
Limit Analysis for Symbolic Multi-step
Reasoning Tasks with Information Propagation

Rules Based on Transformers

Qin Tian2, †, Yuhan Chen3, †, Zhiwei Wang1,2, †, Zhi-Qin John Xu1,2, ∗

1Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong
University

2School of Mathematical Sciences, Shanghai Jiao Tong University
3School of Mathematics and Statistics, Wuhan University

†These authors contributed equally as co-first authors.
∗Corresponding author: xuzhiqin@sjtu.edu.cn

Abstract

Transformers are able to perform reasoning tasks, however the intrinsic mech-
anism remains widely open. In this paper we propose a set of information propaga-
tion rules based on Transformers and utilize symbolic reasoning tasks to theoreti-
cally analyze the limit reasoning steps. We show that the limit number of reasoning
steps is between O(3L−1) and O(2L−1) for a model with L attention layers in a
single-pass.

1 Introduction
The transformer architecture introduced by [Vaswani et al., 2017] has demonstrated
capabilities across a wide range of tasks [Liu et al., 2018, Devlin et al., 2019, Rad-
ford et al., 2019, Touvron et al., 2023, OpenAI, 2023], showing particularly significant
progress in logical reasoning. These models can not only solve complex mathematical
problems Davies et al. [2021] but have also reached performance levels comparable
to top human contestants in the International Mathematical Olympiad (IMO) [Trinh
et al., 2024]. The reasoning capabilities of large language models are fundamentally
shaped by the thinking strategies they employ. Widely adopted approaches include
Chain-of-Thought (CoT) [Wei et al., 2022], Tree-of-Thought (ToT) [Yao et al., 2023],
and Diagram-of-Thought (DoT) [Zhang et al., 2024a]. While these strategies substan-
tially improve multi-step logical reasoning accuracy by prompting models to generate
explicit intermediate reasoning steps, they often exhibit an over-thinking phenomenon
that consumes excessive computational resources and increases response time. This
inefficiency highlights a critical question: what is the intrinsic single-pass reasoning

1

ar
X

iv
:2

50
9.

23
17

8v
1

 [
cs

.A
I]

 2
7

Se
p

20
25

mailto:xuzhiqin@sjtu.edu.cn
https://arxiv.org/abs/2509.23178v1

capacity of these models? Specifically, how many reasoning steps can a model effec-
tively execute without requiring iterative prompting or external scaffolding?

Based on the Transformer and the information propagation rules, we utilize a com-
mon symbolic multi-steps reasoning task to show that the limit of reasoning steps in
single-pass of an L-layer Transformer is between O(3L−1) and O(2L−1). The key in-
gredient is that, i) in one layer, tokens parallelly perform reasoning; ii) each position
can store information of multiple tokens in different sub-linear space.

Building on established Transformer architectures and information propagation
mechanisms from prior research, we employ symbolic multi-step reasoning tasks to
investigate the theoretical limits of reasoning depth achievable in a single forward pass
through an L-layer Transformer. Our analysis demonstrates that the maximum number
of reasoning steps is between O(3L−1) and O(2L−1). This result stems from two key
architectural properties: (i) tokens execute reasoning operations in parallel within each
layer, and (ii) each embedding in a hidden layer can encode information from multiple
tokens across distinct sublinear spaces. We also perform experiments to support our
analysis. For 3-layer Transformers, we find that it requires large hidden dimensions
to execute parallel reasoning. The maximum reasoning steps have lower and upper
bounds.

2 Transformer and Reasoning Mechanism

2.1 Transformer Architecture
We investigate a decoder-only Transformer with L-layer attention blocks. For integer
n, given any sequence (xi)1⩽i⩽n, we denote its one-hot encoding 1 as X in ∈ Rn×d

with d as the dictionary size.
The model first applies an embedding layer including both token embedding and

positional encoding to obtain the input representation as X(0) = Xemb + Xpos ∈
Rn×dm . Moreover, we denote the set of word embeddings of each word in the dictio-
nary as WE . We shall use the single-head attention in each layer which is computed as
follows:

A(l)(X(l)) = SoftMax

(
mask(X(l)W q(l)W k(l),TX(l),T)√

dk

)
,

Xqkv(l) = A(l)(X(l))X(l)W v(l)W o(l),

where 0 ⩽ l ⩽ L and σ̃ is the softmax operator. For simplicity of expression, we will
abbreviate W q(l)W k(l),T as W qk(l) and W v(l)W o(l),T as W vo(l) in the following
text. Also, we ignore the normalization coefficient

√
dk in later sections for notational

simplicity. The output of the (l + 1)-th layer is obtained as:

Xao(l) = X(l) +Xqkv(l), X(l+1) = LayerNorm(f (l)(Xao(l)) +Xao(l)),

1One-hot encoding is a technique that represents categorical data as binary vectors, where only one bit is
set to 1 others are set to 0.

2

where f (l)(·) represents the feedforward neural network of the (l + 1)-th layer. The
final output (in the form of token indices within the vocabulary) is obtained as:

Y = SoftMax(X(L)
n W p) ∈ Rd.

2.2 Induction Reasoning Mechanism
Based on numerous works on In-Context Learning, Induction Heads [Brown et al.,
2020, Garg et al., 2022, Bietti et al., 2024, Nichani et al., 2024], and recent studies on
multi-step reasoning [Wang et al., 2025a, Yu et al., 2025], the reasoning capability of
Transformers can be largely attributed to a mechanism called the Buffer Mechanism for
storing diverse information, together with adjacent position matching and same token
matching for achieving information matching and transmission.

Buffer Mechanism The Buffer Mechanism is a crucial way for Transformers to
store multiple pieces of information [Wang et al., 2025a]. Specifically, the interac-
tion of information among tokens in a Transformer occurs in the attention module.
Figure 1(a) illustrates the information flow of a 3-layer model performing 2-step rea-
soning, i.e., given a sentence of the form “. . .[a][b]. . .[b][c]. . .[a]”, the model
is required to output [c]. The dashed lines denote residual connections, while the
solid lines denote information propagation induced by the attention mechanism. When
a token (e.g., [b]) attends to a previous token (e.g., [a]), its next-layer state is not
simply [a]+[b], but rather [a]W vo + [b]. In other words, the Transformer stores
the two pieces of information into subspaces spanned by different matrices through a
linear transformation.

Adjacent Position Matching Similar to humans, language models rely heavily on
the immediately preceding word when predicting the next word [Barbero et al., 2024].
That is, the model can leverage positional encodings to establish connections between
adjacent tokens. In fact, constructing such an attention weight matrix is not difficult.
Assuming the positional encodings approximately satisfy pT

i pi = 1,pT
i pj = 0, i ̸= j,

it suffices to construct:

W qk =

[lseq/2]∑
i=1

p2ip
T
2i−1, (1)

(x2i + p2i)W
qk(x2i−1 + p2i−1)

T ≈ 1, (2)

Clearly, by this method, we can construct attention between any adjacent tokens of
fixed length. However, due to the inherent diversity of language tasks, only the atten-
tion between the most adjacent pair is the most salient. We refer to this mechanism as
adjacent position matching.

Same Token Matching Same token matching is the most essential mechanism
within induction heads. Its existence grants Transformers strong out-of-distribution
generalization ability. As shown in the Figure 1(a), because both nodes in the first
layer contain the same information [a], they can attend to each other via the same
token matching mechanism. Specifically, it suffices that the weight matrices satisfy
W qk(1)W vo(0),T = I , in which case

q([a])k([a]W vo(0) + [b])T ≈ [a]W qk(1)W vo(0),T[a]T = [a][a]T ≈ 1,
(3)

3

That is, the final token node will allocate nearly all of its attention to the previous node
containing the same information [a], thereby transmitting [b] to the final node in
the next layer. In this way, a single-step reasoning is achieved. Multi-step reasoning
follows the same principle.

Figure 1: Illustration of linear reasoning and parallel reasoning.

2.3 Parallel Reasoning
However, we note that the above-described mode, where each layer performs only one
step of reasoning, is far from the upper limit of the Transformer model. As shown in
Figure 1(b), adjacent position matching and same token matching can occur multiple
times within a single layer, thereby enabling even shallow Transformer models to per-
form multi-step reasoning. We refer to this phenomenon as parallel reasoning. The
central question considered in this paper is: given only adjacent position matching and
same token matching, what are the upper and lower bounds of the parallel reasoning
step that a transformer with L layers attention blocks can perform?

3 Informal Theorems
To investigate the above question, we first consider the simplest case in which all rea-
soning relations are arranged sequentially. As shown in Figure 2(a), the information
flow of reasoning in this setting exhibits a clear “binary tree” structure. It then follows
directly that the reasoning steps scale as O(2L−1). In what follows, we will provide
a rigorous proof of this result by mathematical induction. We note that permuting the
order of reasoning pairs within the sequential arrangement does not disrupt the flow
of sequential reasoning. Hence, when logical relations are arranged in sequence, the
reasoning steps of a Transformer constitute the lower bound among all possible cases.

On the other hand, we observe that for a 3-layer model, when the data are arranged
as illustrated in Figure 2(b), the final layer carries the maximum amount of informa-
tion. The data in this case exhibit an evident fractal structure. The advantage of such

4

a configuration is that each local terminal node can simultaneously match two pre-
ceding nodes by leveraging both the maximum and minimum information it carries,
thereby expanding its information content. Consequently, the reasoning steps scale as
O(3L−1). Therefore, we arrive at the following informal conclusion:

Figure 2: Example of lower bound and upper bound of parallel reasoning.

Theorem 3.1 (Informal Corollary 6.4). The maximal number of reasoning steps a
transformer with L layers attention blocks can perform has a lower bound O(2L−1)
and an upper bound O(3L−1).

Next, we will provide a formal statement of the problem and a rigorous proof of
the conclusion.

4 Symbolic Reasoning Task
In this section, we give a brief introduction to the reasoning task and some related
definitions. Moreover, we shall introduce the rules of information propagation.

A reasoning task typically involves a question and an answer to that question, along
with the rule and process to get the answer. For example, given A1 ⊆ A2 and A2 ⊆ A3,
the question is the relation of A1 and A3, and the answer is A1 ⊆ A3. We shall use a
more symbolic way to express reasoning tasks as in the following example in figure 3.

1 2 3 4

Figure 3: Three steps reasoning task. One step reasoning leads to 2, two steps reasoning
leads to 3.

We use a sequence (1, 2, 2, 3, 3, 4) to denote this reasoning task. Indeed, this se-
quence is composed of three bigrams (1, 2), (2, 3), (3, 4), and each bigram represents
one step of reasoning. We call these bigrams reasoning pairs, which we will define
below.

5

Definition 4.1. A reasoning pair is an element in Z2 of the form ai = (a1
i ,a

2
i) where

i ∈ Z, a1
i , a

2
i ∈ Z and a1

i ̸= a2
i .

The set of all reasoning pairs is denoted as A. a1i → a2I represents one step of
reasoning.

It is natural that we shall define the s step reasoning chain as follows.

Definition 4.2. An s step reasoning chain is a finite sequence (ai)1⩽i⩽s with ai ∈ A,
and it shall satisfy the following conditions:

• a2
i = a1

i+1 for 1 ⩽ i ⩽ s− 1;

• For any subsequence (aim)im∈I of (ai)1⩽i⩽s, we have a1
min{I} ̸= a2

max{I} (no
loop), where I is a subset of {1, 2, · · · , s} containing at least two elements.

The first condition ensures that the reasoning chain does not break before the final
step, and the second condition ensures that there is no loop of arbitrary size in the rea-
soning task. For example, the sequence ((1, 2), (2, 3), (3, 1)) and ((1, 2), (3, 4), (4, 5))
are not reasoning chains.

Remark 4.3. For notational simplicity, here and in the sequel, we shall write (ai) for
(ai)i∈I when the index set I is clear from the context.

We shall also consider the case when the reasoning chain is of infinite length.

Definition 4.4. A sequence (ai)i∈Z is called a reasoning chain if it satisfies the fol-
lowing conditions:

• ai ∈ A;

• a2
i = a1

i+1 for i ∈ Z;

• For any subsequence (aim)im∈I of (an), we have a1
min{I} ̸= a2

max{I}, where
I ⊆ Z containing at least two elements.

Note that for any i0, s ∈ Z, we can truncate the reasoning chain (an) as follows

ãk = ai0+k−1, 1 ⩽ k ⩽ s (4)

to get an s step reasoning chain (ãk).
In practice, a sentence may consist of reasoning pairs which are not in order. Due to

the mask condition which is common in the LLM, the order of reasoning pairs may in-
fluence the information propagation. To describe the order of these reasoning pairs and
their relation to the reasoning chain, we need to introduce the concept of permutation.

