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Abstract

Empirical works show that for ReLU neural networks (NNs) with small initial-
ization, input weights of hidden neurons (the input weight of a hidden neuron
consists of the weight from its input layer to the hidden neuron and its bias term)
condense on isolated orientations. The condensation dynamics implies that the
training implicitly regularizes a NN towards one with a much smaller effective size.
In this work, we illustrate the formation of the condensation in multi-layer fully
connected NNs and show that the maximal number of condensed orientations in
the initial training stage is twice the multiplicity of the activation function, where
“multiplicity” indicates the multiple roots of activation function at origin. Our
theoretical analysis confirms experiments for two cases, one is for the activation
function of multiplicity one with arbitrary dimension input, which contains many
common activation functions, and the other is for the layer with one-dimensional
input and arbitrary multiplicity. This work makes a step towards understanding
how small initialization leads NNs to condensation at the initial training stage.

1 Introduction

The question why over-parameterized neural networks (NNs) often show good generalization attracts
much attention (Breiman, 1995; Zhang et al., 2021). Luo et al. (2021) found that when initialization
is small, the input weights of hidden neurons in two-layer ReLU NNs (the input weight or the feature
of a hidden neuron consists of the weight from its input layer to the hidden neuron and its bias term)
condense on isolated orientations during the training. As illustrated in the cartoon example in Fig. 1,
the condensation transforms a large network with one of only a few effective neurons, leading to an
output function with low complexity. Since the complexity bounds the generalization error (Bartlett
and Mendelson, 2002), the study of condensation could provide insight to how over-parameterized
NNs are implicitly regularized to achieve good generalization performance in practice.

Small initialization leads NNs to rich non-linearity during the training (Mei et al., 2019; Rotskoff and
Vanden-Eijnden, 2018; Chizat and Bach, 2018; Sirignano and Spiliopoulos, 2020). For example, in
over-parameterized regime, small initialization can achieve low generalization error (Advani et al.,
2020). Irrespective of network width, small initialization can make two-layer ReLU NNs converge
to a solution with maximum margin (Phuong and Lampert, 2020). Small initialization also enables
neural networks to learn features actively (Lyu et al., 2021; Luo et al., 2021). Condensation is
an important phenomenon that reflects the feature learning process. Therefore, it is important to
understand how condensation emerges during the training with small initialization.
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Figure 1: Illustration of condensation. The color and its intensity of a line indicate the strength of
the weight. Initially, weights are random. After training, the weights from a input node to all hidden
neurons are the same, i.e., condensation. Multiple hidden neurons can be replaced by an effective
neuron, which has the same input weight as original hidden neurons and the output weight as the
summation of all output weights of original hidden neurons.

The dynamic behavior of the training at the initial state is important for the whole training process,
because it largely determines the training dynamics of a neural network and the region it ends up
in (Fort et al., 2020; Hu et al., 2020), which impacts the characteristics of the neural networks in
the final stage of training (Luo et al., 2021; Jiang et al., 2019; Li et al., 2018). For two-layer ReLU
NNs, several works have studied the mechanism underlying the condensation at the initial training
stage when the initialization of parameters goes to zero (Maennel et al., 2018; Pellegrini and Biroli,
2020). However, it still remains unclear that for NNs of more general activation functions, how
the condensation emerges at the initial training stage.

In this work, we show that the condensation at the initial stage is closely related to the multiplicity
p at x = 0, which means the derivative of activation at x = 0 is zero up to the (p − 1)th-order
and is non-zero for the p-th order. Many common activation functions, e.g., tanh(x), sigmoid(x),
softplus(x), Gelu(x), Swich(x), etc, are all multiplicity p = 1, and x tanh(x) and x2 tanh(x) have
multiplicity two and three, respectively. Our contribution is summarized as follows:

• Our extensive experiments suggest that the maximal number of condensed orientations in
the initial training is twice the multiplicity of the activation function used in general NNs.

• We present a theory for the initial condensation with small initialization for two cases,
one is for the activation function of multiplicity one with arbitrary dimension input, and
the other is for the layer with one-dimensional input and arbitrary multiplicity. As many
common activation functions are multiplicity p = 1, our theory would be of interest to
general readers.

2 Related works

Luo et al. (2021) systematically study the effect of initialization for two-layer ReLU NN with infinite
width by establishing a phase diagram, which shows three distinct regimes, i.e., linear regime (similar
to the lazy regime) (Jacot et al., 2018; Arora et al., 2019; Zhang et al., 2020; E et al., 2020; Chizat
and Bach, 2019), critical regime (Mei et al., 2019; Rotskoff and Vanden-Eijnden, 2018; Chizat and
Bach, 2018; Sirignano and Spiliopoulos, 2020) and condensed regime (non-linear regime), based on
the relative change of input weights as the width approaches infinity, which tends to 0, O(1) and +∞,
respectively. As shown in Luo et al. (2021), two-layer ReLU NNs with infinite width do not condense
in the neural tangent kernel (NTK) regime , slightly condense in the mean-field regime, and clearly
condense in the non-linear regime. However, in Luo et al. (2021), it is not clear how general the
condensation phenomenon is when other activation functions are used and why there is condensation.
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Zhang et al. (2021a,b) propose a general Embedding Principle of loss landscape of DNNs that
unravels a hierarchical structure of the loss landscape of NNs, i.e., loss landscape of an DNN contains
all critical points of all the narrower DNNs. The embedding principle shows that a large DNN can
experience critical points where the DNN condenses and its output is the same as that of a much
smaller DNN. However, embedding principle does not explain how the training can take the DNN to
such critical points.

The condensation is consistent with previous works that suggest that NNs may learn data from simple
to complex patterns (Arpit et al., 2017; Xu et al., 2019; Rahaman et al., 2019; Xu et al., 2020; Jin et al.,
2020; Kalimeris et al., 2019). For example, an implicit bias of frequency principle is widely observed
that NNs often learn the target function from low to high frequency (Xu et al., 2019; Rahaman et al.,
2019; Xu et al., 2020), which has been utilized to understand various phenomena (Ma et al., 2020;
Xu and Zhou, 2021) and inspired algorithm design (Liu et al., 2020; Cai et al., 2020; Tancik et al.,
2020; Li et al., 2020, 2021).

3 Preliminary: Neural networks and initial stage

A two-layer NN is

fθ(x) =

m∑
j=1

ajσ(wj · x), (1)

where σ(·) is the activation function, wj = (w̄j , bj) ∈ Rd+1 is the neuron feature including the
input weight and bias terms, and x = (x̄, 1) ∈ Rd+1 is combination of the input sample and scalar
1, θ is the set of all parameters, i.e., {aj ,wj}mj=1. For simplicity, we call wj as input weight or
weight and x as input sample.

