1)

a2:
√
2
n(a∗1 + na∗2)√

M2

− λ2 − µ1n = 0. (S2)

e:
√
2

e∗√
M2

− 2λ2 = 0. (S3)

Substitute equation S1 into equations S2 and S3 respectively, we get

a∗1 + na∗2 = e∗.

Another equality comes from the equality constraint a1 + c1 + n(a2 + c2) = 0.

To prove condition 12, we start from the following binary proposition and strengthen it at the end.

Proposition 3. Suppose Assumption 3 and Assumption 4 hold, for all optimal solution (x∗, t∗) of reformulated opti-
mization problem, at least one of the following two inequality constraints is tight:

g1 : a1 − 1 ≥ 0,

g2 : a1 + a2 + 2e− c1 − c2 − 1 ≥ 0.
(21)

Proof. We prove by contradiction. We show that if both two constraints are not tight, there is a feasible perturbation
of this optimal point such that object value is strictly smaller.

We take
∆a1 = −αε, ∆b1,∆b2,∆d1,∆d2 = 0, ∆e,∆f,∆t = 0 (22)

By proposition 2, we take the following variables as

∆a2 =
α

n
ε, ∆c1 = −γε, ∆c2 =

γ

n
ε. (23)

Since we take ∆t = 0, we need to maintain ∆u = 0. It establishes the following relation between α and γ:

∆u = ∆a1d1 − b1∆c1
= −(d1α− b1γ)ε.

It implies that d1α − b1γ = 0. Next we show that by choosing appropriate parameter α, we can construct a feasible
descent direction.

Step 1: Descent direction.
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To prove that this direction is actually a descent direction, we consider the first-order approximation of the object
function. We find that

∆M1 = 2a1∆a1 + 2c1∆c1

= −2αε(a1 +
c1d1
b1

)

∆M2 = 0.

(24)

As a result, it implies that

∆F = −(n− 1)εα(a1 +
c1d1
b1

). (25)

Since c1 > 0 by Assumption 4 and constraints a1, b1, d1 ≥ 1, we have a1 + c1d1

b1
> 0 which ensures that this is a

descent direction.

Step 2: Feasible direction.

For inequality constraints g1 and g2, we can take ε small enough to ensure that they can’t hit the boundary. Inequality
constraints g3 to g6 and equality constraint h2 still hold since the relevant variables have not changed. Inequality
constraints g7 to g9 and equality constraint h1 still hold due to our choice for a1, a2, c1, c2. As a result, the construction
is a feasible direction.

We strengthen the above proposition by further analyzing the KKT conditions, thus proving that the conditions must
hold for the optimal point.
Proposition 4. Suppose Assumption 3 and Assumption 4 hold, for all optimal solution (x∗, t∗) of reformulated opti-
mization problem, both of the following two constraints are tight:

g1 : a1 − 1 ≥ 0,

g2 : a1 + a2 + 2e− c1 − c2 − 1 ≥ 0.
(26)

Proof. According to Proposition 7, we classify and discuss the following two situations.

Case 1: g1 is tight, but g2 is not.

Based on complementary slackness of KKT condition, we know that λ2 = 0. However, based on equation S1, we get

µ1 =
λ2

n
= 0.

Furthermore, due to equation S2, we get

e =
n
√
2√
B

(λ2 + µ1n) = 0

However, it makes an contradiction since the following constraints are violated due to Assumption 4:

a1 + a2 + 2e− c1 − c2 − 1 = 1− 1

n
− c1 +

1

n
c1 − 1 < 0. (27)

Case 2: g2 is tight, but g1 is not.

We write the stationary condition for a1, a2, c1, c2, t and note that complementary slackness of KKT condition implies
λ1 = 0 since g1 is not tight.

(Sc2 ) λ2 − nµ1 = 0,

(Sc1 ) (n− 1)
c1√
A

+ λ2 − µ1 + b1(λ8 − λ7) = 0,

(Sa2
)

√
2
n(a1 + na2)√

B
− λ2 − nµ1 = 0,

(Sa1 ) (n− 1)
a1√
A

+
√
2
a1 + na2√

B
− λ2 − µ1 + d1(λ7 − λ8) = 0,

(St) (n− 1)
1√
A

− (λ7 + λ8 + λ9) = 0,

(28)

18



PREPRINT

Substituting Sc2 into Sc1 , we get the first expression of λ7 − λ8.