Definition 4.5. A symmetric group Sym(S) on a countable set S is a group whose
elements are all bijective maps from S to S and whose group operation is that of
function composition.

The elements of a symmetric group are called permutations. And we shall focus on
Sym(Z).

6

Definition 4.6. Given a reasoning chain (am)m∈Z and a permutation σ ∈ Sym(Z),
a sequence (xi)i∈Z is called a reasoning sequence constructed from (am)m∈Z and σ
if it satisfies:

xi = a
2−(i mod 2)

σ(⌊ i+1
2 ⌋) . (5)

Also, (am)m∈Z and σ are called the constructing reasoning sequence and constructing
permutation of (xi), respectively.

When referring to a reasoning sequence (xi), we are actually denoting the tuple
((xi), (am), σ). Moreover, if σ = Id, then the reasoning sequence is called a sorted
reasoning sequence. Note that from the relation (5) we also have

ai = aσ(σ−1(i)) = (x2σ−1(i)−1, x2σ−1(i)), (6)

where σ−1 is the inverse of σ satisfying σ ◦ σ−1 = σ−1 ◦ σ = Id ∈ Sym(Z).

Remark 4.7. In the definition of reasoning sequence we use the permutation to change
the order of reasoning pairs which does not break the relation inside each reasoning
pair. Moreover, no permutation should be applied to the original sequence (xi). For
example, the sequence (1, 2, 2, 3, 3, 4) can be (2, 3, 3, 4, 1, 2) or (3, 4, 2, 3, 1, 2) under
some certain permutations. Both of these sequences are related to the reasoning chain
((1, 2), (2, 3), (3, 4)). However, it cannot be transformed into (1, 3, 3, 4, 2, 3) through
any permutation that acts on reasoning pairs.

· · · , a1, a2, a3, a4, · · ·

· · · ,aσ(1),aσ(2),aσ(3),aσ(4), · · ·

· · · , x1, x2, x3, x4, x5, x6, x7, x8, · · ·

σσ−1

(5)(6)

Figure 4: Relationship between reasoning chain and reasoning sequence.
Similarly, we shall also use a reasoning sequence of finite length.

Definition 4.8. An s step reasoning sequence (xi)1⩽i⩽2s with constructing reasoning
chain (am)1⩽m⩽s and constructing permutation σ is defined as:

xi = a
2−(i mod 2)

σ(⌊ i+1
2 ⌋) , for 1 ⩽ i ⩽ 2s. (7)

Example 4.9. The sequence (xi)i⩾1 = (⌊ i
2⌋)i⩾1 can be seen as a sorted reasoning

sequence with constructing permutation σ = Id and constructing reasoning chain
((0, 1), (1, 2), (2, 3), (3, 4), · · ·).

Example 4.10. The sequence (xi) = (1, 2, 6, 3, 2, 4, 3, 5, 4, 6) with constructing rea-
soning chain (am) = ((1, 2), (2, 4), (4, 6), (6, 3), (3, 5)) and constructing permutation
σ satisfying σ(1) = 1, σ(2) = 4, σ(3) = 2, σ(4) = 5, σ(5) = 3. In this example,

a1 = (1, 2) = (x1, x2), a2 = (2, 4) = (x5, x6), a3 = (4, 6) = (x9, x10).

7

1 2 4 6 3 5

Figure 5: Reasoning task represents by (xi) in example 4.10.

When considering a finite step reasoning sequence, the concept of reasoning start,
which indicates where the reasoning task should begin, is also needed. More specif-
ically, we consider an s step reasoning sequence (xi)1⩽i⩽2s with constructing rea-
soning chain (aam)1⩽m⩽s and constructing permutation σ. Then one more element
x2s+1 is added to the end of the reasoning sequence (xi), and x2s+1 = a1

m0
for some

am0 ∈ (am).

Example 4.11. We set the sequence (xi) = (1, 2, 6, 3, 2, 4, 3, 5, 4, 6, 4) with construct-
ing reasoning chain (am) and constructing permutation σ as in example 4.10. In
addition, the reasoning start is set to be 4. Then one step reasoning result is 6 and two
steps reasoning result is 3.

Next we define nodes which serves as containers of information.

Definition 4.12. A node corresponding to a reasoning sequence (xi) is a set of two
sets. More specifically, for i ∈ N, an lth layer node is defined as N l

i = {V l
i , I

l
i} where

V l
i is called a value set whose elements are integers, and I li ⊆ Z is an index set. Also,

we require that V l
i =

⋃
iα∈Il

i

{xiα}.

We define the information quantity of a node N l
i = {V l

i , I
l
i} as Cl

i = |V l
i |. More-

over, we denote N l as the set of all lth layer nodes.
We denote the information propagation between two nodes as N l+1

i = N l
m ⋆ N l

i

where N l
m ⋆ N l

i := {V l
m ∪ V l+1

i , I lm ∪ I l+1
i }. The case i ̸= m represents the attention

mechanism, more specifically, the node N l
m attends to the node N l

i and the result is
stored in the node N l+1

i . The case i = m represents the residual connection, in which
case N l+1

i = N l
i . Moreover, there may be more than one node transmitting information

to a node N l
i . In this case, we denote the set of all such nodes as N l

I ⊆ N l where I
is some index set. The information propagation process in this case is then defined by
N l+1

i = N l
I ⋆ N l

i := {
⋃

iα∈I V l
iα

∪ V l+1
i ,

⋃
iα∈I I liα ∪ I l+1

i }.

5 Rules of information propagation
We can extract the following rules of information propagation from the behavior of
transformer as follows.

• Rule 0 (Initial setup): The nodes in 0th layer are constructed as N0
i = {{xi}, {i}}.

For l ⩾ 1, the lth layer of nodes are initially constructed as N l
i = {∅, ∅}.

• Rule 1 (Mask Condition): Attention happens only from former nodes to later nodes.
That is, the attention mechanism N l+1

i = N l
m ⋆ N l

i is performed only when m < i.
For the multiple nodes information transmission case, the operation N l+1

i = N l
I ⋆N

l
i

is performed only when iα < i for all iα ∈ I.

8

• Rule 2 (Adjacent position matching): For l = 1, the information in an odd position
node can be transmitted to the subsequent even position node. In this case, the mask
condition is satisfied automatically. More specifically, the nodes in 1st layer are of
the form N1

2i = N0
2i−1 ⋆ N

0
2i after position matching.

• Rule 3 (Same token matching): For l ⩾ 2, a node N l
i is updated as N l

i = N l−1
I ⋆N l−1

i

provided there exists a set N l−1
I ⊆ N l−1 satisfying the mask condition iα < i and

V l−1
iα

∩ V l−1
i ̸= ∅ for all iα ∈ I.

• Rule 4 (Residual Connection): For l ⩾ 1, ∀N l
i ∈ N l, N l

i = {V l−1
i ∪V l

i , I
l−1
i ∪ I li}.

Remark 5.1. With a slight abuse of notation, we still denote the value set and index
set of a node N l

i as V l
i and I li after the information propagation process. For example,

through residual connection N l
i is updated as N l

i = {V l−1
i ∪ V l

i , I
l−1
i ∪ I li}, and we

still denote the sets V l−1
i ∪ V l

i and I l−1
i ∪ I li as V l

i and I li , since we only care about
the result after each layer’s information propagation.

Remark 5.2. It makes no difference whether the residual connection happens before
or after same token matching or position match. The result stored in the next layer
remains unchanged.

Remark 5.3. In the above information propagation rules we require that the adjacent
position matching only happens when l = 1 and the same token matching only happens
when l ⩾ 2. We can also set the same token matching to happen when l = 1 and
adjacent position matching to happen when l ⩾ 2, since the index set I li in fact encodes
the position information. The necessary condition for adjacent position matching to
happen is ∃I lk and I lj s.t. there exist ij ∈ I lj and ik ∈ I lk satisfying min ik, ij mod 2 =

1 and |ij − ik| = 1. It is easy to see that the index set I li in this same token matching
first rules plays the same role as V l

i in above adjacent position matching first rules, and
there will be no essential difference for the result in our main theorems under these two
different rules. For simplicity, we only consider the above adjacent position matching
first rules.

Two concepts of layer arise in this framework: the layer of attention blocks and the
layer of nodes. The lth layer attention block takes (l − 1)th layer of nodes as input
and produces the lth layer of nodes as output. Due to this relation, we use “layer l”
referring to the lth layer of attention blocks and lth layer of nodes interchangeably.

6 Main Theorems
In this section we analyze the information quantity in the process of information prop-
agation according to the above information propagation rules, and our main theorem
follows.

Theorem 6.1. Under the rules of information propagation, given any reasoning se-
quence ((xi)i∈Z, (am)m∈Z, σ), for any given x ∈ {xi}i∈Z, and for any l ∈ Z+ there

9

exists i ∈ Z+ such that x ∈ V l
i , and we have the following bound for T l(x) =

max
i∈Z

{Cl
i | x ∈ V l

i }:

2l−1 + 1 ⩽ T l(x) ⩽ 3l−1 + 1. (8)

The whole proof is based on mathematical induction. Here we only give a sketch
of the proof. The complete proof can be found in the appendix A.

Given a reasoning sequence ((xi), (am), σ), when considering the lower bound, by
Rule 2 the value sets of nodes in layer 1 contain only one reasoning pair except the case
where only residual connection happens. Suppose that j < i and the node N1

i contains
a1
mi

,a2
mi

as value set, or simply we say N1
i contains ami , and N1

j contains amj . Two
cases may happen, ni+1 = nj and a2

mi
= a1

mj
or nj +1 = ni and a2

mj
= a1

mi
. Both

cases will lead to N2
i containing ami and amj by Rule 3. This process is the same for

any other two nodes containing two adjacent reasoning pairs respectively. The process
for layer 3 is analogous to that for layer 2: information contained in two nodes in layer
2 is propagated to one node in layer 3. The whole structure is in fact a binary tree and
hence the bound is powers of 2.

Regarding the upper bound, due to the mask condition (Rule 1), the permutation σ
may affect the information propagation. However, the upper bound is always bounded
by the case when the mask condition is lifted. Therefore, we ignore the mask condition
to find the upper bound. Just like the proof of the lower bound which use two adjacent
reasoning pairs, now we use three adjacent reasoning pairs. Suppose the nodes N1

i ,
N1

j and N1
k contain the reasoning pairs ami

, amj
and amk

respectively and mi + 1 =

mj = mk − 1. Then by Rule 3, at least one of the node N2
j contains ami , amj and

amk
. As for layer 3, there are nodes that contain information propagated from three

nodes like N3
j . The whole structure is a ternary tree and hence the bound is powers of

3.

Theorem 6.2. Under the rules of information propagation (5), for any s step reasoning
sequence ((xi)1⩽i⩽2s, (am)1⩽m⩽s, σ) with reasoning start x2s+1, for any l satisfying
that 1 ⩽ l ⩽ 1 + log2 s, we have the following estimate for Cl

2s+1.

2l−1 ⩽ Cl
2s+1 ⩽ 3l−1. (9)

The proof of this theorem is similar to the proof of Theorem 6.1 with two main
differences. First, we need to take into account the reasoning start which requires
using mathematical induction twice: once on the node of reasoning start and once on
the nodes in the sequence. Second, the reasoning sequence is now finite, and we require
it to be long enough to support the structure of the binary tree and the ternary tree. The
complete proof is included in the Appendix B.

Remark 6.3. In the proof of this theorem, the mask condition was relaxed to obtain
the upper bound. However, we showed in Appendix C that there is a way to construct
a large class of reasoning sequences such that the upper bound is attained under mask
condition. This proves that the upper bound is indeed tight.

Corollary 6.4. For a given transformer with L layers of attention blocks and an input
sequence of length n = 2s + 1, where s ∈ Z+ and 1 ⩽ L ⩽ 1 + log2 s, the maximal

10

number of reasoning steps Sp it can perform satisfies the following bounds:

2L−1 − 1 ⩽ Sp ⩽
3L−1 − 1

2
. (10)

Remark 6.5. Although the upper bound on information quantity as we show in The-
orem 6.2 is 3L−1, this only implies that up to 3L−1 − 1 reasoning steps are involved.
However, since the process does not track information back through the reasoning
chain, only 3L−1−1

2 reasoning steps are effective in the reasoning tasks. A quick ex-
ample is the sequence (0, 1, 1, 2, 1) with reasoning start 1. For l = 2 there are two
reasoning steps in total but only one effective reasoning step 1 → 2.