A L-layer NN can be recursively defined by feeding the output of the previous layer as the input to
the current hidden layer, i.e.,

x[0] = (x, 1), x[1] = (σ(W [1]·x[0]), 1), x[l] = (σ(W [l] · x[l−1]), 1), for l ∈ {2, 3, ..., L}
f(θ,x) = aᵀx[L] , fθ(x),

(2)

where W [l] = (W̄ [l], b[l]) ∈ Rml×(ml−1+1), and ml represents the dimension of the l-th hidden
layer. For simplicity, we also call each row ofW [l] as input weight or weight and x[l−1] as input
to the l-th hidden layer. The target function is denoted as f∗(x). The training loss function is mean
squared error

RS(θ) =
1

2n

n∑
i=1

(fθ(xi)− f∗(xi))2. (3)

Without loss of generality, we assume that the output is one-dimensional for theoretical analysis,
because, for high-dimensional cases, we only need to sum up the components directly. For summation,
it does not affect the results of our theories. We consider the gradient flow training

θ̇ = −∇θRS(θ). (4)

To ensure that the training is close to the gradient flow, all the learning rates used in this paper are
relatively small. We characterize the activation function by the following definition.
Definition 1 (multiplicity p). Suppose that σ(x) satisfies the following condition, there exists a p ∈ N
and p ≥ 1, such that the s-th order derivative σ(s)(0) = 0 for s = 1, 2, · · · , p− 1, and σ(p)(0) 6= 0,
then we say σ has multiplicity p.
Remark 3.1. Here are some examples. tanh(x), sigmoid(x) and softplus(x) have multiplicity p = 1.
x tanh(x) has multiplicity p = 2.

We illustrate small initialization and initial stage as follows

Small initialization: W [l] ∼ o(1) andW [l] · x[l−1] ∼ o(1) for all l’s and x[l−1].

We want to remark that it dose not make sense to define the initial stage by the number of training
steps, because the training is affected by many factors, such as the learning rate. Therefore, in our
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experiments, the epochs we use to show phenomena can across a wide range. Alternatively, we
consider the initial stage as follows.

Initial stage: the period when the leading-order Taylor expansion w.r.t activated neurons is still valid
for theoretical analysis of Sec. 5.

As the parameters of a neural network evolve, the loss value will also decay accordingly, which is
easy to be directly observed. Therefore, we propose an intuitive definition of the initial stage of
training by the size of loss in this article, that is the stage before the value of loss function decays to
70% of its initial value. Such a definition is reasonable, for generally a loss could decay to 1% of its
initial value or even lower. The loss of the all experiments in the article can be found in Appendix
A.3, and they do meet the definition of the initial stage here.

Cosine similarity: The cosine similarity for two vectors u and v is defined as

D(u,v) =
uᵀv

(uᵀu)1/2(vᵀv)1/2
. (5)

4 Initial condensation of input weights

In this section, we would empirically show how the condensation differs among NNs with activation
function of different multiplicities in the order of a practical example, multidimensional synthetic
data, and 1-d input synthetic data, followed by theoretical analysis in the next section.

4.1 Experimental setup

For Synthetic dataset: Throughout this work, we use fully-connected neural network with size,
d-m-· · · -m-dout. The input dimension d is determined by the training data. The output dimension
is dout = 1. The number of hidden neurons m is specified in each experiment. All parameters are
initialized by a Gaussian distribution N(0, var). The total data size is n. The training method is
Adam with full batch, learning rate lr and MSE loss. We sample the training data uniformly from
a sub-domain of Rd. The sampling range and the target function are chosen randomly to show the
generality of our experiments.

For CIFAR10 dataset: We use Resnet18-like neural network, which has been described in Fig. 2,
and the input dimension is d = 32 ∗ 32 ∗ 3. The output dimension is dout = 10. All parameters are
initialized by a Gaussian distribution N(0, var). The total data size is n. The training method is
Adam with batch size 128, learning rate lr and cross-entropy loss.

4.2 A practical example

The condensation of the weights of between the fully-connected (FC) layers of a Resnet18-like
neural network on CIFAR10 is shown in Fig. 2, whose activation functions for FC layers are
tanh(x), sigmoid(x), softplus(x) and x tanh(x), indicated by the corresponding sub-captions,
respectively. As shown in Fig. 2(a), for activation function tanh(x), the color indicates cosine
similarity D(u, v) of two hidden neurons’ weights, whose indexes are indicated by the abscissa and
the ordinate, respectively. If the neurons are in the same beige block, D(u, v) ∼ 1 (navy-blue block,
D(u, v) ∼ −1), their input weights have the same (opposite) direction. Input weights of hidden
neurons in Fig. 2(a) condense at two opposite directions, i.e., one line. Similarly, weights of hidden
neurons for NNs with sigmoid(x) and softplus(x) (Fig. 2(b, c)), which are frequently used and have
multiplicity one, condense at one direction. As the multiplicity increases, NNs with x tanhx (Fig.
2(d)) condense at two different lines. These experiments suggest that the condensation is closely
related to the multiplicity of the activation function.

In these experiments, we find that the performance of the Resnet18-like network with tanh FC layers
with small initialization is similar to the one with common initialization in Appendix A.4.

4.3 Multidimensional synthetic data

For convenience of experiments, we then use synthetic data to perform extensive experiments to
study the relation between the condensation and the multiplicity of the activation function.
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(a) tanh(x) (b) sigmoid(x) (c) softplus(x) (d) x tanh(x)

Figure 2: Condensation of Resnet18-like neural networks on CIFAR10. Each network consists of the
convolution part of resnet18 and fully-connected (FC) layers with size 1024-1024-10 and softmax.
The color in figures indicates the cosine similarity of normalized input weights of two neurons in
the first FC layer, whose indexes are indicated by the abscissa and the ordinate, respectively. The
convolution part is equipped with ReLU activation and initialized by Glorot normal distribution
(Glorot and Bengio, 2010). The activation functions are tanh(x), sigmoid(x), softplus(x) and
x tanh(x) for FC layers in (a), (b), (c), and (d), separately. The numbers of steps selected in the
sub-pictures are epoch 20, epoch 30, epoch 30 and epoch 61, respectively. The learning rate is
3× 10−8, 1× 10−8, 1× 10−8 and 5× 10−6, separately .The FC layers are initialized by N(0, 1

m3
out

),
and Adam optimizer with cross-entropy loss and batch size 128 are used for all experiments.

(a) tanh(x) (b) x tanh(x) (c) x2 tanh(x) (d) sigmoid(x) (e) softplus(x)

Figure 3: Condensation of two-layer NNs. The color indicates D(u, v) of two hidden neurons’ input
weights at epoch 100, whose indexes are indicated by the abscissa and the ordinate, respectively.
If neurons are in the same beige block, D(u, v) ∼ 1 (navy-blue block, D(u, v) ∼ −1), their
input weights have the same (opposite) direction. The activation functions are indicated by the
sub-captions. The training data is 80 points sampled from

∑5
k=1 3.5 sin(5xk + 1), where each

xk is uniformly sampled from [−4, 2]. n = 80, d = 5, m = 50, dout = 1, var = 0.0052.
lr = 10−3, 8× 10−4, 2.5× 10−4 for (a-c), (d) and (e), respectively.