λ7 − λ8 =
n− 1

b1

(
c1√
A

+
1

n
λ2

)
. (29)

Substituting Sc2 into Sa2
, we get

λ2 =

√
2n(a1 + na2)

2
√
B

. (30)

So we can simplify condition about Sa2
and get

λ7 − λ8 =
n− 1

d1
(
1

n
λ2 −

a1√
A
). (31)

Using two forms of λ7 − λ8, we get

λ2 =
n(d1c1 + a1b1)

(b1 − d1)
√
A

. (32)

However, we note that λ2 = n(d1c1+a1b1)

(b1−d1)
√
A

and λ2 =
√
2n(a1+na2)

2
√
B

. It implies that
√
2e
√
A(b1 − d1) = 2

√
B(d1c1 + a1b1). (33)

Based on Assumption 4, the right hand is Ω(
√
n) but the left hand is O(1), it makes an contradiction.

A.3 Proof for Theorem 2

We begin our proof with the following lemma, which makes fuller use of the symmetry of the problem.
Lemma 4 (Existence of symmetry solution). Suppose W is the solution to the optimization problem 2 without iden-
tical task. There exists a solution with a1, a2, b1, b2 and α, β such that

W ⊺ =

(
a1In + a2En b1In + b2En α1n β1n

b1In + b2En a1In + a2En β1n α1n

)
. (34)

The parameters follow the following constraints:
a1 ≥ 1,

a1 + a2 + α ≥ b1 + b2 + β + 1.
(35)

Proof. We show that some orthogonal transformation of W ⊺ remains a solution to the optimization problem. Let σ
be an arbitrary permutation of 1, . . . , n, and let Pσ ∈ Rn×n denote the associated permutation matrix. Now, consider
a permutation of the logit matrix.

σ(W ⊺) =

(
Pσ 0
0 Pσ

)
W ⊺ diag{Pσ,Pσ, 1, 1}.

We find that σ(W ⊺) is still an optimal solution of the optimization problem. To verify this, we consider

s(ai,r1),bj (σ(W
⊺)) = s(aσ−1(i),r1),bσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n]− {i},

s(ai,r1),cj (σ(W
⊺)) = s(aσ−1(i),r1),cσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n],

s(bi,r1),bj (σ(W
⊺)) = s(bσ−1(i),r1),bσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n],

s(bi,r1),cj (σ(W
⊺)) = s(bσ−1(i),r1),cσ−1(j)

(W ⊺) ≥ 1, ∀j ∈ [n]− {i}.

Moreover, σ(W ⊺) is another solution since orthogonal transformation does not change the nuclear norm. Consider
the average over all possible permutations:∑

σ σ(W
⊺)

n!
=

(
a1In + a2En b1In + b2En e1n f1n

c1In + c2En d1In + d2En g1n h1n

)
.

We further exploit the symmetry and consider the following transformation

τ(W ⊺) =

(
0 I
I 0

)
W ⊺ diag

{(
0 I
I 0

)
,

(
0 1
1 0

)}
.

Similar verification shows that τ(W ⊺) is still the solution to the optimization problem. Taking the sum of W ⊺ and
τ(W ⊺), we finish the proof.
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Under Assumption 2, we consider the problem

F = (n− 1)
√

2(a21 + b21) + 2|a21 − b21| + 2
√
(a1 + na2)2 + nα2 (36)

subject to 
a1 ≥ 1,

a1 + a2 + α ≥ b1 + b2 − α+ 1,

a1 + b1 + n(a2 + b2) = 0.

(37)

To prove Theorem 2, we just need to prove the following condition holds for the optimal solution of optimization
problem 36:

b1 + b2 < a1 + a2 (38)

Proof of Theorem 2. Step 0: Structural simplification. Using the identity

a2 + b2 + |a2 − b2| = 2max{a2, b2},

the first square root in equation 36 reduces to√
2(a21 + b21) + 2|a21 − b21| = 2max{|a1|, |b1|}.