7 Experiments and Discussions

7.1 Training task
Our task aligns with the reasoning sequence described earlier. Specifically, we begin
with a reasoning sequence denoted as (xi)1≤i≤2s. Subsequently, we introduce x2s+1

as the starting point. The complete sequence (xi)1≤i≤2s+1 serves as the input to the
transformer. The output corresponds to the reasoning result from the starting point with
a fixed reasoning step (an example in Fig. 6).

27 35 68 4521 2768 68

output

35 27

starting point

Figure 6: A two-step reasoning example.

7.2 Experimental results
The detailed hyperparameter settings are provided in the appendix E. Reasoning pairs
in the test set are totally different from the training set in order to prove transformer can
learn reasoning instead of remembering these sequences. In this section, we present key
experimental results. We begin by examining a 3-layer transformer architecture. As
predicted by our theoretical analysis, this model is capable of solving 3-step reasoning
problems with perfect accuracy. Furthermore, we observe that the model dimension
dm in our construction is notably large and a higher hidden dimension aids in storing
more intermediate information. To validate these findings, we investigate whether a
transformer can be trained to achieve exact accuracy on 3-step reasoning tasks and
whether a large dm is indeed necessary. Our experiments confirm that such a model can
be successfully trained, and that a sufficiently large dm is critical for achieving optimal
performance. The relationship between the model dimension dm and test accuracy is
summarized in the table below.

11

Table 1: Relationship between dm and test accuracy

dm 64 128 256 512 1024

Test accuracy (%) 9.6 11.9 72.2 99.6 99.6

As shown in Table 1, test accuracy increases monotonically with dimension dm,
eventually approaching 100%, which confirms that a 3-layer transformer can solve 3-
step reasoning tasks.

We further investigate scenarios where the model exhibits partial or complete fail-
ure. According to the theoretical analysis presented earlier Corollary 6.4, for reasoning
step lengths in the interval [2L−1, 3L−1−1

2], the model can produce correct answers un-
der certain sequence ordering conditions. However, when the number of steps exceeds
3L−1−1

2 , information propagation to the final token becomes insufficient, resulting in
incorrect answers. Since this implies that high accuracy is unattainable in such regimes,
experimental validation remains partial.

We consider a 3-layer Transformer. Given that 23−1 = 4 and 33−1−1
2 = 4, the

model can solve 4-step reasoning tasks when sequence order conditions are satisfied,
but fails for 5-step reasoning. Experimental results under these settings are as follows:

• For 4-step reasoning, the model achieves a test accuracy of 46.1%.

• For 5-step reasoning, the test accuracy drops to 25.1%.

The decrease in accuracy for the 5-step case provides empirical support for theoret-
ical results. We also find that if the reasoning pairs satisfy a proper order, the network
can obtain accurate results for 4-step cases 11 but not for 5-step cases 13. Complete
training curves and additional experiments are provided in the Appendix E.

8 Related Work
In-context learning (ICL) was first introduced by Brown et al. [2020]. This was sub-
sequently followed by numerous studies [Olsson et al., 2022, Garg et al., 2022, Wang
et al., 2022, Müller et al., 2021, Goldowsky-Dill et al., 2023, Bietti et al., 2024, Nichani
et al., 2024, Edelman et al., 2024, Chen et al., 2024, Todd et al., 2023, Chen and Zou,
2024] to investigate the ICL using induction heads, which can be seen as a special case
of one-step reasoning.

Various reasoning tasks were proposed to study the multi-step reasoning such as
recognizing context-free grammars [Zhao et al., 2023], learning sparse functions [Edel-
man et al., 2022], learning compositionality [Hupkes et al., 2020], generalizing out of
distribution when learning Boolean functions [Abbe et al., 2024], matrix digits task
[Webb et al., 2023], SET game tasks [Altabaa et al., 2023], reasoning tasks designed by
anchor function [Zhang et al., 2024c]. Kil et al. [2024], Li et al. [2024a] use Chain-of-
Thought (CoT) reasoning [Wei et al., 2022] to achieve multi-step reasoning via prompt
engineering. Zhang et al. [2023] introduced the beam retrieval framework for multi-hop
QA improving the few-shot QA performance of LLMs. Li et al. [2024b], Yang et al.

12

[2024], Shalev et al. [2024] locate the potential intermediate answers within middle
layers which play a causative role in shaping the final explicit reasoning results. Zhang
et al. [2024b], Yao et al. [2025], Wang et al. [2025a] show that with small initialization,
Transformers in condense regime [Luo et al., 2021, Xu et al., 2025] can learn reasoning
better. Wang et al. [2025b] investigated the k-fold task which is similar to the k-hop
induction head task in Sanford et al. [2024]. Our paper’s difference from Sanford et al.
[2024] is that we consider the transformer with mask and FNN whereas they ignore
mask and FNN, which indicates that our framework operates under assumptions that
align more directly with practical Transformers.

LLM / AI Tool Disclosure. During the preparation of this manuscript, we used
DeepSeek-V3 (July 2024) to assist with language polishing (grammar, wording). All
substantive content, ideas, and core writing remain the authors’ own, and the authors
are fully responsible for any error including those introduced during polishing.

References
Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the

unseen, logic reasoning and degree curriculum. Journal of Machine Learning Re-
search, 25(331):1–58, 2024.

Awni Altabaa, Taylor Webb, Jonathan Cohen, and John Lafferty. Abstractors: Trans-
former modules for symbolic message passing and relational reasoning. arXiv
preprint arXiv, 2304, 2023.

Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and
Petar Veličković. Round and round we go! what makes rotary positional encodings
useful? arXiv preprint arXiv:2410.06205, 2024.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou.
Birth of a transformer: A memory viewpoint. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of
multi-head softmax attention for in-context learning: Emergence, convergence, and
optimality. arXiv preprint arXiv:2402.19442, 2024.

Xingwu Chen and Difan Zou. What can transformer learn with varying depth? case
studies on sequence learning tasks. arXiv preprint arXiv:2404.01601, 2024.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of control, signals and systems, 2(4):303–314, 1989.

13

Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad
Tomašev, Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al.
Advancing mathematics by guiding human intuition with ai. Nature, 600(7887):
70–74, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 conference of the North American chapter of the association for
computational linguistics: human language technologies, volume 1 (long and short
papers), pages 4171–4186, 2019.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases
and variable creation in self-attention mechanisms. In International Conference on
Machine Learning, pages 5793–5831. PMLR, 2022.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis.
The evolution of statistical induction heads: In-context learning markov chains.
arXiv preprint arXiv:2402.11004, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can trans-
formers learn in-context? a case study of simple function classes. Advances in neural
information processing systems, 35:30583–30598, 2022.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localiz-
ing model behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality de-
composed: How do neural networks generalise? Journal of Artificial Intelligence
Research, 67:757–795, 2020.

Jihyung Kil, Farideh Tavazoee, Dongyeop Kang, and Joo-Kyung Kim. Ii-mmr: Identi-
fying and improving multi-modal multi-hop reasoning in visual question answering.
arXiv preprint arXiv:2402.11058, 2024.

Yanyang Li, Shuo Liang, Michael R Lyu, and Liwei Wang. Making long-context lan-
guage models better multi-hop reasoners. arXiv preprint arXiv:2408.03246, 2024a.

Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqi Song, Defu Lian, and Ying Wei.
Understanding and patching compositional reasoning in llms. arXiv preprint
arXiv:2402.14328, 2024b.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz
Kaiser, and Noam Shazeer. Generating wikipedia by summarizing long sequences.
arXiv preprint arXiv:1801.10198, 2018.

Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. Phase diagram for two-layer
relu neural networks at infinite-width limit. Journal of Machine Learning Research,
22(71):1–47, 2021.

14

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank
Hutter. Transformers can do bayesian inference. arXiv preprint arXiv:2112.10510,
2021.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal struc-
ture with gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context
learning and induction heads. arXiv preprint arXiv:2209.11895, 2022.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5):1, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computa-
tion, and logarithmic depth. arXiv preprint arXiv:2402.09268, 2024.

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Par-
allel reasoning processes in multi-hop reasoning. arXiv preprint arXiv:2406.13858,
2024.

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace,
and David Bau. Function vectors in large language models. arXiv preprint
arXiv:2310.15213, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad
geometry without human demonstrations. Nature, 625(7995):476–482, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Stein-
hardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2
small. arXiv preprint arXiv:2211.00593, 2022.

Zhiwei Wang, Yunji Wang, Zhongwang Zhang, Zhangchen Zhou, Hui Jin, Tianyang
Hu, Jiacheng Sun, Zhenguo Li, Yaoyu Zhang, and Zhi-Qin John Xu. Understand-
ing the language model to solve the symbolic multi-step reasoning problem from
the perspective of buffer mechanism, 2025a. URL https://arxiv.org/abs/
2405.15302.

15

https://arxiv.org/abs/2405.15302
https://arxiv.org/abs/2405.15302

Zixuan Wang, Eshaan Nichani, Alberto Bietti, Alex Damian, Daniel Hsu, Jason D. Lee,
and Denny Wu. Learning compositional functions with transformers from easy-to-
hard data, 2025b. URL https://arxiv.org/abs/2505.23683.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in
large language models. Nature Human Behaviour, 7(9):1526–1541, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large lan-
guage models. Advances in neural information processing systems, 35:24824–
24837, 2022.

Zhi-Qin John Xu, Yaoyu Zhang, and Zhangchen Zhou. An overview of condensation
phenomenon in deep learning. arXiv preprint arXiv:2504.09484, 2025.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel.
Do large language models latently perform multi-hop reasoning? arXiv preprint
arXiv:2402.16837, 2024.

Junjie Yao, Zhongwang Zhang, and Zhi-Qin John Xu. An analysis for reasoning bias
of language models with small initialization. Forty-second International Conference
on Machine Learning, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large
language models. Advances in neural information processing systems, 36:11809–
11822, 2023.

Zeping Yu, Yonatan Belinkov, and Sophia Ananiadou. Back attention: Understand-
ing and enhancing multi-hop reasoning in large language models. arXiv preprint
arXiv:2502.10835, 2025.

Jiahao Zhang, Haiyang Zhang, Dongmei Zhang, Yong Liu, and Shen Huang. Beam
retrieval: General end-to-end retrieval for multi-hop question answering. arXiv
preprint arXiv:2308.08973, 2023.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao. On the diagram of thought. arXiv
preprint arXiv:2409.10038, 2024a.

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu.
Initialization is critical to whether transformers fit composite functions by inference
or memorizing. arXiv preprint arXiv:2405.05409, 2024b.

Zhongwang Zhang, Zhiwei Wang, Junjie Yao, Zhangchen Zhou, Xiaolong Li, Zhi-
Qin John Xu, et al. Anchor function: a type of benchmark functions for studying
language models. arXiv preprint arXiv:2401.08309, 2024c.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse
while predicting the masked word?, 2023. URL https://arxiv.org/abs/
2303.08117.

16

https://arxiv.org/abs/2505.23683
https://arxiv.org/abs/2303.08117
https://arxiv.org/abs/2303.08117

A Proof of Theorem 6.1
We first prove the lower bound.

According to Rule 0, the nodes in first layer are constructed as N1
i = {(xi), {i}, {i}}.

According to Rule 2, we have the nodes in second layer are constructed as N1
2i =

{{x2i−1, x2i}, {2i}, {2i− 1, 2i}} for i ∈ Z. Clearly, we have C1
2i = 2.

We use mathematical induction to prove that for k ⩾ 2, for any xj ∈ {xi}i∈Z, there
exists an integer i ∈ Z such that

• xj ∈ V k
i ,

• We denote σ(Iki) to be the set {σ(⌊ im+1
2 ⌋)}im∈Ik

i
, and we have maxσ(Iki) −

σ(⌊ j+1
2 ⌋) ⩾ 2k−1 − 1 which implies that Ck

i ⩾ 2k−1 + 1.

For k = 2, given any xj ∈ (xi), according to Rule 2, we know that xj is contained
in the value set V 1

2⌊ j+1
2 ⌋ of node N1

2⌊ j+1
2 ⌋.

For simplicity, we assume that j is an even number, then V 1
2⌊ j+1

2 ⌋ = V 1
j = {xj−1, xj}

and I1j = {j−1, j}. We now want to find a node N i
2 such that V 1

i ∩V 1
j = {xj}. To do

so, by definition of reasoning sequence and using the relation (5) we know that xj−1

and xj comes from the reasoning pair aσ(j
2)

. By definition of reasoning sequence and
relation (6) we have

a2
σ(j

2)
= a1

σ(j
2)+1

,

aσ(j
2)+1 =

(
x2σ−1(σ(j

2)+1)−1, x2σ−1(σ(j
2)+1)

)
.