We use two-layer fully-connected NNs with size 5-50-1 to fit n = 80 training data sampled from a
5-dimensional function

∑5
k=1 3.5 sin(5xk + 1), where x = (x1, x2, · · · , x5)ᵀ ∈ R5 and each xk

is uniformly sampled from [−4, 2]. As shown in Fig. 3(a), for activation function tanh(x), input
weights of hidden neurons condense at two opposite directions, i.e., one line. As the multiplicity
increases, NNs with x tanh(x) (Fig. 3(b)) and x2 tanhx (Fig. 3(c)) condense at two and three
different lines, respectively. For activation function sigmoid(x) in Fig. 3(d) and softplus(x) in Fig.
3(e), NNs also condense at two opposite directions.

For multi-layer NNs with different activation functions, we show that the condensation for all
hidden layers is similar to the two-layer NNs. In deep networks, residual connection is often
introduced to overcome the vanishing of gradient. To show the generality of condensation, we
perform an experiment of six-layer NNs with residual connections. To show the difference of various
activation functions, we set the activation functions for hidden layer 1 to hidden layer 5 as x2 tanh(x),
x tanh(x), sigmoid(x), tanh(x) and softplus(x), respectively. The structure of the residual is
hl+1(x) = σ(Wlhl(x) + bl) + hl(x), where hl(x) is the output of the l-th layer. As shown in Fig.
4, input weights condense at three, two, one, one and one lines for hidden layer 1 to hidden layer 5,
respectively. Note that residual connections are not necessary. We show an experiment of the same
structure as in Fig. 4 but without residual connections in Appendix A.5.

Through these experiments, we conjecture that the maximal number of condensed orientations at
initial training is twice the multiplicity of the activation function used. To understand the mechanism
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(a) layer 1 (b) layer 2 (c) layer 3 (d) layer 4 (e) layer 5

Figure 4: Condensation of six-layer NNs with residual connections. The activation functions for
hidden layer 1 to hidden layer 5 are x2 tanh(x), x tanh(x), sigmoid(x), tanh(x) and softplus(x),
respectively. The numbers of steps selected in the sub-pictures are epoch 1000, epoch 900, epoch
900, epoch 1400 and epoch 1400, respectively, while the NN is only trained once. The color indicates
D(u, v) of two hidden neurons’ input weights, whose indexes are indicated by the abscissa and
the ordinate, respectively. The training data is 80 points sampled from a 3-dimensional function∑3
k=1 4 sin(12xk + 1), where each xk is uniformly sampled from [−4, 2]. n = 80, d = 3, m = 18,

dout = 1, var = 0.012, lr = 4× 10−5.

of the initial condensation, we turn to experiments of 1-d input and two-layer NNs, which can be
clearly visualized in the next subsection.

4.4 1-d input and two-layer NN

For 1-d data, we visualize the evolution of the two-layer NN output and each weight, which confirms
the connection between the condensation and the multiplicity of the activation function.

(a) tanh(x) (b) x tanh(x) (c) x2 tanh(x)

Figure 5: The outputs of two-layer NNs at epoch 1000 with activation function tanh(x), x tanh(x),
and x2 tanh(x) are displayed, respectively. The training data is 40 points uniformly sampled from
sin(3x) + sin(6x)/2 with x ∈ [−1, 1.5], illustrated by green dots. The blue solid lines are the NN
outputs at test points, while the red dashed auxiliary lines are the first, second, third and first order
polynomial fittings of the test points for (a, b, c), respectively. Parameters are n = 40, d = 1,
m = 100, dout = 1, var = 0.0052, lr = 5× 10−4.

We display the outputs at initial training in Fig. 5. Due to the small magnitude of parameters, an
activation function with multiplicity p can be well approximated by a p-th order polynominal, thus,
the NN output can also be approximated by a p-th order polynominal. As shown in Fig. 5, the NN
outputs with activation function tanh(x), x tanh(x) and x2 tanh(x) overlap well with the auxiliary
of a linear, a quadratic and a cubic polynominal curve, respectively in the beginning. This experiment,
although simple, but convincingly shows that NN does not always learn a linear function at the initial
training stage and the complexity of such learning depends on the activation function.

We visualize the direction field for input weight wj := (wj , bj), following the gradient flow,

ẇj = −aj
n

n∑
i=1

eiσ
′(wj · xi)xi,

where ei := fθ(xi)− f∗(xi). Since we only care about the direction ofwj and aj is a scalar at each
epoch, we can visualize ẇj by ẇj/aj . For simplicity, we do not distinguish ẇj/aj and ẇj if there
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(a) tanh(x) (b) x tanh(x) (c) x2 tanh(x)

Figure 6: The direction field for input weight w := (w, b) of the dynamics in (4.4) at epoch 200.
All settings are the same as Fig. 5. Around the original point, the field has one, two, three stables
lines, on which an input weight would keep its direction, for tanh(x), x tanh(x), and x2 tanh(x),
respectively. We also display the value of each weight by the green dots and the corresponding
directions by the orange arrows.

is no ambiguity. When we compute ẇj for different j’s, eixi for (i = 1, · · · , n) is independent with
j. Then, at each epoch, for a set of {ei,xi}ni=1, we can consider the following direction field

ω̇ = − 1

n

n∑
i=1

eixiσ
′(ω · xi).

When ω is set as wj , we can obtain ẇj . As shown in Fig. 6, around the original point, the field has
one, two, three stables lines, on which a neuron would keep its direction, for tanh(x), x tanh(x),
and x2 tanh(x), respectively. We also display the input weight of each neuron on the field by
the green dots and their corresponding velocity directions by the orange arrows. Similarly to the
high-dimensional cases, NNs with multiplicity p activation functions condense at p different lines
for p = 1, 2, 3. Therefore, It is reasonable to conjecture that the maximal number of condensed
orientations is twice the multiplicity of the activation function used.

Taken together, we have empirically shown that the multiplicity of the activation function is a
key factor that determines the complexity of the initial output and condensation. To facilitate the
understanding of the evolution of condensation in the initial stage, we show several steps during the
initial stage of each example in Appendix A.6.

5 Analysis of the initial condensation of input weights

In this section, we would present a preliminary analysis to understand how the multiplicity of the
activation function affects the initial condensation. At each training step, we consider the velocity
field of weights in each hidden layer of a neural networks.

Considering a network with L hidden layers, we use row vectorW [k]
j to represent the weight from

the (k-1)-th layer to the j-th neuron in the k-th layer. Since condensation is always accompany
with small initialization, together with the initial stage defined in Sec. 3, we make the following
assumptions,

Assumption 1. Small initialization infers thatW [k]
j · x[k−1] ∼ o(1) applies for all k’s and j’s.