Since a1 ≥ 1 > 0, the objective becomes

F = 2(n− 1)max{a1, |b1|}+ 2
√
X2 + nα2, X = a1 + na2.

Meanwhile, the linear constraint rewrites as
X = −(b1 + nb2).

Step 1. Necessary condition at optimum. Fixing (a1, a2) (so X is fixed), we can vary (b1, b2) while preserving
b1 + nb2; this leaves X and the second term unchanged. If |b1| > a1, then decreasing |b1| towards a1 reduces the first
term and relaxes or maintains the inequality constraint, hence cannot be optimal. Therefore,

|b1| ≤ a1,

and the first term simplifies to 2(n− 1)a1.

Step 2. KKT analysis in the strict case |b1| < a1. In this regime, the objective is independent of b1, b2. We write
down the stationary condition for b1, b2:

λ2 − µ1 = 0

λ2 − nµ1 = 0.
(39)

Thus, we get λ1 = µ1 = 0. Then we consider stationary condition for a2:

2n
X√

X2 + nα2
− λ2 − nµ1 = 0. (40)

It implies X = 0. Finally, we consider a1:

2(n− 1) + 2
X√

X2 + nα2
− λ1 − λ2 − µ1 = 0. (41)

As a result λ1 = 2(n− 1). Based on complementary slackness, we have a1 = 1. Thus,

a2 = − 1

n
, b2 = −b1

n
, b1 + nb2 = 0.

Consequently,

a1 + a2 = 1− 1

n
, b1 + b2 = (1− 1

n )b1,

and since |b1| < 1, we obtain

b1 + b2 < 1− 1

n
= a1 + a2.
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Step 3. Boundary case |b1| = a1. We first find that a1 = 1. Otherwise, we can perturb a1, a2, b1, b2 to lower the
objective function while keeping X fixed. The first term of the optimization object is 2(n − 1). Moreover, we can
consider another solution

a1 = 1, a2 = − 1

n
, b1 = − 1

n− 1
, b2 =

1

n(n− 1)
, α = 0. (42)

Direct verification shows that the constraints are satisfied and the value of the objective function is 2(n− 1). Thus, if
we can find optimal solution in this case, the second term of objective function must be zero. As a result, we have

a1 + na2 = 0, α = 0. (43)

Moreover, it implies that

a2 = − 1

n
, b1 + nb2 = 0 (44)

Then we consider the following cases:

(i) b1 = −a1 = −1. We have b2 = 1
n and a1 + a2 = 1− 1

n > b1 + b2.

(ii) b1 = a1 = 1. It contradicts with the constraint a1 + a2 + α ≥ b1 + b2 − α+ 1.
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B Experimental Details

B.1 Architecture Details

Transformer (GPT-2 style). We use a standard decoder-only transformer with pre-norm residual blocks. Let dvocab
be the vocabulary size, dm the model width, dk the per-head query/key dimension, H the number of heads, L the
number of layers, and T the context length. Tokens x1:T are embedded by a lookup matrix E ∈ Rdvocab×dm and
summed with learned positional embeddings. Each layer ℓ = 1, . . . , L applies

Z(ℓ) = X(ℓ) +MHA
(
LN
(
X(ℓ)

))
,

X(ℓ+1) = Z(ℓ) +MLP
(
LN
(
Z(ℓ)

))
,

where MHA is causal multi-head attention with H heads (queries/keys/values computed by linear maps in Rdm×Hdk

and output projection in RHdk×dm ), and MLP is a two-layer feed-forward network with GELU activation and hidden
size 4dm. LayerNorm (LN) is applied in the pre-norm configuration; dropout is disabled unless stated. The language-
model head shares weights with E (tied embeddings) and projects to logits in Rdvocab .

C Experiments Compute Resources

The experiments were conducted on a server with the following configuration:

• 48 AMD EPYC 7352 24-Core Processors, each with 512KB of cache
• 251GB of total system memory
• 8 NVIDIA GeForce RTX 4080 GPUs with 16GB of video memory each
• The experiments were run using Ubuntu 22.04 LTS operating system
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