(11)

Set i = 2σ−1
(
σ(j2) + 1

)
. It is now clear that the node N1

i have value set V 1
i satisfying

V 1
i ∩ V 1

j = {xj} and index set I1i = {i − 1, i}. By Rule 3, the node N2
max{i,j} have

value set V 2
max{i,j} such that {xj−1, xj , xi+1} ⊆ V 2

max{i,j}. Hence, C2
max{i,j} ⩾ 3 and

σ(j2) + 1− σ(j2) = 1 ⩾ 22−1 − 1.
Now we assume the induction hypotheses hold for 3 ⩽ k ⩽ k0 and consider the

case k = k0 + 1. There exists a node Nk0
m0

such that

xj ∈ V k0
m0

, (12)

maxσ(Ik0
m0

)− σ(
j

2
) ⩾ 2k0−1 − 1, (13)

Ck0
m0

⩾ 2k0−1 + 1. (14)

Set α = maxσ(Ik0
m0

) then using relation (6) we know that a2
α = x2σ−1(α) ∈ V k0

m0
.

Using definition of reasoning sequence and relation (5) we know that

x2σ−1(α+1)−1 = a1
α+1 = a2

α = x2σ−1(α). (15)

Note that σ(⌊ 2σ−1(α+1)−1+1
2 ⌋) = α + 1. And then the induction hypotheses implies

17

that there is a node Nk0
m1

such that

x2σ−1(α+1)−1 ∈ V k0
m1

, (16)

maxσ(Ik0
m1

)− (α+ 1) ⩾ 2k0−1 − 1, (17)

Ck0
m1

⩾ 2k0−1 + 1. (18)

This construction ensures that x2σ−1(α+1)−1 = x2σ−1(α) ∈ V k0
m1

∩ V k0
m0

, then by Rule
3, we know that the node Nk0+1

max{m0,m1} have value set V k0+1
max{m0,m1} and index set

Ik0+1
max{m0,m1} satisfying that

xj ∈ V k0+1
max{m0,m1}, (19)

Ik0
m0

∪ Ik0
m1

⊆ Ik0+1
max{m0,m1}. (20)

Combining (13), (17) and (20) leads to

maxσ(Ik0+1
max{m0,m1})− σ(

j

2
) ⩾ 2k0 − 1,

which implies that Ck0+1
max{m0,m1} ⩾ 2k0+1−1 + 1. This completes the proof for lower

bound.
Next we prove the upper bound.
It is clear that if Rule 1 is removed, the information quantity in each node can

only maintain unchanged or increase. Therefore, we consider the no-mask condition,
without loss of generality, we consider the reasoning sequence to be {xi = ⌊ i

2⌋}i∈N
with constructing permutation σ = Id and constructing reasoning chain (am) = ((m−
1,m)).

We will use mathematical induction to prove that for k ⩾ 2 and m ∈ Z, the value
set of node Nk

2m satisfies V k
2m ⊆ {m − 3k−1+1

2 ,m − 3k−1+1
2 + 1, · · · ,m + 3k−1−1

2 }
and Ck

2m ⩽ 3k−1 + 1.
Since the index set of a node will play no rule in this proof, we will just ignore

them in the expression of a node.
When k = 2, By Rule 2 the nodes N1

i are of the form N1
2i = {{x2i−1, x2i}, {2i}}.

Then by Rule 3 the nodes in layer 3 are of the form N2
2i = {{i−2, i−1, i, i+1}{2i}}.

Therefore, the conclusion holds for k = 2.
Assuming the conclusion holds for k ⩽ k0. When k = k0 + 1, by inductive

hypotheses, there are three nodes Nk0
2m, Nk0

2m1
, Nk0

2m2
with value sets V k0

2m, V k0
2m1

, V k0
2m2

.
We require that

m+
3k0−1 − 1

2
= m1 −

3k0−1 + 1

2
,

m2 +
3k0−1 − 1

2
= m− 3k0−1 + 1

2
.

(21)

Simple calculation shows that

m1 = m+ 3k0−1, m2 = m− 3k0−1. (22)

18

And the three nodes Nk0
2m, Nk0

2(m+3k0−1)
, Nk0

2(m−3k0−1)
have value sets

V k0
2m ⊆ {m− 3k0−1 + 1

2
,m− 3k0−1 + 1

2
+ 1, · · · ,m+

3k0−1 − 1

2
}, (23)

V k0

2(m+3k0−1)
⊆ {m+

3k0−1 − 1

2
,m+

3k0−1 − 1

2
+ 1, · · · ,m+

3k0−1 − 1

2
}, (24)

V k0

2(m−3k0−1)
⊆ {m− 3k0−1 + 1

2
,m− 3k0−1 + 1

2
+ 1, · · · ,m− 3k0−1 + 1

2
}. (25)

Again by Rule 3, we know that the node Nk0+1
2m = Nk0

2(m+3k−2)
⋆ Nk0

2(m−3k−2)
⋆ Nk0

2m

have value set V k0+1
2m ⊆ {m− 3k0+1

2 ,m− 3k0+1
2 +1, · · · ,m+ 3k0−1

2 }, and therefore,
Ck0+1

2m ⩽ 3k0 + 1. This completes the proof.

B Proof of Theorem 6.2
We shall also use the mathematical induction to prove this theorem.

We first assert that for 1 ⩽ l ⩽ 1 + log2 s and for j satisfying 1 ⩽ σ(⌊ j+1
2 ⌋) ⩽

s− 2l−1 + 1 there exists a node N l
k such that⋃

0⩽α⩽2l−1−1

{x2σ−1(σ(⌊ j+1
2 ⌋)+α)−1, x2σ−1(σ(⌊ j+1

2 ⌋)+α)} ⊆ V l
k . (26)

For l = 1, the relation (26) can be verified easily since after position matching the
nodes in N 1 are of the form N1

2m = {{x2m−1, x2m}, {2m}, {2m − 1, 2m}}. And
note that xj ∈ {x2σ−1(σ(⌊ j+1

2 ⌋))−1, x2σ−1(σ(⌊ j+1
2 ⌋))} ⊆ V 1

2⌊ j+1
2 ⌋.

Now we assume that (26) holds for l = l0, then we prove it still holds for l = l0+1.
Given xj ∈ (xi) with 1 ⩽ σ(⌊ j+1

2 ⌋) ⩽ s − 2l0 + 1, it is clear that 1 ⩽ σ(⌊ j+1
2 ⌋) ⩽

s − 2l0−1 + 1. Then by inductive hypotheses we know that there exists a node N l0
k1

such that ⋃
0⩽α⩽2l0−1−1

{x2σ−1(σ(⌊ j+1
2 ⌋)+α)−1, x2σ−1(σ(⌊ j+1

2 ⌋)+α)} ⊆ V l0
k1
. (27)

On the other hand, since 1 ⩽ σ(⌊ j+1
2 ⌋) ⩽ s−2l0+1 we have 1 ⩽ σ(⌊ j+1

2 ⌋)+2l0−1 ⩽

s− 2l0−1 + 1, and again by inductive hypotheses there exists a node N l0
k2

such that

⋃
0⩽α⩽2l0−1−1

{x2σ−1(σ(⌊ j+1
2 ⌋)+2l0−1+α)−1, x2σ−1(σ(⌊ j+1

2 ⌋)+2l0−1+α)} ⊆ V l0
k2
. (28)

Note that by the definition of reasoning sequence we have

x2σ−1(σ(⌊ j+1
2 ⌋)+2l0−1)−1 = x2σ−1(σ(⌊ j+1

2 +⌋)+2l0−1−1).

By Rule 3, there exists a node N l0+1
max{k1,k2} such that⋃

0⩽α⩽2l0−1

{x2σ−1(σ(⌊ j+1
2 ⌋)+α)−1, x2σ−1(σ(⌊ j+1

2 ⌋)+α)} ⊆ V l0
k1

∪ V l0
k2

⊆ V l0+1
max{k1,k2}.

19

This completes the proof of our assertion.
Set the reasoning start as x2s+1 = xj , we then assert that⋃

0⩽α⩽2l−1−2

{x2σ−1(σ(⌊ j+1
2 ⌋)+α)−1, x2σ−1(σ(⌊ j+1

2 ⌋)+α)} ⊆ V l
2s+1. (29)

When l = 2 the assertion (29) can be easily verified. We assume (29) holds for
l = l0 and consider the case l = l0 + 1. By assertion (26), we know there exists N l0

k

such that⋃
0⩽α⩽2l0−1−1

{x2σ−1(σ(⌊ j+1
2 ⌋)+2l0−1−1+α)−1, x2σ−1(σ(⌊ j+1

2 ⌋)+2l0−1−1+α)} ⊆ V l0
k .

(30)
Again, by definition of reasoning sequence we have

x2σ−1(σ(⌊ j+1
2 ⌋)+2l0−1−1)−1 = x2σ−1(σ(⌊ j+1

2 +⌋)+2l0−1−2).

And by Rule 3 we know that⋃
0⩽α⩽2l0−2

{x2σ−1(σ(⌊ j+1
2 ⌋)+α)−1, x2σ−1(σ(⌊ j+1

2 ⌋)+α)} ⊆ V l0
k ∪ V l0

2s+1 ⊆ V l0+1
2s+1 .

This completes the proof of assertion (29), which implies that for l ⩾ 2, Cl
2s+1 ⩾ 2l−1.

For l = 1, it is clear that C2
2s+1 = 1 since only residual connection happens. And

we complete the proof for the lower bound.
The upper bound is proved similarly as in the proof of Theorem 6.1, except we

consider mainly the reasoning start position, which results in one fewer element.

C Examples where the theoretical bounds are achieved
In this section we give some examples related to Theorem 6.2. In fact, both the lower
bound and upper bound can be attained.

Lower bound

We construct a reasoning sequence (1, 2, 2, 3, 3, 4, 4, 5 · · · , 2s−1, 2s, 1). Assume that
1 ⩽ l ⩽ 1 + log2 s, it is clear that Cl

2s+1 ⩾ 2l−1

20

21 2 2s-13 2s 1

1,21 2 2s-12,3 2s-1
2s 1

1,2

Layer 0

Layer 1

Layer 2

Layer l

attention residual

Figure 7: Lower bound example

Upper bound

In this section, we shall use the concept of truncation of a reasoning sequence. This
truncated reasoning sequence contains a finite step reasoning chain and some irrelevant
reasoning pairs which serves as some redundant information as in practice. In fact, we
truncate a reasoning sequence (xi) as follows:

1. Firstly, we truncate the constructing reasoning sequence (am) to be an s step
reasoning chain (ãk) = (ai,ai+1, · · · ,ai+s−1).

2. Secondly, we use the relation (6) to find those elements constructed from this s
step reasoning chain. That is

E = {x2(σ−1(i)−1), x2(σ−1(i)−1)+1, · · · , x2(σ−1(i+s−1)−1), x2(σ−1(i+s−1)−1)+1}.
(31)

3. Thirdly, we set

IE = {2(σ−1(i)− 1), 2(σ−1(i)− 1) + 1, · · · ,
2(σ−1(i+ s− 1)− 1), 2(σ−1(i+ s− 1)− 1) + 1},

(32)

which is the set of all subscripts of elements in E. Moreover, we take the sub-
sequence (x̃i) = (xmin{IE}+i−1) as the truncated reasoning sequence, where
1 ⩽ i ⩽ max{IE} −min{IE}+ 1.

We call this sequence (x̃i) the truncated reasoning sequence containing (ãk).
With this definition of truncation, we provide a method to construct finite step rea-

soning sequences which allows the upper bound in Theorem 6.2 to be attained. This is
achieved in a recursive way.

21

Consider a reasoning sequence (ai)i∈Z. For a given integer i we define

s1(i) = (ai), s2(i) = (ai,ai+2,ai+1),

and
s3(i) = (ai,ai+2,ai+1,ai+6,ai+8,ai+7,ai+3,ai+5,ai+4).

For simplicity, we use the notation

s3(i) = (s2(i), s2(i+ 6), s2(i+ 3))

:= (ai,ai+2,ai+1,ai+6,ai+8,ai+7,ai+3,ai+5,ai+4),

and with this notation s3(i) is still a sequence of reasoning pairs.
For k ⩾ 3 we define

sk(i) = (sk−1(i), sk−1(i+ 2× 3k−2), sk−1(i+ 3k−2)).