Assumption 2. During the initial stage of condensation, Taylor expansion of each corresponding
activated neurons holds, i.e.,

σ′(W
[k]
j · x

[k−1]) = σ′(0) + · · ·+ σ(γ)(0)

(γ − 1)!
(W

[k]
j · x

[k−1])γ−1 +O((W
[k]
j · x

[k−1])γ) (6)

Suppose the activation function has multiplicity p, i.e., σ(s)(0) = 0 for s = 1, 2, · · · , p − 1, and
σ(p)(0) 6= 0. Then, together with Assumption 2, we have

σ′(W
[k]
j · x

[k−1]) ≈ σ(p)(0)

(p− 1)!
(W

[k]
j · x

[k−1])p−1. (7)
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For each k and j,W [k]
j satisfies the following dynamics, (see Appendix A.2)

ṙ = u · ẇ, u̇ =
ẇ − (ẇ · u)u

r
. (8)

where w can representW [k]
j

ᵀ
for all k’s and j’s, r = ‖w‖2 is the amplitude, and u = w/r.

For convenience, we define an operatorP satisfyingPw := ẇ−u(ẇ·u). To specify the condensation
for theoretical analysis, we make the following definition,

Condensation: the weight evolves towards a direction which will not change in the direction field
and is defined as follows,

u̇ = 0 ⇔ Pw := ẇ − u(ẇ · u) = 0. (9)

Since ẇ · u is a scalar, ẇ is parallel with u. u is a unit vector, therefore, we have u = ±ẇ/‖ẇ‖2.
Remark 1 (An intuitive explanation for condensation). In this work, we consider NNs with sufficiently
small parameters. Suppose r = ‖w‖2 ∼ O(ε), where ε is a small quantity, then dynamics (8) will
show that O(ṙ) ∼ O(ẇ) and O(u̇) ∼ O(ṙ)/O(ε). Here O(ṙ) ∼ O(ẇ) refers that the evolution of ṙ
is at the same order as every component of ẇ, and it is the same for O(u̇) ∼ O(ṙ)/O(ε). Therefore,
the orientation u would move much more quickly than the amplitude r. By the dynamics forw (Equ.
10) and the Taylor approximation with multiplicity p (Equ. 7), it is easy to find that the solutions
for Equ. 9 are finite. Then, taken together, the orientation u would converge rapidly into certain
directions, leading to condensation.

In the following, we study the case of (i) p = 1 and (ii) mk−1 = 1 (the dimension of input of the
k-th layer equals one), and reach the following theorem,
Theorem 5.1. Under Assumption 1 and 2, suppose we only consider the leading-order Taylor
expansion of Equ. 9, then the maximal number of roots for Equ. 9 is twice the multiplicity of the
activation function used as initialization towards zero for two cases: (i) p = 1 and (ii) mk−1 = 1.

Proof. Case 1: p = 1

By gradient flow, we can obtain the dynamics forW [k]
j (see Appendix A.2),

ẇᵀ = Ẇ
[k]
j = − 1

n

n∑
i=1

(f(θ,xi)− yi) [diag{σ′(W [k] · x[k−1]
i )}(E[k+1:L]a)]jx

[k−1]
i

ᵀ
, (10)

where we use El = W [l]ᵀ diag{σ′(W [l] · x[l−1])}, for l ∈ {2, 3, ..., L}, E[q:p] = EqEq+1...Ep,
and x[k]

i represents the neurons of the k-th layer generated by the i-th sample.

For a fixed step, we only consider the gradient of loss w.r.t. W [k]
j . According to our assumption

p = 1, we have σ′(0) 6= 0. Suppose that parameters are small and denote ei := (f(θ,xi)− yi). By
Taylor expansion,

Pw
leading order
≈ Qw := − 1

n
{(diag{σ′(0)}(E[k+1:L]a))j ·

n∑
i=1

eix
[k−1]
i }

+{( 1

n
(diag{σ′(0)}(E[k+1:L]a))j ·

n∑
i=1

eix
[k−1]
i · u)u} = 0,

where operator Q is the leading-order approximation of operator P , and here E[k+1:L] is indepen-
dent with i, because diag{σ′(W [l]x[l−1])} ≈ diag{σ′(0)}. Since diag{σ′(0)} = cI, c 6= 0 by
assumption, and, WLOG, we assume a 6= 0, then

Qw = 0 ⇔
n∑
i=1

eix
[k−1]
i =

(
n∑
i=1

eix
[k−1]
i · u

)
u.

8



We have

u =

∑n
i=1 eix

[k−1]
i

‖
∑n
i=1 eix

[k−1]
i ‖2

or u = −
∑n
i=1 eix

[k−1]
i

‖
∑n
i=1 eix

[k−1]
i ‖2

.

This calculation shows that for layer k, the input weights for any hidden neuron j have the same
two stable directions. Together with the analysis before, i.e., when parameters are sufficiently small,
the orientation u would move much more quickly than the amplitude r, all input weights would
move towards the same direction or the opposite direction, i.e., condensation on a line, under small
initialization.

Case 2: the k-th layer with one-dimensional input, i.e., mk−1 = 1

By the definition of the multiplicity p, we have

σ′(w · xi) =
σ(p)(0)

(p− 1)!
(w · xi)p−1 + o((w · xi)p−1).

where (·)p−1 and σ(p)(·) operate on component here. Then up to the leading order in terms of the
magnitude of θ, we have (see Appendix A.2)

Pw
leading order
≈ Qw := −{( 1

n

n∑
i=1

eix
[k−1]
i (wᵀx

[k−1]
i )p−1) · [diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a)]j}

+{(( 1

n

n∑
i=1

eix
[k−1]
i (wᵀx

[k−1]
i )p−1) · [diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a)]j · u)u}.

WLOG, we also assume a 6= 0. And by definition, w = ru, we have

Qw = 0 ⇔ u =
1
n

∑n
i=1 eix

[k−1]
i (uᵀx

[k−1]
i )p−1

‖ 1
n

∑n
i=1 eix

[k−1]
i (uᵀx

[k−1]
i )p−1‖2

or u = −
1
n

∑n
i=1 eix

[k−1]
i (uᵀx

[k−1]
i )p−1

‖ 1
n

∑n
i=1 eix

[k−1]
i (uᵀx

[k−1]
i )p−1‖2

.

Since mk−1 + 1 = 2 (for x[k−1] = (σ(W [k−1]x[k−2]), 1) and mk−1 = 1 ), we denote u =

(u1, u2)ᵀ ∈ R2 and x[k−1]
i = ((x

[k−1]
i )1, (x

[k−1]
i )2)ᵀ ∈ R2, then,∑n

i=1(u1(x
[k−1]
i )1 + u2(x

[k−1]
i )2)p−1ei(x

[k−1]
i )1∑n

i=1(u1(x
[k−1]
i )1 + u2(x

[k−1]
i )2)p−1ei(x

[k−1]
i )2

=
u1

u2
, û.