Same notation as in s3(i) and all sk(i) are sequences of reasoning pairs.
We now construct our reasoning sequence.
Set r1 = (sl−1(i − 3l−1−1

2), · · · , s3(i − 13), s2(i − 4), s1(i − 1), s1(i), s2(i +

1), s3(i+ 4), · · · , sl−1(i+
3l−2−1

2)), it is clear that there exist σ ∈ Sym(Z) such that
(a

σ(1− 3l−1

2)
, · · · ,aσ(1),aσ(2), · · · ,aσ(3l−1−1

2)
) = r1. By the construction of r1 we

know all the reasoning pairs in r1 forms a finite step reasoning chain (a
i− 3l−1−1

2

, · · ·ai,ai+1, · · · ,ai+ 3l−1−3
2

),
we extend this finite step reasoning chain to an infinite reasoning chain ã by adding
reasoning pairs to both sides. And we take a permutation τ ∈ Sym(Z) satisfying
aτ(im) = aσ(m) where im ∈ I with I = {i

1− 3l−1

2

, · · · , i1, i2, · · · , i 3l−1−3
2

} and
i
1− 3l−1

2

< · · · < i1 < i2 < · · · < i 3l−1−3
2

.

We truncate the reasoning sequence ((xj), ã, τ) to contain the finite reasoning
chain (a

i− 3l−1−1
2

, · · · ,a
i+ 3l−1−3

2

) to get a sequence (x̃j) = (xmin{IE}+j−1)1⩽j⩽max{IE}−min{IE}+1.

Here E and IE are defined as in (31) and (32). This (x̃j) with reasoning start xmax IE+1 =
a1
i is the sequence we want.

Remark C.1. Under the rules of information propagation, the elements in (x̃j) con-
tributing to the node N l

max IE+1 are those come from the reasoning chain (a
i− 3l−1−1

2

, · · · ,a
i+ 3l−1−3

2

).

Hence, the information in N l
max IE+1 will be the same if we consider the reasoning

sequence constructed from (a
i− 3l−1−1

2

, · · · ,a
i+ 3l−1−3

2

) and σ. However, the above
complicated way we construct truncated sequence is still necessary which shows that
there is a large class of reasoning sequence allows the upper bound to be attained.

Proposition C.2. We consider the reasoning sequence (xi) with constructing reason-
ing chain (am) = ((m,m + 1))

1− 3l̃−1−1
2 ⩽m⩽ 3l̃−1−1

2

and constructing permutation σ

22

satisfying that

(aσ(1),aσ(2), · · · ,a
σ(3l̃−1−1

2)
) = (s1(1), s2(2), s3(5), · · · , sl(

3l−1 + 1

2
), · · · sl̃−1(

3l̃−2 + 1

2
)),

(33)

(a
σ(1− 3l̃−1

2)
,a

σ(2− 3l̃−1

2)
, · · · ,aσ(0)) =

(sl̃−1(
3− 3l̃−1

2
), · · · , sl(

3− 3l

2
), · · · s3(−12), s2(−3), s1(0),).

(34)

If the reasoning start is set be to x
2σ(3l̃−1−1

2)+1
= a1

1, then for 1 ⩽ l ⩽ l̃, we have

Cl

2σ(3l̃−1−1
2)+1

= 3l−1.

To prove this proposition we need the following two lemmas.

Lemma C.3. For m ⩾ 1, ∀k ∈ { 3j−2+1
2 }2⩽j⩽l̃, there exists i(m,k) ∈ [1, 3l̃−1 − 1]∩Z

depending on m and k such that the node Nm
i(m,k)

have value set V m
i(m,k)

satisfying the
following property.

{k, k + 1, · · · , k + 3m−1} ⊆ V m
i(m,k)

. (35)

Lemma C.4. For m ⩾ 1, ∀k ∈ { 3−3j−1

2 }2⩽j⩽l̃, there exist i(m,k) ∈ [1− 3l̃−1, 0] ∩ Z
such that the node Nm

i(m,k)
have value set V m

i(m,k)
satisfying the following property.

{k, k + 1, · · · , k + 3m−1} ⊆ V m
i(m,k)

. (36)

Proof of Proposition C.2 . The case l = 1 is trivial and omitted. We use mathematical
induction to prove this proposition. We assert that for l ⩾ 2 the reasoning start node
N l

2σ(3l̃−1−1
2)+1

have value set V l

2σ(3l̃−1−1
2)+1

satisfying

{3− 3l−1

2
,
3− 3l−1

2
+ 1, · · · , 0, 1, 2, · · · , 3

l−1 + 1

2
} ⊆ V l

2σ(3l̃−1−1
2)+1

. (37)

The case l = 2 can be verified easily. We assume that for l = l0 ∈ [2, l̃ − 1] ∩ Z the
node N l0

2σ(3l̃−1−1
2)+1

have value set V l0

2σ(3l̃−1−1
2)+1

satisfying

{3− 3l0−1

2
,
3− 3l0−1

2
+ 1, · · · , 0, 1, 2, · · · , 3

l0−1 + 1

2
} ⊆ V l

2σ(3l̃−1−1
2)+1

. (38)

Now for l = l0 + 1, by Lemma C.3, we know there exists a node N l0

i(l0,
3l0−1+1

2)
such

that

{3
l0−1 + 1

2
, · · · , 3

l0−1 + 1

2
+ 3l0−1} ⊆ V l0

i(l0,
3l0−1+1

2)
.

23

And by Lemma C.4 there exist a node N l0

i(l0,
3−3l0

2)
such that

{3− 3l0

2
, · · · , 3− 3l0

2
+ 3l0−1} ⊆ V l0

i(l0,
3−3l0

2)
.

We then have

V l0

i(l0,
3l0−1+1

2)
∩ V l0

2σ(3l̃−1−1
2)+1

= {3
l0−1 + 1

2
},

V l0

i(l0,
3−3l0

2)
∩ V l0

2σ(3l̃−1−1
2)+1

= {3− 3l0−1

2
},

(39)

and by Rule 3, we know that the node N l0+1

2σ(3l̃−1−1
2)+1

have value set V l0+1

2σ(3l̃−1−1
2)+1

satisfying

{3− 3l0

2
· · · , 0, 1, 2, · · · , 3

l0 + 1

2
} = V l0

i(l0,
3l0−2+1

2)
∪ V l0

2σ(3l̃−1−1
2)+1

∪ V l0

i(l0,
3−3l0−1

2)

⊆ V l0+1

2σ(3l̃−1−1
2)+1

.

(40)
This completes the proof of our assertion. From above assertion we know that

Cl

2σ(3l̃−1−1
2)+1

⩾ 3l−1. Combining the proof of Theorem 6.2, we know that Cl

2σ(3l̃−1−1
2)+1

⩽

3l−1. And therefore Cl

2σ(3l̃−1−1
2)+1

= 3l−1.

Proof of Lemma C.3 . We use mathematical induction to prove this lemma. The case
m = 2 can be verified easily through Rule 2. We assume that for m = m0, ∀k ∈
{ 3l−2+1

2 }2⩽l⩽l̃,
{k, k + 1, · · · , k + 3m0−1} ⊆ V m0

i(m0,k)
. (41)

For m = m0 + 1, by assumption, there exists i(m0, k), i(m0, k + 3m0−1), i(m0, k +
2× 3m0−1) such that

{k, · · · , k + 3m0−1} ⊆ V m0

i(m0,k)
,

{k + 3m0−1, · · · , k + 2× 3m0−1} ⊆ V m0

i(m0,k+3m0−1)
,

{k + 2× 3m0−1, · · · , k + 3m0} ⊆ V m0

i(m0,k+2×3m0−1)
.

(42)

Set i(m0 + 1, k) = max{i(m0, k), i(m0, k+3m0−1), i(m0, k+2×3m0−1)}, by Rule
3 and (42) we know that

{k, · · · , k + 3m0} ⊆ V m0

i(m0,k)
∪ V m0

i(m0,k+3m0−1)
∪ V m0

i(m0,k+2×3m0−1)
⊆ V m0+1

i(m0+1,k),

(43)
which completes the proof.

The proof of Lemma C.4 is analogous to that of Lemma C.3 and is omitted.

24

D Construction of transformer

D.1 Embedding
We assume that dm is large enough. We choose a suitable embedding (which can be
done by choosing a suitable basis of Rdm) such that the non-zero elements of all value
vector Xpos are located in the first n coordinates and all the elements in Xtgt located
at the first n coordinates are zero.

We denote Xtgt = (Xtgt,T
1 ,Xtgt,T

2 , · · · ,Xtgt,T
n)T with each Xtgt

i = (Xtgt
i,1 ,X

tgt
i,2 , · · · ,X

tgt
i,dm

) ∈
Rdm . Similarly, we denote Xpos = (Xpos,T

1 ,Xpos,T
2 , · · · ,Xpos,T

n)T and X(l) =

(X
(l),T
1 ,X

(l),T
2 , · · · ,X(l),T

n)T.
We correspond each element in the set Ẽ to an index i.e., the set Ẽ is of the form

Ẽ = {v1,v2, · · · ,vd}. Moreover, each vi is of the form (0, 0, · · · , 0︸ ︷︷ ︸
n zeros

, 0, · · · , 1, · · · , 0),

and we denote ki the position of 1. Let n ⩽ k1 < k2 < · · · < kd, we require the em-
bedding is chosen such that ki satisfies that

k1 − n ⩾ 2(n+ 1)(3L + 1),

ki − ki−1 ⩾ 2(n+ 1)(3L + 1), for 2 ⩽ i ⩽
n− 1

2
,

dm − kn−1
2

⩾ 2(n+ 1)(3L + 1).

(44)

D.2 Construction of parameters
We set the weight matrices as follows:

W q(l) = I(0 ⩽ l ⩽ L), (45)

W vo(l) = I(1 ⩽ l ⩽ L), W vo(0) = R, (46)

W k(l),T =

−1∑
i=−(n+1)3L

Ri(l ⩾ 1), W k(0) =

n−1
2∑

i=1

p2i−1p
T
2i. (47)

Here pj is the positional encoding and arbitrary two positional encodings are or-
thogonal to each other. Moreover, R ∈ Rdm×dm is defined as R = [Rij], with
Ri+1,i = 1 = R1dm

for 1 ⩽ i ⩽ dm − 1, and all the other elements of R are set
to be 0. In fact,

R =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
.

...
0 0 · · · 1 0

 .

This matrix R is called the left shift matrix. When we apply R to a vector v =
(v1,v2, · · · ,vdm

) then result is vR = (v2, · · · ,vdm−1,vdm
,v1). The notation Ri

25

means that the matrix R act i times, i.e., vRi = vRR · · ·R. Also, the inverse of mR
is called the right shift matrix, and R−1 = RT.

For any given matrix M = [mij], we define the mask operation as

mask(M) =


m

(l)
1,1 −∞ −∞ · · · −∞

m
(l)
2,1 m

(l)
2,2 −∞ · · · −∞

m
(l)
3,1 m

(l)
3,2 m

(l)
3,3 · · · −∞

...
...

...
. . .

...
m

(l)
n,1 m

(l)
n,2 · · · m

(l)
n,n−1 m

(l)
n,n

 . (48)

Furthermore, we denote

A(l) = mask(X(l)W q(l)W k(l),TX(l),T) =


A

(l)
1,1 −∞ −∞ · · · −∞

A
(l)
2,1 A

(l)
2,2 −∞ · · · −∞

A
(l)
3,1 A

(l)
3,2 A

(l)
3,3 · · · −∞

...
...

...
. . .

...
A

(l)
n,1 A

(l)
n,2 · · · A

(l)
n,n−1 A

(l)
n,n

 .

(49)
We shall still use the notation N l

i to denote the ith node in lth layer with slightly
modification: the value set V l

i is now a set V l
i which contains the embedded value as

element.
Given any reasoning chain (au)1⩽i⩽n, after embedding it is of the form

(ãu) = ((ã1
u, ã

2
u))1⩽i⩽n = ((a1

uW
emb,a2

uW
emb))1⩽i⩽n.

We define a sequence (b̃v)1⩽v⩽n+1 as follows:

b̃v = ã1
v, for 1 ⩽ v ⩽ n,

b̃v = ã2
n for v = n+ 1.

(50)

Assume the node N l
i contains the information from (ãi), then its value set V l

i must
contain the elements from a subsequence of b̃v∈[v1,v2]∩Z where v1, v2 depends on i

and l. For simplicity, we set bli,v = b̃v1+v−1 for v ∈ [1, v2 − v1 + 1] ∩ Z. In fact,
v2 − v1 + 1 = Cl

i .
With these notations, we define the FNN as follows

Ll
N (f l

i (X
ao(l)
i) + (X

ao(l)
i)) =

∑
1⩽k⩽Cl

i

bi;kR
i3L−j+k for i ⩾ 2,

Ll
N (f l

i (X
ao(l)
i) + (X

ao(l)
i)) = Xtgt

1 R(n+1)3L for i = 1.

(51)

Here LN stands for LayerNorm and j ∈ [1, n] ∩ Z satisfies bli,j = Xtgt
i .

Remark D.1. Note that this is not an accurate expression, since we can not simply
define the output of a FNN. However, we can show that there exist f (l)

i for each layer

26

such that the output of LN (f l
i (X

ao(l)
i) + (X

ao(l)
i)) differs very little from the right-

hand side of (51). And also the information propagation won’t be affected by this error.
This will be explained in detail in later sections.

By this construction the reasoning information contained in the node N l
i is encoded

by LN (f l
i (·) + (·)).

In order to extract the result after m-step reasoning, we set

W p = R−n3L−m+1QW emb,T, (52)

where Q satisfies Qv1 = v1, ..., Qvd = vd and maps other basis to 0. Note that last
token on the s-th layer is X(L)

n = bn;1R
n3s−j+1++bn;tR

n3s+t−j , and we have

X(L)
n W p = bn;1R

−j−m+2QW emb,T ++ bn;tR
t−j−m+1QW emb,T, (53)

and the output
Y = argmax(σ̃(X(L)

n W p)). (54)

When m+ j − 1 ⩽ t, X(L)
n W p = bn;m+j−1W

emb,T and the above setting yields
the desired reasoning result. However, when m + j − 1 > t, X(L)

n W p = 0 and
therefore we can not get a right reasoning result.

In fact, the sufficiency of transformer depth s relative to the required reasoning
steps m is a key factor in ensuring accurate reasoning result.

We can roughly categorize this relationship into three cases

• Case 1 m ⩽ 2L−1 − 1;

• Case 2 2s−1 ⩽ m ⩽ 3L−1+1
2 ;

• Case 3 m > 3L−1−1
2 .

For the first case, note that t − j + 1 ≥ 2L−1 − 1 and therefore m + j − 1 ≤ t

which means we can get the result. For the third case, since t − j + 1 ≤ 3L−1+1
2 and

consequently m + j − 1 > t, the model can not derive the result. The second case
is more complicated, since we can not derive the relationship of t − j + 1 and t from
the relationship of m and s. Whether the model can derive the reasoning result now
depends on t− j + 1 and t.

D.3 Explanation
First, we explain how the same token matching rule works in this construction. More
specifically, the attention matrices defined above satisfy the following property.

Lemma D.2. For l ⩾ 1, we have

A
(l)
i,j = 0, if j = 1,

A
(l)
i,j = 0, if i ⩾ j ⩾ 2, V l

i ∩ V l
j = ∅,

A
(l)
i,j ⩾ 1, if i ⩾ j ⩾ 2, V l

i ∩ V l
j ̸= ∅.

(55)

27

Proof. Start with given any X(0) = (X
(0)
1 ,X

(0)
2 , · · · ,X(0)

n)T, we denote X(l) =

(X
(l)
1 ,X

(l)
2 , · · · ,X(l)

n) with X
(l)
i =

∑Cl
i

u=1 b
l
i;uR

i3L+u−d
(l)
i , where Cl

i = |V l
i | and

bli;u ∈ Ẽ.

A
(l−1)
i,j = X

(l−1)
i Rq(l−1)Rk(l−1),TX

(l−1),T
j (56)

= (

Cl−1
i∑

u=1

bl−1
i;u Ri3L+u−d

(l−1)
i)(

−1∑
m=−(n+1)3L

Rm)(

Cl−1
j∑

v=1

bl−1
j;v Rj3L+v−d

(l−1)
j)T

(57)

=

Cl−1
i∑

u=1

−1∑
m=−(n+1)3L

Cl−1
j∑

v=1

bl−1
i;u Ri3L+u−d

(l−1)
i −j3L−v+d

(l−1)
j +mbl−1,T

j;v (58)

For any i ⩾ j ⩾ 2 and V l−1
i ∩ V l−1

j = ∅.

Since −(n + 1)3L ⩽ i3L + u − d
(l−1)
i − j3L − v + d

(l−1)
j + m ⩽ (n + 1)3L

and bli;u ̸= blj;v , we have bl−1
i;u Ri3L+u−d

(l−1)
i −j3L−v+d

(l−1)
j +mbl−1,T

j;v = 0. Therefore,

A
(l−1)
i,j = 0.

When i ⩾ j ⩾ 2 and V l−1
i ∩ V l−1

j ̸= ∅,

A
(l−1)
i,j =

Cl−1
i∑

u=1

−1∑
m=−(n+1)3L

Cl−1
j∑

v=1

bl−1
i;u Ri3L+u−d

(l−1)
i −j3L−v+d

(l−1)
j +mbl−1,T

j;v (59)

Since V l−1
i ∩ V l−1

j ̸= ∅, there exists j, v, i, v0 such that bl−1
j;v = bl−1

i;v0
. Moreover,

since 1 ⩽ i3L+u−d
(l−1)
i −j3L−v+d

(l−1)
j +m ⩽ (n+1)3L and there exists j, v, i, v0

such that bl−1
j;v = bl−1

i;v0
, there exists m0 s.t. bl−1

j;v Ri3L+u0−d
(l−1)
i −j3L−v0+d

(l−1)
j +m0b

(l−1),T
j;v0

=

1. This indicates that A(l−1)
i,j ≥ 1

When j = 1,

A
(l−1)
i,1 =

Cl−1
i∑

u=1

−1∑
m=−(n+1)3L

bl−1
i;u Ri3L+u−d

(l−1)
i −(n+1)3L−1+mXtgt,T

1 (60)

Since −2(n+1)3L − 1 ⩽ i3L +u− d
(l−1)
i − (n+1)3L − 1+m ⩽ −1, we know

that A(l−1)
i,1 = 0.

D.4 Information propagation
Next, we explain how the above defined transformer extract reasoning result.

Xao(0) = X(0) +Xqkv(0)

28

When l = 0, for i ⩾ j, using (45), (46), (47) and (49) we have

A
(0)
i,j = X

(0)
i (

n−1
2∑

t=1

p2tp
T
2t−1)X

(0),T
j

=

n−1
2∑

t=1

Xtgt
i p2tp

T
2t−1X

tgt,T
j +

n−1
2∑

t=1

Xpos
i p2tp

T
2t−1X

tgt,T
j +

n−1
2∑

t=1

Xpos
i p2tp

T
2t−1X

pos,T
j

+

n−1
2∑

t=1

Xtgt
i p2tp

T
2t−1X

pos,T
j

(61)
It is clear that

A
(0)
i,j = 1, when i = j + 1 and i mod 2 = 0,

A
(0)
i,j = 0, when i ̸= j + 1 or i mod 2 ̸= 0.

(62)

Then for m ∈ [1, n] ∩ Z, we get Xao(0)
m =

∑m
i=1

exp(A
(0)
m,i)∑m

j=1 exp(A
(0)
m,j)

X
(0)
i R +X

(0)
m ,

when m mod 2 = 0, we can get reasoning chain (b
(1)
m;1, b

(1)
m;2).

In fact, we set all the coefficient exp(0)∑m
j=1 exp(A

(0)
m,j)

to be 0, then X
ao(1)
m is of the form

exp(1)∑m
t=1 exp(A

(0)
m,t)

b
(1)
m;1R+ b

(1)
m;2.

By (51) we have L0
N (f

(0)
m (X

ao(0)
m) +X

ao(0)
m) = b

(1)
m;1R

m3L−1 + b
(1)
m;2R

m3L

When m mod 2 ̸= 0 and m > 1, we can recognize b(0)m;1 = Xtgt
m , and L0

N (f
(0)
m (X

ao(0)
m)+

X
ao(0)
m) = b

(1)
m;1R

m3s

When m = 1, we can recognize b
(1)
1;1 = Xtgt

1 , and L0
N (f

(0)
1 (X

ao(0)
1 +X

ao(0)
1)) =

b
(1)
1;1R

(n+1)3L .
After the first layer decoder, the even positions pass information to subsequent odd

positions. And we can eliminate the position vectors on the second floor.
In fact, by our construction we have

X
ao(l−1)
i =

i∑
j=1

exp(A
(l−1)
i,j)∑i

t=1 exp(A
(l−1)
i,t)

X
(l−1)
j +X

(l−1)
i (63)

=

i∑
j=1

exp(A
(l−1)
i,j)∑i

t=1 exp(A
(l−1)
i,t)

Cl−1
j∑

u=1

bl−1
j;u Rj3L+u−d

(l−1)
j +

Cl−1
i∑

u=1

bl−1
i;u Ri3L+u−d

(l−1)
i .

(64)

For any i, j such that i ̸= j, note that |u−d
(l−1)
j | ⩽ 3L−1

2 and |v−d
(l−1)
i | ⩽ 3L−1

2 ,

29

by theorem 6.2, we have

|j3L + u− d
(l−1)
j − i3L − v + d

(l−1)
i | = |(j − i)3L + u− v − d

(l−1)
j + d

(l−1)
i |

(65)

⩾ 3L − |u− v − d
(l−1)
j + d

(l−1)
i | ⩾ 1, (66)

|i3L + u− d
(l−1)
i | ⩽ (n+ 1)3L. (67)

And therefore, the nonzero element of bl−1
j;u Rj3L+u−d

(l−1)
j and bl−1

i;u Ri3L+u−d
(l−1)
i

(i ̸= j) won’t locate at the same coordinate.
Denote Xao(l−1)

i = (X
ao(l−1)
i,1 , · · · ,Xao(l−1)

i,dm
). Firstly, set the number on the axis

which equals to min1⩽j⩽i{Xao(l−1)
i,j > 0} to be 0.

Suppose the nonzero component of Xtgt
1 located at the kp-th axis. Then, Xao(l−1)

i,kp−(n+1)3L
=

exp(0)∑
1⩽j⩽i exp(A

(l−1)
i,j)

. Since min
1⩽j⩽i

{Xao(l−1)
i,j > 0} = 1∑i

t=1 exp(A
(l−1)
i,t)

, there remains

the information propagated from X
(l−1)
j s.t. A(l−1)

i,j ⩾ 1 which indicates that V l−1
i ∩

V l−1
j ̸= ∅. We use the sequence (bl−1

i;1 , · · · , bl−1

i;Cl−1
i

) associated to N l
i and the sequence

(bl−1
j;1 , · · · , bl−1

j;Cl−1
j

) associated to N l−1
j to construct a new sequence (bli) associated to

N l
i in the following two rules.

• If Vi ⊆ Vj(resp. Vj ⊆ Vi), then we set (bli) = (bl−1
i)(resp. (bli) = (bl−1

j)).

• If Vi ̸⊆ Vj and Vj ̸⊆ Vi. Since Vi∩Vj ̸= ∅ without loss of generality we assume
the set Vi∩Vj is of the form {bl−1

i;1 , bl−1
i;2 , · · · , bl−1

i;ki
} for some ki ⩽ Cl−1

i . Also,
there exist kj ⩽ Cl

j such that bl−1
j;kj

= bl−1
i;1 . And therefore the sequence bli is set

to be (bl−1
j;1 , bl−1

j;2 , · · · bl−1
j;kj

, bl−1
i;2 , bl−1

i;3 · · · bl−1

i;Cl−1
i

).

Moreover, for a given node N l−1
i there might exist more than one node N l−1

j satisfying

A
(l−1)
i,j ⩾ 1. Denote Λl

i = {j|A(l)
i,j ⩾ 1}, then the information in each node N l−1

k with
k ∈ Λl

i is transmitted to N l−1
i as the above way by treating bli as bl−1

i each time. More
specifically, we set initially N l

i = N l−1
i and correspondingly bli = bl−1

i . Then for each
k ∈ Λl

i and for bl−1
k associated to N l−1

k , we update b
(l)
i as in the above two rules by

setting bl−1
i = bli and bl−1

j = bl−1
k .

Remark D.3. The information propagation in this transformer satisfies the rules as
we defined in section 5. Although we ignore the information propagated from the node
N l−1

1 by setting A
(l−1)
i,1 = 0 for l ⩾ 1, there won’t be any information loss. Since the

first node in each layer will only contain one value which is also contained in N1
2 by

Rule 2.