We obtain the equation for û,
n∑
i=1

(û(x
[k−1]
i )1 + (x

[k−1]
i )2)p−1ei(x

[k−1]
i )1 = û

n∑
i=1

(û(x
[k−1]
i )1 + (x

[k−1]
i )2)p−1ei(x

[k−1]
i )2.

Since it is an univariate p-th order equation, û = u1

u2
has at most p complex roots. Because u is a unit

vector, u at most has p pairs of values, in which each pair are opposite.

Taken together, our theoretical analysis is consistent with our experiments, that is, the maximal
number of condensed orientations is twice the multiplicity of the activation function used when
parameters are small. As many commonly used activation functions are either multiplicity p = 1 or
ReLU-like, our theoretical analysis is widely applied and sheds light on practical training.

6 Discussion

In this work, we have shown that the characteristic of the activation function, i.e., multiplicity, is
a key factor to understanding the complexity of NN output and the weight condensation at initial
training. The condensation restricts the NN to be effectively low-capacity at the initial training stage,
even for finite-width NNs. During the training, the NN increases its capacity to better fit the data,

9



leading to a potential explanation for their good generalization in practical problems. This work also
serves as a starting point for further studying the condensation for multiple-layer neural networks
throughout the training process.

For general multiplicity with high-dimensional input data, the theoretical analysis for the initial
condensation is a very difficult problem, which is equivalent to counting the number of the roots of
a high-order high-dimensional polynomial with a special structure originated from NNs. Training
data can also affect the condensation but not the maximal number of condensed orientations. When
data is simple, such as low frequency, the number of the condensed orientations can be less, some
experiments of MNIST and CIFAR100 can be found in Appendix A.7.
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A Appendix

A.1 Basic definitions

In this study, we first consider the neural network with 2 hidden layers,

A two-layer NN is

fθ(x) =

m∑
j=1

ajσ(wj · x), (11)

where σ(·) is the activation function, wj = (w̄j , bj) ∈ Rd+1 is the neuron feature including the
input weight and bias terms, and x = (x̄, 1) ∈ Rd+1 is combination of the input sample and scalar
1, θ is the set of all parameters, i.e., {aj ,wj}mj=1. For simplicity, we call wj as input weight or
weight and x as input sample.

Then, we consider the neural network with l hidden layers,

x[0] = (x, 1), x[1] = (σ(W [1]x[0]), 1), x[l] = (σ(W [l]x[l−1]), 1), for l ∈ {2, 3, ..., L}
f(θ,x) = aᵀx[L] , fθ(x),

(12)

whereW [l] = (W̄ [l], b[l]) ∈ R(ml×ml−1), and ml represents the dimension of the l-th hidden layer.
The initialization ofW [l]

k,k′ , l ∈ {1, 2, 3, ..., L} and ak obey normal distributionW [l]
k,k′ ∼ N (0, β2

l )

for l ∈ {1, 2, 3, ..., L} and ak ∼ N (0, β2
L+1).

The loss function is mean squared error given below,

Rs(θ) =
1

2n

n∑
i=1

(fθ(xi)− yi)2. (13)

For simplification, we denote fθ(x) as f in following.

A.2 Derivations for concerned quantities

A.2.1 Neural networks with three hidden layers

In order to better understand the gradient of the parameter matrix of the multi-layer neural network,
we first consider the case of the three-layer neural network,

fθ(x) := aᵀσ(W [2]σ(W [1]x)), (14)
with the mean squared error as the loss function,

Rs(θ) =
1

2n

n∑
i=1

(fθ(xi)− yi)2. (15)

We calculate df
dW [2] and df

dW [1] respectively, using differential form,

df = tr((
∂f

∂x
)ᵀdf). (16)

We consider df
dW [2] first,

df = tr{d(aᵀσ(W [2]x[1]))}
= tr{aᵀd(σ(W [2]x[1]))}

= tr{aᵀσ
′
(W [2]x[1])� dW [2]x[1]}

= tr{(a� σ
′
(W [2]x[1])ᵀdW [2]x[1]}

= tr{x[1](a� σ
′
(W [2]x[1])ᵀdW [2]}

= tr{((a� σ
′
(W [2]x[1]))x[1]ᵀ)ᵀdW [2]},

(17)
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where � is Hadamard Product, and it is the multiplication of matrix elements of the same position.
Hence,

df

dW [2]
= (a� σ

′
(W [2]x[1]))x[1]ᵀ

= diag{σ
′
(W [2]x[1])}ax[1]ᵀ.

(18)

Then, we consider df
dW [1] ,

df = tr{(a� σ
′
(W [2]x[1]))ᵀW [2]dσ(W [1]x)}

= tr{(W [2]ᵀ(a� σ
′
(W [2]x[1])))ᵀσ

′
(W [1]x)� d(W [1]x)}

= tr{((W [2]ᵀ(a� σ
′
(W [2]x[1]))� σ

′
(W [1]x))ᵀd(W [1]x)}

= tr{[((W [2]ᵀ(a� σ
′
(W [2]x[1]))� σ

′
(W [1]x))xᵀ]ᵀd(W [1])}.

(19)

Hence, we have,

df

dW [1]
= ((W [2]ᵀ(a� σ

′
(W [2]x[1])))� σ

′
(W [1]x))xᵀ

= diag{σ
′
(W [1]x)}W [2]ᵀdiag{σ

′
(W [2]x[1])}axᵀ.

(20)

Through the chain rule, we can get the evolution equation ofW [1] andW [2],

dW [1]

dt
= −dRs(θ)

dW [1]

= − 1

n

n∑
i=1

(f(θ,xi)− yi)
df

dW [1]

= − 1

n

n∑
i=1

(f(θ,xi)− yi)diag{σ
′
(W [1]xi)}W [2]ᵀdiag{σ

′
(W [2]x

[1]
i )}axᵀ

i ,

(21)

and
dW [2]

dt
= −dRs(θ)

dW [2]

= − 1

n

n∑
i=1

(f(θ,xi)− yi)
df

dW [1]

= − 1

n

n∑
i=1

(f(θ,xi)− yi)diag{σ
′
(W [2]x

[1]
i )}ax[1]

i

ᵀ
.

(22)

A.2.2 L hidden layers condition

And, we consider the neural network with L hidden layers,

df = tr{daᵀdσ(W [L]x[L−1])}

= tr{(a� σ
′
(W [L]x[L−1]))ᵀdW [L]σ(W [L−1]x[L−2])}

= tr{(W [L]ᵀΛL)ᵀσ
′
(W [L−1]x[L−2])� dW [L−1]σ(W [L−2]x[L−3])}

= tr{((W [L]ᵀΛL)� σ
′
(W [L−1]x[L−2]))ᵀW [L−1]dσ(W [L−2]x[L−3])}

= (W [L−1]ᵀΛL−1)ᵀdσ(W [L−2]x[L−3])

= . . .