D.5 Existence of approximating FNN and error analysis
We find the FNN we required in three steps.

30

• Step 1 Find continuous functions that decode the information;

• Step 2 Extend the continous function to allow small error;

• Step 3 Use universal approximation theorem to find a FNN to approximate the
extended continuous functions.

Step 1, Continuous funtions
Since {(z1, · · · , zdm

)|zi ∈ {0, 1}} ⊆ Range(LN), there exists continuous functions
f l−1
i s.t.

Ll−1
N (f l−1

i (X
ao(l−1)
i)) =

C
(l)
i∑

u=1

bli;uR
i3s−1+u−d

(l)
i . (68)

By the universal approximation theorem (Theorem D.9), we know that a neural network
can approximate any continuous function with arbitrarily small error. In fact, we can
prove the following theorem.

Lemma D.4. If LN (f) is a simple function, there exists a single-hidden-layer neural
network f ′ for any ϵ′, such that:

sup
x∈K

||LN (f(x))− LN (f ′(x))|| < ϵ′

where K ⊆ Rd is an arbitrary compact set.

Here and in the sequel, we use the notation ∥ · ∥ to denote the ∞ norm of vectors,
i.e. for v = (v1, v2, · · · , vdm

) ∈ Rdm , ∥v∥ = max
1⩽i⩽dm

|vi|.
As we have discussed earlier in remark D.1, we can not define a FNN such that it

satisfies (51). However, as we have shown in Lemma D.4, we can find a FNN such that
it differs from (51) by a small error ε′. And we now analyze the effect caused by this
small error during the information propagation.

Step 2: Expansion of fi
To proceed, we shall use the following notations. Note that for a given node N l

i the
reasoning sequence contained in this node can be transmitted from an input matrix
(Xtgt

i) or a permutation of (Xtgt
i) say (Xtgt

σ(i)) where σ ∈ Z ∩ [1, n]. In this case we

denote correspondingly the output of lth layer in transformer as X(l)
σ,i or simply X

(l)
σ .

Also, when the input matrix is set to be Xtgt
σ(i), we denote correspondingly the sequence

associated to each node N l
i as blσ,i;u, the attention matrices A as Aσ,i,j and (X

ao(l)
i)

as (Xao(l)
σ,i).

Moreover, for a given input matrix (Xtgt
i) and for fixed i, l and σ we denote the set

Dl
σ,i = {Y ∈ Rdm : Ll

N ◦ f l
i (Y) = X

(l)
σ,i}

∩ {Y ∈ Rdm : Y = X
ao(l−1)
σ,i }

(69)

31

And for a given input matrix (Xtgt
i) we define the equivalence class of permutations

as follows

Definition D.5. For fixed i ∈ [1, n] ∩ Z and fixed l ∈ [1, L] ∩ Z, two permutations
σ ∈ Sym(Z∩ [1, n]) and τ ∈ Sym(Z∩ [1, n]) are said to be N l

i level equivalent if and
only if they satisfy

X
(l)
σ,i = X

(l)
τ,i. (70)

And the equivalence class of σ is denoted as

[σ]li = {τ ∈ Sym(Z ∩ [1, n]) : X
(l)
σ,i = X

(l)
τ,i}. (71)

Moreover, we denote El
i the set of all the N l

i level equivalent classes.

It is clear that Dl
σ,i are all finite sets since Sym(Z ∩ [1, n]) is a finite set. We shall

also use the notation d(x, y) = ∥x− y∥.
To expand the f l

i defined in (68), we need the following lemma.

Lemma D.6. For σ1, σ2 ∈ Sym(Z∩ [1, n]), and for i ∈ Z∩ [1, n], if (bl+1
σ1,i

) ̸= (bl+1
σ2,i

),
then for X ∈ Dl+1

σ1,i
and Y ∈ Dl+1

σ2,i
we have d(X,Y) > 0.

Since the sets Dl
σ,i are all finite, then by Lemma D.6 for σ1 and σ2 satisfying

V l
σ1

̸= V l
σ2

we have

dl+1
i = min

X∈Dl
σ1,i,Y ∈Dl

σ2,i

d(X,Y) > 0. (72)

We now define the expansion of f l
i as follows

f̃ l
i = (Ll

N)−1

 ∑
[σ]li∈El

i

1Dl+1
σ,i +[−δl+1

i ,δl+1
i]n

 , (73)

for some δl+1
i ∈ (0, dl+1

i). Here the symbol + in Dl+1
σ,i + [−δl+1

i , δl+1
i]n denotes

the addition of sets in Rn, and the condition δl+1
i < d

(l+1)
i ensures that (73) are well-

defined

Step 3, approximating FNN
Note that for given i, l and σ the set Dl+1

σ,i +[−δl+1
i , δl+1

i]n is a compact set, according
to Lemma D.4, ∀ηl+1

i > 0, there exist a single-hidden-layer neural network f̂ l
i such

that
sup

X∈Dl+1
σ,i +[−δl+1

i ,δl+1
i]n

||Ll
N (f̂ l

i)(X)− Ll
N (f̃ l

i)(X)|| < η
(l+1)
i . (74)

This f̂ is the FNN we are looking for which can tranmit information as f . In fact we
have following proposition.

32

Proposition D.7. For given X
ao(l)
σ,i , we have

Ll
N (f

(l)
i (X

ao(l)
σ,i)) = X

(l+1)
σ,i ;

Ll
N (f̂

(l)
i (X

ao(l)
σ,i)) ∈ {X(l+1)

σ,i }+ [−ϵ, ϵ]n.
(75)

Proof. Without loss of generality we set Ll
N (f̂

(l)
i (X

ao(l)
σ,i)) =

∑C
(l+1)
i

u=1 bl+1
iu Ri3s−1+u−d

(l+1)
i +

ϵ
(l+1)
i r

(l+1)
i = X

(l+1)
σ,i , where |ri| = 1, ri ∈ Rdm . Take ϵ

(l)
i < ϵ and set

Ā
(l)
i,j = (

Cl
i∑

u=1

bli;uW
i3L+u−d

(l)
i +ϵ

(l)
i r

(l)
i)(

−1∑
m=−(n+1)3L

Wm)(

Cl
j∑

v=1

blj;vW
j3L+v−d

(l)
j +ϵ

(l)
j r

(l)
j)T

Since Ā(l)
i,j = A

(l)
i,j+ϵ

(l)
i r

(l)
i (

∑−1
m=−(n+1)3L Wm)ϵ

(l)
j r

(l)
j , we have ∀i, j, l, |Ā(l)

i,j−
A

(l)
i,j | ⩽ 3L(n+ 1)ϵ

(l)
i ϵ

(l)
j ⩽ η0.

And therefore,

X̄
ao(l)
σ,i =

i∑
j=1

exp(Ā
(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

X̄
(l)
σ,j + X̄

(l)
σ,i

=

i∑
j=1

exp(Ā
(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

(

Cl
j∑

u=1

blj;uW
j3L+u−d

(l)
j + ϵ

(l)
j r

(l)
j) +

Cl
i∑

u=1

bli;uW
i3L+u−d

(l)
i + ϵ

(l)
i r

(l)
i

=

i∑
j=1

exp(Ā
(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

(

Cl
j∑

u=1

blj;uW
j3L+u−d

(l)
j) +

Cl
i∑

u=1

bli;uW
i3L+u−d

(l)
i

+

i∑
j=1

exp(Ā
(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

ϵ
(l)
j r

(l)
j + ϵ

(l)
i r

(l)
i ,

(76)
along with

X̄
ao(l)
σ,i −X

ao(l)
σ,i =

i∑
j=1

[
exp(Ā

(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

−
exp(A

(l)
i,j)∑i

t=1 exp(A
(l)
i,t)

]
(

Cl
j∑

u=1

bljuW
j3s−1+u−d

(l)
j)

+

i∑
j=1

exp(Ā
(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

ϵ
(l)
j r

(l)
j + ϵ

(l)
i r

(l)
i

(77)
Direct calculation and (77) leads to

∥X̄ao(l)
σ,i −X

ao(l)
σ,i ∥ ⩽ I + II, (78)

33

where

I = max
i,j,l

|
exp(Ā

(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

−
exp(A

(l)
i,j)∑i

t=1 exp(A
(l)
i,t)

|, (79)

II = |
i∑

j=1

exp(Ā
(l)
i,j)∑i

t=1 exp(Ā
(l)
i,t)

ϵ
(l)
j r

(l)
j + ϵ

(l)
i r

(l)
i |. (80)

Take η0 small enough such that ∀|x| < η0, | exp(x)− 1| < 2x. We then have

I ⩽ max

{ | exp(Ā(l)
i,j)− exp(A

(l)
i,j)| |

∑i
t=1 exp(A

(l)
i,j)|

(
∑i

t=1 exp(A
(l)
i,j))(

∑i
t=1 exp(Ā

(l+1)
i,j))

+
|
∑i

t=1(exp(A
(l)
i,j)− exp(Ā

(l)
i,j))| | exp(A

(l)
i,j)|

(
∑i

t=1 exp(A
(l)
i,j))(

∑i
t=1 exp(Ā

(l)
i,j))

}
⩽ max

{
n×

∣∣ exp(Ā(l)
i,j −A

(l)
i,j)− 1

∣∣ exp(A(l)
i,j) exp(M)

+ (

i∑
t=1

| exp(Ā(l)
i,t −A

(l)
i,t)− 1|) exp(A(l)

i,j) exp(M))

}
⩽ 2nη0 exp(2M) + 2nη0 exp(2M)

⩽ 4nη0 exp(2M)

(81)

II ⩽ (n+ 1)ϵ. (82)

Combining (77), (81) and (82) leads to

∥X̄ao(l)
σ,i −X

ao(l)
σ,i ∥ ⩽ I + II ⩽ 4nη0 exp(2M) + (n+ 1)ϵ. (83)

We then choose η0 and ϵ small such that 4nη0 exp(2M) + (n + 1)ϵ < δ
(l)
i , and

thus X̄ao(l)
σ,i ∈ Dl+1

σ,i + (−δl+1
i , δl+1

i)n. Moreover, we have

Ll
N (f̂

(l)
i (X

ao(l)
σ,i)) =

C
(l+1)
i∑
u=1

bl+1
i;u Ri3s−1+u−d

(l+1)
i + ϵ

(l+1)
i r

(l+1)
i ∈ X

(l+1)
σ,i + [−ϵ, ϵ]n,

(84)
where |ri| = 1, ri ∈ Rdm . This completes the proof of our proposition.

Lemma D.8. LayerNorm of the form LN (x) = α x−E(x)√
Var(x)+ϵ

+ β, where α, β and ϵ

are constants and the function E(·), Var(·) stands for the expectation and variance
respectively, is injective (i.e., For any x1 ̸= x2, we have LN (x1) ̸= LN (x2)).

Proof of Lemma D.8. Note that LN (x) = α x−E(x)√
Var(x)+ϵ

+ β,

For any x1 ̸= x2, if LN (x1) = LN (x2), then we have

34

(α
x1
1 − E(x1)√
Var(x1) + ϵ

+β, · · · , α xn
1 − E(x1)√
Var(x1) + ϵ

+β) = (α
x1
2 − E(x2)√
Var(x2) + ϵ

+β, · · · , α xn
2 − E(x2)√
Var(x2) + ϵ

+β),

which leads to

α
xi
1 − E(x1)√
Var(x1) + ϵ

+ β = α
xi
2 − E(x2)√
Var(x2) + ϵ

+ β, for 1 ⩽ i ⩽ n. (85)

Therefore, summation from 1 to n in both sides of (85) leads to

α
nE(x1)− E(x1)√

Var(x1) + ϵ
+ nβ = α

nE(x2)− E(x2)√
Var(x2) + ϵ

+ nβ,

which indicates that
E(x1)√

Var(x1) + ϵ
=

E(x2)√
Var(x2) + ϵ

. (86)

By (85), we also have

xi
1√

Var(x1) + ϵ
=

xi
2√

Var(x2) + ϵ
, for 1 ⩽ i ⩽ n. (87)

Combining (86) and (87) yields that

x1

x2
=

E(x1)

E(x2)
=

√
Var(x1) + ϵ√
Var(x2) + ϵ

. (88)

Set k = E(x1)
E(x2)

, then xi
1 = kxi

2, E(x1) = kE(x2), and therefore Var(x1) =

k2 Var(x2). These relations together with (87) lead to

xi
1√

Var(x1) + ϵ
=

kxi
1√

k2 Var(x1)+ϵ
, for 1 ⩽ i ⩽ n. (89)

Since ϵ > 0 and α ̸= 0, it is cleat that k must be 1, which contradicts with x1 ̸= x2.