= tr{Λᵀ
kdW [k]x[k−1]}

= tr{(Λkx[k−1]ᵀ)ᵀdW [k]},

(23)
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where Λl , (W [l+1]ᵀΛl+1) � σ
′
(W [l]x[l−1]) for l = k, k + 1 . . . L − 1 and ΛL , a �

σ
′
(W [L]x[L−1]).

Hence, we get,
df

dW [k]
= Λkx

[k−1]ᵀ. (24)

Through the chain rule, we can get the evolution equation ofW [k],

dW [k]

dt
= −dRs(θ)

dW [k]

= − 1

n

n∑
i=1

(f(θ,xi)− yi)
df

dW [k]

= − 1

n

n∑
i=1

(f(θ,xi)− yi)Λkx[k−1]
i

ᵀ
.

(25)

Through a� σ′(Wx) = diag{σ′(Wx)}a,

Finally, the dynamic system can be obtained:

ȧ =
da

dt
= − 1

n

n∑
i=1

x
[L]
i (f(θ,xi)− yi) ,

Ẇ [L] =
dW [L]

dt
= − 1

n

n∑
i=1

diag{σ′(W [L]x
[L−1]
i )}ax[L−1]

i

ᵀ
(f(θ,xi)− yi) ,

Ẇ [k] =
dW [k]

dt
= − 1

n

n∑
i=1

diag{σ′(W [k]x
[k−1]
i )}E[k+1:L]ax

[k−1]
i

ᵀ
(f(θ,xi)− yi) ∀i ∈ [1 : L− 1],

(26)

where we use El(x) = W [l]ᵀ diag{σ′(W [l]x[l−1])}. And E[q:p] = EqEq+1...Ep.

Let rk,j = ‖W [k]
j ‖2. We have

d

dt
|rk,j |2 =

d

dt
‖W [k]

j ‖
2. (27)

Then we obtain

ṙk,jrk,j = Ẇ
[k]
j ·W

[k]
j . (28)

Finally, we get

ṙk,j =
drk,j

dt
= Ẇ

[k]
j ·W

[k]
j /rk,j

= Ẇ
[k]
j · uk,j ,

(29)

where uk,j =
W

[k]
j

rk,j
is a unit vector. Then we have,

u̇k,j =
duk,j

dt
=

d

dt

(
W

[k]
j

rk,j

)

=
Ẇ

[k]
j rk,j −W [k]

j ṙk,j

r2
k,j

=
Ẇ

[k]
j rk,j −W [k]

j (Ẇ
[k]
j · uk,j)

r2
k,j

=
Ẇ

[k]
j − uk,j(Ẇ

[k]
j · uk,j)

rk,j
.

(30)
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To conclude, the quantities we concern are summarized as follows,



ȧ = − 1

n

n∑
i=1

x
[L]
i (f(θ,xi)− yi) (31)

Ẇ [L] = − 1

n

n∑
i=1

diag{σ′(W [L]x
[L−1]
i )}ax[L−1]

i

ᵀ
(f(θ,xi)− yi) , (32)

Ẇ [k] = − 1

n

n∑
i=1

diag{σ′(W [k]x
[k−1]
i )}E[k+1:L]ax

[k−1]
i

ᵀ
(f(θ,xi)− yi) ∀k ∈ [1 : L− 1] (33)

ṙk,j = Ẇ
[k]
j · uk,j (34)

u̇k,j =
Ẇ

[k]
j − uk,j(Ẇ

[k]
j · uk,j)

rk,j
, (35)

where we use El(x) = W [l]ᵀ diag{σ′(W [l]x[l−1])}. And E[q:p] = EqEq+1...Ep.

A.2.3 Prove for Pw in 5

We calculate Pw
leading order
≈ Qw as following,

Pw≈Qw : = − 1

n

n∑
i=1

eix
[k−1]
i [diag{σ′(W [k]x

[k−1]
i )}(E[k+1:L]a)]j

+ (
1

n

n∑
i=1

eix
[k−1]
i [diag{σ′(W [k]x

[k−1]
i )}(E[k+1:L]a)]j · u)u

= − 1

n

n∑
i=1

eix
[k−1]
i [diag{ σ

(p)(0)

(p− 1)!
� (W [k]x

[k−1]
i )p−1}(E[k+1:L]a)]j

+ (
1

n

n∑
i=1

eix
[k−1]
i [diag{ σ

(p)(0)

(p− 1)!
� (W [k]x

[k−1]
i )p−1}(E[k+1:L]a)]j · u)u

= − 1

n

n∑
i=1

eix
[k−1]
i [diag{(W [k]x

[k−1]
i )p−1}diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a)]j

+ (
1

n

n∑
i=1

eix
[k−1]
i [diag{(W [k]x

[k−1]
i )p−1} diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a)]j · u)u

= − 1

n

n∑
i=1

eix
[k−1]
i [diag{(W [k]x

[k−1]
i )p−1}]j diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a)

+ (
1

n

n∑
i=1

eix
[k−1]
i [diag{(W [k]x

[k−1]
i )p−1}]j diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a) · u)u

= −(
1

n

n∑
i=1

eix
[k−1]
i (W

[k]
j x

[k−1]
i )p−1)[diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a)]j

+ ((
1

n

n∑
i=1

eix
[k−1]
i (W

[k]
j x

[k−1]
i )p−1)[diag{ σ

(p)(0)

(p− 1)!
}(E[k+1:L]a)]j · u)u,

(36)
where (·)p−1 and σp(·) operate on component here.
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A.3 The Verification of the initial stage

We put the loss of the experiments in the main text here to show that they are indeed in the initial
stage of training by the definition.

As is shown in Fig.7 and Fig.8, at the steps demonstrated in the article, loss satisfies the definition of
the initial stage, so we consider that they are in the initial stage of training.

Learning rate is not a sensitive to the appearance of condensation. However, a small learning rate
could enable us to observe the condensation process in the initial stage under a gradient flow training,
more clearly. For example, when the learning rate is relatively small, the initial stage of training may
be relatively long, while when the learning rate is relatively large, the initial stage of training may be
relatively small.

We empirically find that to ensure the training process follows a gradient follow, where the loss
decays monotonically, we have to select a smaller learning rate for large multiplicity p. Therefore, it
looks like we have a longer training in our experiments with large p. Note that for a small learning
rate in the experiments of small p, we can observe similar phenomena.

In all subsequent experiments in the Appendix, we will no longer show the loss graph of each
experiment one by one, but we make sure that they are indeed in the initial stage of training.

(a) Fig.2(a) Step 20 (b) Fig.2(b) Step 30 (c) Fig.2(c) Step 30 (d) Fig.2(d) Step 61

(e) Fig.3(a) Step 100 (f) Fig.3(b) Step 100 (g) Fig.3(c) Step 100 (h) Fig.3(d) Step 100

(i) Fig.3(e) Step 100 (j) Fig.4 Step 900 to 1400

Figure 7: Losses from Fig. 2 to Fig.4. The original figures and the numbers of steps corresponding to
each sub-picture are written in the sub-captions.
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(a) Fig.5(a) Step 1000 (b) Fig.5(b) Step 1000 (c) Fig.5(c) Step 1000 (d) Fig.5(d) Step 1000

(e) Fig.6(a) Step 200 (f) Fig.6(b) Step 200 (g) Fig.6(c) Step 200 (h) Fig.6(d) Step 200

Figure 8: Losses from Fig. 5 to Fig.6. The original figures and the numbers of steps corresponding to
each sub-picture are written in the sub-captions.

18



A.4 Performance of tanh activation function in condensed regime

For practical networks, such as resnet18-like (He et al., 2016) in learning CIFAR10, as shown in
Fig. 9 and Table 1, we find that the performance of networks with initialization in the condensed
regime is vary similar to the common initialization methods. For both initialization methods, the
test accuracy is about 86.5% to 88.5%, where the highest test accuracy and lowest test accuracy for
common methods are 88.07% and 86.73%, respectively, while the highest one and lowest one for
condensed methods are 88.26% and 86.88%, respectively. This implies that performance of common
and condensed initialization is similar.

(a) test accuracy

Figure 9: The test accuracy of Resnet18-like networks with different initialization methods. Each
network consists of the convolution part of resnet18 and fully-connected (FC) layers with size 1024-
1024-10 and softmax. The convolution part is equipped with ReLU activation and initialized by
Glorot normal distribution (Glorot and Bengio, 2010). For FC layers, the activation is tanh (x) and
they are initialized by three common methods (red) and three condensed ones (green) as indicated in
Table 1. The learning rate is 10−3 for epoch 1-60 and 10−4 for epoch 61-100. Adam optimizer with
cross-entropy loss and batch size 128 are used for all experiments.

Table 1: Comparison of test accuracy of resnet18 in learning CIFAR10 with common (Glorot and
Bengio, 2010) and condensed Gaussian initializations. m̄ = (min +mout)/2. min: in-layer width.
mout: out-layer width. Each line is a trial.

common condensed

Glorot_uniform Glorot_normal N(0, 1
m̄ ) N(0, 1

m4
out

) N(0, 1
m3

out
) N(0, ( 1

m̄ )2)

Test 1 0.8747 0.8759 0.8807 0.8749 0.8744 0.8765
Test 2 0.8715 0.8673 0.8733 0.8763 0.8799 0.8826
Test 3 0.8772 0.8794 0.8788 0.8688 0.8780 0.8771
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A.5 multi-layer experimental

The condensation of the six layer without residual connections is shown in 10, whose activation
functions for hidden layer 1 to hidden layer 5 are x2 tanh(x), x tanh(x), sigmoid(x), tanh(x) and
softplus(x), respectively.

The condensation of the three layer without residual connections is shown in 11, whose activation
functions are same for each layer indicated by the corresponding sub-captions.

The condensation of the five layer without residual connections is shown in 12, whose activation
functions are same for each layer indicated by the corresponding sub-captions.

The condensation of the five layer with residual connections is shown in 13, whose activation functions
are same for each layer indicated by the corresponding sub-captions.

(a) layer 1 (b) layer 2 (c) layer 3 (d) layer 4 (e) layer 5

Figure 10: Condensation of six-layer NNs without residual connections. The activation functions for
hidden layer 1 to hidden layer 5 are x2 tanh(x), x tanh(x), sigmoid(x), tanh(x) and softplus(x),
respectively.The numbers of steps selected in the sub-pictures are epoch 6800, epoch 6800, epoch
6800, epoch 6800 and epoch 6300, respectively, while the NN is only trained once. The color
indicates D(u, v) of two hidden neurons’ input weights, whose indexes are indicated by the abscissa
and the ordinate, respectively. The training data is 80 points sampled from a 3-dimensional function∑3
k=1 4 sin(12xk + 1), where each xk is uniformly sampled from [−4, 2]. n = 80, d = 3, m = 18,

dout = 1, var = 0.0082, lr = 5× 10−5.

(a) tanh(x) (b) x tanh(x) (c) x2 tanh(x) (d) ReLU(x) (e) sigmoid(x) (f) softplus(x)

(g) tanh(x) (h) x tanh(x) (i) x2 tanh(x) (j) ReLU(x) (k) sigmoid(x) (l) softplus(x)

Figure 11: Three-layer NN at epoch 700. (a-f) are for the input weights of the first hidden layer and
(g-l) are for the input weights of the second hidden layer. The color indicates D(u, v) of two hidden
neurons’ input weights, whose indexes are indicated by the abscissa and the ordinate, respectively.
The training data is 80 points sampled from a 5-dimensional function

∑5
k=1 3 sin(8xk + 1), where

each xk is uniformly sampled from [−4, 2]. n = 80, d = 5, m = 50, dout = 1, var = 0.0052.
lr = 10−4, 2×10−5, 1.4×10−5 for (a-d), (e) and (f), respectively. For (d) and (j), we discard hidden
neurons, whose L2-norm of its input weight is smaller than 0.1.
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(a) tanh(x) (b) tanh(x) (c) tanh(x) (d) tanh(x)

(e) x tanh(x) (f) x tanh(x) (g) x tanh(x) (h) x tanh(x)

(i) x2 tanh(x) (j) x2 tanh(x) (k) x2 tanh(x) (l) x2 tanh(x)

(m) sigmoid(x) (n) sigmoid(x) (o) sigmoid(x) (p) sigmoid(x)

(q) softplus(x) (r) softplus(x) (s) softplus(x) (t) softplus(x)

Figure 12: Five-layer NN. The first to fourth columns of each row are for the input weights of
neurons from the first to the fourth hidden layers, respectively. The color indicates D(u, v) of two
hidden neurons’ input weights, whose indexes are indicated by the abscissa and the ordinate, respec-
tively. The training data is 80 points sampled from a 5-dimensional function

∑3
k=1 3 sin(10xk + 1),

where each xk is uniformly sampled from [−4, 2]. n = 80, d = 5, m = 18, dout = 1,
var = 0.0082. lr = 1.5 × 10−5, 1.5 × 10−5, 1.5 × 10−5, 1.5 × 10−5, 1.5 × 10−6 and
epoch is 10000, 10000, 26000, 10000, 20000 for tanh(x), xtanh(x), x2tanh(x), sigmoid(x),
softplus(x), respectively.
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(a) tanh(x) (b) tanh(x) (c) tanh(x) (d) tanh(x)

(e) x tanh(x) (f) x tanh(x) (g) x tanh(x) (h) x tanh(x)

(i) x2 tanh(x) (j) x2 tanh(x) (k) x2 tanh(x) (l) x2 tanh(x)

(m) sigmoid(x) (n) sigmoid(x) (o) sigmoid(x) (p) sigmoid(x)

(q) softplus(x) (r) softplus(x) (s) softplus(x) (t) softplus(x)