Proof of Lemma D.6. We prove this lemma by contradiction.
Suppose that there exist X ∈ Dl+1

σ1,i
and Y ∈ Dl+1

σ2,i
such that d(X,Y) = 0.

Since (bl+1
σ1,i

) ̸= (bl+1
σ2,i

), there exists i0 and j0 such that blσ1,i0,j0
∈ {bl+1

σ1,i,1
, ..., bl+1

σ1,i,c
(l+1)
σ1,i

}

and blσ1,i0,j0
/∈ {bl+1

i,σ2,1
, ..., bl+1

i,σ2,c
(l+1)
i,σ2

}. For simplicity, we denote h = blσ1,i0,j0
.

By (69), we know that

X = X
ao(l)
σ1,i

=

i∑
j=1

exp(A
(l)
σ1,i,j

)∑i
t=1 exp(A

(l)
σ1,i,t

)
X

(l)
σ1,j

+X
(l)
σ1,i

(90)

=

i∑
j=1

exp(A
(l)
σ1,i,j

)∑i
t=1 exp(A

(l)
σ1,i,t

)

Cl
σ1,j∑
u=1

bσ1,j;uR
j×3L+u−d

(l)
σ1,j +

Cl
σ1,j∑
u=1

blσ1,i;uR
i×3L+u−d

(l)
σ1,i

(91)

35

Y = X
ao(l)
σ2,i

=

i∑
j=1

exp(A
(l)
σ2,i,j

)∑i
t=1 exp(A

(l)
σ2,i,t

)
X

(l)
σ2,j

+X
(l)
σ2,i

(92)

=

i∑
j=1

exp(A
(l)
σ2,i,j

)∑i
t=1 exp(A

(l)
σ2,i,t

)

Cl
σ2,j∑
u=1

bσ2,j;uR
j×3L+u−d

(l)
σ2,j +

Cl
σ2,j∑
u=1

blσ2,i;uR
i×3L+u−d

(l)
σ2,i

(93)

If h /∈ ∪i
t=1V

l
t , then we know that Xao(l)

σ1,i,u
⩾ exp(1)∑i

t=1 exp(A
(l)
σ1,t)

and X
ao(l)
σ2,i,u

= 0

which contradicts with our assumption.
If h ∈ ∪i

t=1V
l
t then X

ao(l)
σ2,i,u

can either be exp(0)∑i
t=1 exp(A

(l)
σ2,t)

or 0. The case Xao(l)
σ2,i,u

=

0 clearly contradicts with our assumption. Hence, we consider only the case Xao(l)
σ2,i,u

=
exp(0)∑i

t=1 exp(A
(l)
σ2,t)

. And we then know that

X
ao(l)
σ1,i,u

⩾
exp(1)∑i

t=1 exp(A
(l)
σ1,t)

, X
ao(l)
σ2,i,u

=
exp(0)∑i

t=1 exp(A
(l)
σ2,t)

. (94)

Suppose the nonzero components of X(tgt)
σ1,1

and X
(tgt)
σ2,1

located at as the kσ1,1-th axis
and the kσ2,1-th axis respectively. Note that

X
(l)
σ1,1

= Xtgt
σ1,1

R(n+1)3L , (95)

X
(l)
σ2,1

= Xtgt
σ2,1

R(n+1)3L , (96)

and that by (44) the distance between any two embedding axis ⩾ 2(n+1)(3L+1),
we have

X
ao(l)
σ1,i,kσ1,1−3s−1n =

exp(0)∑i
t=1 exp(A

(l)
σ1,i,t

)
, (97)

X
ao(l)
σ2,i,kσ2,1−3s−1n =

exp(0)∑i
t=1 exp(A

(l)
σ2,i,t

)
. (98)

If kσ1,1 ̸= kσ2,1,

exp(0)∑i
t=1 exp(A

(l)
σ2,i,t

)
= X

ao(l)

σ1,i,kσ1,1−3Ln
= X

ao(l)

σ2,i,kσ1,1−3Ln
= 0

,
which is impossible. Therefore, we have kσ1,1 = kσ2,1.
In addition, there exist vq ∈ Ẽ and the corresponding kq such that kq = kσ1,1 =

kσ2,1, the components of Xao(l)
σ1,i

and X
ao(l)
σ2,i

on the (kq − (n+1)3L)-th axis are equal,
which leads to

36

1∑i
t=1 exp(Aσ1,i, t)

=
1∑i

t=1 exp(Ai,σ2 , t)
. (99)

Combining (94) and (99) leads to contradiction with d(X,Y) = 0. And we complete
the proof of Lemma D.6.

Proof of Lemma D.4. By Lemma D.8, we can easily know that (Ll
N)−1(Ll

N (f)) = f
is also a simple function.

According to the lemma above,
there exists a single-hidden-layer neural network f ′ for any ϵ0 s.t

sup
x∈K

||f(x)− f ′(x)|| < ϵ0

Set M = max
x∈K

||f ′(x)||, for any ||x− y|| < ϵ0,

|LN (x)− LN (y)| = |α x− E(x)√
Var(x) + ϵ

− α
y − E(y)√
Var(y) + ϵ

|

= |α| × |
(x− E(x))

√
Var(y) + ϵ− (y − E(y))

√
Var(x) + ϵ√

Var(y) + ϵ
√
Var(x) + ϵ

|

⩽ |α| ×
||(x− y − (E(x)− E(y))||

√
Var(y) + ϵ

ϵ

+ |α| ×
||y − E(y)|| |

√
Var(x) + ϵ−

√
Var(y) + ϵ|

ε
.

(100)
Since ||E(x)−E(y)|| ⩽ ||x−y|| ⩽ ϵ0 and Var(y) = E(y)2−(E(y))2 ⩽ E(y)2 ⩽

(M + ϵ0)
2 we have

|E(x)2 − E(y)2| = |E(x− y)(x+ y)|

⩽
√
E(x− y)2 E(x+ y)2

⩽
√

ϵ20 (2M + ϵ0)2,

(101)

and

|
√
Var(x) + ϵ−

√
Var(y) + ϵ| = |Var(x)−Var(y)|√

Var(x) + ϵ
√
Var(y) + ϵ

⩽
|E(x)2 − E(y)2|+ |(E(x))2 − (E(y))2|

ϵ

⩽
ϵ0(2M + ϵ0) + ϵ0(2M + ϵ0)

ϵ
,

(102)

|LN (x)− LN (y)| ⩽ |α|
2ϵ0

√
(M + ϵ0)2 + ϵ+ (M + ϵ0)(

ϵ0(2M+ϵ0)+ϵ0(2M+ϵ0)
ϵ)

ϵ
.

(103)

37

We can set ϵ0 small enough such that

sup
x∈K

||LN (f(x))− LN (f ′(x))|| ⩽ sup
∀|x−y|<ϵ0

|LN (x)− LN (y)| < ϵ′.

Theorem D.9 (Universal Approximation Theorem[Cybenko, 1989]). For any given
continuous function f : Rd → Rn and an allowable error ϵ > 0, there exists a single-
hidden-layer neural network fθ with appropriate parameters θ, such that:

sup
x∈K

||f(x)− fθ(x)||∞ < ϵ,

where K ⊆ Rd is an arbitrary compact set.

E Details of the experiment

E.1 Dataset
We require reasoning sequence (xi)1≤i≤2s of the training set satisfy the following
condition.

x2i − x2i−1 mod 5 ∈ {0, 1, 4} (104)

The sequence of the test set satisfy:

x2i − x2i−1 mod 5 ∈ {2, 3} (105)

The values of each token range from 20 to 100,i.e.,xi ∈ [20, 100].

E.2 Hyperparameters
In this section, the fixed and tunable hyperparameters employed in the model are out-
lined.

The fixed hyperparameters are as follows. Transformer architecture uses one atten-
tion head per layer. The dataset is partitioned into a training set comprising 90% of
the data and a test set comprising the remaining 10%. Training is conducted over 2000
epochs. A weight decay of 0.1 is applied. The dimension of the model dm is set equal
to the key dimension dk. The feed-forward network dimension dfeedforward is set to
1200.

Table 2:
the number of reasoning steps 3 4 5

the size of datasets 1200000 6000000 30000000

38

The following hyperparameters are varied across experiments. We compare models
using both pre-layer normalization and post-layer normalization configurations. The
number of layers, the number of reasoning steps, the model dimension dm, the learning
rate, the size of datasets (table 2) and the batch size are also systematically varied.

E.3 About the prelayernorm and postlayernorm
We train a transformer which has 3 layers and 21 token length with batch size equal to
1000 and learning rate equal to 5 × 10−5 to do 3-step reasoning. Initially, the model
is configured with post-layer normalization. However, this result in suboptimal perfor-
mance. There is figure 8 we train .

(a) dm = 256 (b) dm = 512 (c) dm = 1024

Figure 8: postlayernorm

We therefore employ pre-layer normalization in our architecture. Empirical results
indicate that this configuration yields significantly improved performance. The corre-
sponding training curves and outcomes are presented in the figure 9.

(a) dm = 256 (b) dm = 512 (c) dm = 1024

Figure 9: prelayernorm

E.4 Causal intervention experiment
In this section, we investigate whether transformer is capable of genuine reasoning or
merely memorizes the answers, under the settings of 4-step and 5-step reasoning. We
then describe the experimental methodology employed to obtain the results.

First, a sequence that can be answered correctly will be selected. Subsequently,
a specific attention line or residual connection is masked. If transformer produces an
incorrect output after the masking of a particular attention line or residual connection,
that line will be marked in grey. If the model’s output remains correct, the line will left

39

unchanged. The resulting attention graph retains only those connections that critically
influence the outcome. This approach allows for conclusions to be drawn regarding
whether the model has learned to perform reasoning.

E.4.1 L=3 step-order=4 dm = 1024

Figure 10: accuracy of 4-step reasoning

Figure 11: L=3, 4-step reason

Figure 11 shows that when the input reasoning pairs satisfy some sequence relationship
((79, 52) occurs after both (67, 79) and (52, 24).), the model produces the correct
output, and the information flow aligns with the prescribed reasoning rules.

40

E.4.2 L=3 step-order=5 dm = 1024

Figure 12: accuracy of 5-step reasoning

Figure 13: L=3, 5-step reasoning

As shown in Figure 13, when transformer produces a correct answer in the 5-step
reasoning task, the attention and residual connections do not conform to the expected
reasoning patterns. This may suggest that the 3-layer transformer fails to adequately
learn genuine 5-step reasoning. Instead, the model might rely on memorization to
arrive at the correct response.

E.5 Guess about dm
Based on the aforementioned experiments, it can be observed that training a model
capable of parallel reasoning—where the number of reasoning steps exceeds the depth
of the transformer (i.e., number of layers minus one)—requires a substantially large
model dimension dm. It is therefore hypothesized that for string reasoning, wherein
the number of reasoning steps equals the depth of the transformer (layers minus one),
a significantly smaller dm may suffice.

We train a 4-layer Transformer model to perform 3-step reasoning. In this experi-
ment, the sequence length is set to 21, the batch size is 1000, and the learning rate is
5× 10−5. The model is trained for 500 epochs with a hidden dimension of dm = 128.

41

Figure 14: L=4 dm = 128

The experimental results indicate that the blue and red strings both rapidly ap-
proach 100% success rates. Under the string reasoning condition, a transformer model
with 128 hidden dimensions demonstrates the capability to effectively perform 3-step
reasoning tasks (figure 14). In contrast, under the parallel reasoning condition, an ar-
chitecturally equivalent model with the same number of hidden dimensions achieves
only an 11.9% success rate.

42

	Introduction
	Transformer and Reasoning Mechanism
	Transformer Architecture
	Induction Reasoning Mechanism
	Parallel Reasoning

	Informal Theorems
	Symbolic Reasoning Task
	Rules of information propagation
	Main Theorems
	Experiments and Discussions
	Training task
	Experimental results

	Related Work
	Proof of Theorem 6.1
	 Proof of Theorem 6.2
	Examples where the theoretical bounds are achieved
	Construction of transformer
	Embedding
	Construction of parameters
	Explanation
	Information propagation
	Existence of approximating FNN and error analysis

	Details of the experiment
	Dataset
	Hyperparameters
	About the prelayernorm and postlayernorm
	Causal intervention experiment
	L=3 step-order=4 dm=1024
	L=3 step-order=5 dm=1024

	Guess about dm