Figure 13: Five-layer NN. The first to fourth columns of each row are for the input weights of neurons
from the first to the fourth hidden layers, respectively. The color indicates D(u, v) of two hidden
neurons’ input weights, whose indexes are indicated by the abscissa and the ordinate, respectively.
The training data is 80 points sampled from a 5-dimensional function

∑3
k=1 3 sin(10xk + 1), where

each xk is uniformly sampled from [−4, 2]. n = 80, d = 5, m = 18, dout = 1, var = 0.0082.
lr = 1×10−4, 1×10−4, 1×10−4, 5×10−5, 5×10−5 and epoch is 400, 400, 400, 3000, 360, 400
for tanh(x), xtanh(x), x2tanh(x), x2tanh(x), sigmoid(x), softplus(x), respectively.
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A.6 Several steps during the evolution of condensation at the initial stage

In the article, we only give the results of the last step of each condense, while the details of the
evolution of condensation are lacking, which may provide a better understanding. Therefore, we
show these details in Fig. 14, Fig. 15, Fig. 16 and Fig. 17, which also further illustrate the rationality
of the experimental results and facilitate the understanding of the evolution of condensation in the
initial stage.

(a) Step 1 (b) Step 5 (c) Step 7 (d) Step 10 (e) Step 20

(f) Step 1 (g) Step 4 (h) Step 8 (i) Step 15 (j) Step 30

(k) Step 1 (l) Step 4 (m) Step 8 (n) Step 15 (o) Step 30

(p) Step 30 (q) Step 51 (r) Step 54 (s) Step 58 (t) Step 61

Figure 14: Evolution of condensation of Fig. 2(a), Fig. 2(b), Fig. 2(c), and Fig. 2(d). The evolution
from the first row to the fourth row are corresponding to the Fig. 2(a), Fig. 2(b), Fig. 2(c), and Fig.
2(d). The numbers of evolutionary steps are shown in the sub-captions, where sub-figures in the last
row are the epochs in the article.
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(a) Step 5 (b) Step 10 (c) Step 15 (d) Step 50 (e) Step 100

(f) Step 5 (g) Step 10 (h) Step 15 (i) Step 50 (j) Step 100

(k) Step 10 (l) Step 20 (m) Step 40 (n) Step 60 (o) Step 100

(p) Step 10 (q) Step 20 (r) Step 40 (s) Step 60 (t) Step 100

(u) Step 10 (v) Step 20 (w) Step 40 (x) Step 60 (y) Step 100

Figure 15: Evolution of condensation from Fig. 3(a) to 3(e). The evolution from the first row to the
fifth row are corresponding to the Fig. 3(a), Fig. 3(b), Fig. 3(c), Fig. 3(d), Fig. 3(e). The numbers of
evolutionary steps are shown in the sub-captions, where sub-figures in the last row are the epochs in
the article.
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(a) Step 200 (b) Step 400 (c) Step 600 (d) Step 800 (e) Step 1000

(f) Step 200 (g) Step 400 (h) Step 600 (i) Step 800 (j) Step 900

(k) Step 100 (l) Step 200 (m) Step 600 (n) Step 800 (o) Step 900

(p) Step 300 (q) Step 600 (r) Step 800 (s) Step 1000 (t) Step 1400

(u) Step 100 (v) Step 500 (w) Step 900 (x) Step 1000 (y) Step 1400

Figure 16: Evolution of condensation from Fig. 4(a) to 4(e). The evolution from the first row to the
fifth row are corresponding to the Fig. 4(a), Fig. 4(b), Fig. 4(c), Fig. 4(d), Fig. 4(e). The numbers of
evolutionary steps are shown in the sub-captions, where sub-figures in the last row are the epochs in
the article.
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(a) Step 40 (b) Step 80 (c) Step 120 (d) Step 160 (e) Step 200

(f) Step 40 (g) Step 80 (h) Step 120 (i) Step 160 (j) Step 200

(k) Step 40 (l) Step 80 (m) Step 120 (n) Step 160 (o) Step 200

Figure 17: Evolution of condensation from Fig. 6(a) to 6(c). The evolution from the first row to the
fifth row are corresponding to the Fig. 6(a), Fig. 6(b), and Fig. 6(c). The numbers of evolutionary
steps are shown in the sub-captions, where sub-figures in the last row are the epochs in the article.
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A.7 The influence of training data on condensation

We also find that when the training data is less oscillated, the NN may condense at fewer directions.
For example, as shown in Fig. 18(a), compared with the high frequency function in Fig. 3, we only
change the target function to be a lower-frequency function, i.e.,

∑5
k=1 3.5 sin(2xk + 1). In this case,

the NN with x2 tanh(x) only condenses at three directions, in which two are opposite. For MNIST
data in Fig. 18(b), we find that, the NN with x2 tanh(x) condenses at one line, which may suggest
that the function for fitting MNIST dataset is a low-frequency function. For CIFAR100 data in Fig.
18(c), we find that input weights of the first FC layer with x tanh(x) condense at only one line, which
implies that features extracted by the convolution part of the NN may own low complexity.

These experiments does not contradict to our results, which claim that the maximal number of
condensed orientations in the initial training is twice the multiplicity of the activation function used
in general NNs.

For CIFAR100 dataset, we use Resnet18-like neural network, which has been described in Fig.
2. Besides, the input dimension is d = 32 ∗ 32 ∗ 3, the output dimension is dout = 100, and all
parameters are initialized by a Gaussian distribution N(0, var). The total data size is n. The training
method is Adam with batch size 128, learning rate lr and cross-entropy loss.

For MNIST dataset, we use fully-connected neural network with size, d-m-· · · -m-dout. The input
dimension is d = 784, and the output dimension is dout = 10. The number of hidden neurons m is
specified in Fig. 18. All parameters are initialized by a Gaussian distribution N(0, var). The total
data size is n. The training method is Adam with full batch, learning rate lr and MSE loss.

(a)
∑5

k=1 3.5 sin(2xk + 1) (b) MNIST (c) CIFAR100

Figure 18: Condensation of low-frequency functions with two-layer NNs in (a,b) and condensation
of the first FC layer of the Resnet18-like network on CIFAR100 in (c). The color indicates D(u, v)
of two hidden neurons’ input weights, whose indexes are indicated by the abscissa and the ordinate.
For (a,b), two-layer NN at epoch: 100 with activation function: x2 tanh(x). For (a), we discard
about 15% of hidden neurons, in which the L2-norm of each input weight is smaller than 0.04, while
remaining those bigger than 0.4. The mean magnitude here for each parameter is (0.42/785)0.5
∼0.01, which should also be quite small. All settings in (a) are the same as Fig. 3, except for the
lower frequency target function. Parameters for (b) are n = 60000, d = 784, m = 30, dout = 10,
var = 0.0012. lr = 5× 10−5. The structure and parameters of the Resnet18-like neural network for
(c) is the same as Fig. 2, except for the data set CIFAR100 and learning rate lr = 1× 10−6.
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