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Abstract

Transformers are able to perform reasoning tasks, however the intrinsic mech-
anism remains widely open. In this paper we propose a set of information propaga-
tion rules based on Transformers and utilize symbolic reasoning tasks to theoreti-
cally analyze the limit reasoning steps. We show that the limit number of reasoning
steps is between O(3%71) and O(2%~1) for a model with L attention layers in a
single-pass.

1 Introduction

The transformer architecture introduced by [[Vaswani et al) 2017] has demonstrated
capabilities across a wide range of tasks [Liu et al., 2018, Devlin et al.| 2019, |Rad-
ford et al.,|2019, Touvron et al.|[2023, |OpenAll 2023, showing particularly significant
progress in logical reasoning. These models can not only solve complex mathematical
problems [Davies et al.| [2021]] but have also reached performance levels comparable
to top human contestants in the International Mathematical Olympiad (IMO) [Trinh
et al., |2024]. The reasoning capabilities of large language models are fundamentally
shaped by the thinking strategies they employ. Widely adopted approaches include
Chain-of-Thought (CoT) [Wei et al., [2022]], Tree-of-Thought (ToT) [Yao et al., 2023,
and Diagram-of-Thought (DoT) [Zhang et al., 2024al]. While these strategies substan-
tially improve multi-step logical reasoning accuracy by prompting models to generate
explicit intermediate reasoning steps, they often exhibit an over-thinking phenomenon
that consumes excessive computational resources and increases response time. This
inefficiency highlights a critical question: what is the intrinsic single-pass reasoning
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capacity of these models? Specifically, how many reasoning steps can a model effec-
tively execute without requiring iterative prompting or external scaffolding?

Based on the Transformer and the information propagation rules, we utilize a com-
mon symbolic multi-steps reasoning task to show that the limit of reasoning steps in
single-pass of an L-layer Transformer is between O(3L~1) and O(2E~1). The key in-
gredient is that, i) in one layer, tokens parallelly perform reasoning; ii) each position
can store information of multiple tokens in different sub-linear space.

Building on established Transformer architectures and information propagation
mechanisms from prior research, we employ symbolic multi-step reasoning tasks to
investigate the theoretical limits of reasoning depth achievable in a single forward pass
through an L-layer Transformer. Our analysis demonstrates that the maximum number
of reasoning steps is between O(3£~1) and O(2L~1). This result stems from two key
architectural properties: (i) tokens execute reasoning operations in parallel within each
layer, and (ii) each embedding in a hidden layer can encode information from multiple
tokens across distinct sublinear spaces. We also perform experiments to support our
analysis. For 3-layer Transformers, we find that it requires large hidden dimensions
to execute parallel reasoning. The maximum reasoning steps have lower and upper
bounds.

2 Transformer and Reasoning Mechanism

2.1 Transformer Architecture

We investigate a decoder-only Transformer with L-layer attention blocks. For integer
n, given any sequence (;)1<i<n, We denote its one-hot encoding |'|as X'™ € R7*d
with d as the dictionary size.

The model first applies an embedding layer including both token embedding and
positional encoding to obtain the input representation as X (0) = Xemb 4 Xpos ¢
R"*4m  Moreover, we denote the set of word embeddings of each word in the dictio-
nary as W . We shall use the single-head attention in each layer which is computed as
follows:

A st KX WO TOT)

Vg
xakv(l) — A(l)(X(l))X(l)Wv(l)WO(l)’

where 0 < [ < L and ¢ is the softmax operator. For simplicity of expression, we will
abbreviate WIOWED.T a5 Wak() and WrOWeD.T as Wvol) in the following
text. Also, we ignore the normalization coefficient v/d, in later sections for notational
simplicity. The output of the (I + 1)-th layer is obtained as:

x2o0) = x(O 4 xakv() - x(+1) — LayerNorm(f(l)(XaO(l)) + Xao(l)),

!One-hot encoding is a technique that represents categorical data as binary vectors, where only one bit is
set to 1 others are set to 0.



where f()(-) represents the feedforward neural network of the (I + 1)-th layer. The
final output (in the form of token indices within the vocabulary) is obtained as:

Y = SoftMax(XPYWP) e RY.

2.2 Induction Reasoning Mechanism

Based on numerous works on In-Context Learning, Induction Heads [Brown et al.,
2020, (Garg et al., [2022] Bietti et al., 2024} Nichani et al.,|2024], and recent studies on
multi-step reasoning [Wang et al., 2025a, [Yu et al., [2025]], the reasoning capability of
Transformers can be largely attributed to a mechanism called the Buffer Mechanism for
storing diverse information, together with adjacent position matching and same token
matching for achieving information matching and transmission.

Buffer Mechanism The Buffer Mechanism is a crucial way for Transformers to
store multiple pieces of information [Wang et all 2025af]. Specifically, the interac-
tion of information among tokens in a Transformer occurs in the attention module.
Figure [T[a) illustrates the information flow of a 3-layer model performing 2-step rea-
soning, i.e., given a sentence of the form “... [a] [b]... [b] [c]... [a]”, the model
is required to output [c]. The dashed lines denote residual connections, while the
solid lines denote information propagation induced by the attention mechanism. When
a token (e.g., [b]) attends to a previous token (e.g., [a]), its next-layer state is not
simply [a]+[b], butrather [a] W"° 4 [b]. In other words, the Transformer stores
the two pieces of information into subspaces spanned by different matrices through a
linear transformation.

Adjacent Position Matching Similar to humans, language models rely heavily on
the immediately preceding word when predicting the next word [[Barbero et al., 2024].
That is, the model can leverage positional encodings to establish connections between
adjacent tokens. In fact, constructing such an attention weight matrix is not difficult.
Assuming the positional encodings approximately satisfy p] p; = 1, piij =0,i # 7,
it suffices to construct:

[lsea/2]
W= 3" puipl, 4, (1)
i=1
(x2i +p2i)qu(332i—l +P2¢-1)T ~ 1, )

Clearly, by this method, we can construct attention between any adjacent tokens of
fixed length. However, due to the inherent diversity of language tasks, only the atten-
tion between the most adjacent pair is the most salient. We refer to this mechanism as
adjacent position matching.

Same Token Matching Same token matching is the most essential mechanism
within induction heads. Its existence grants Transformers strong out-of-distribution
generalization ability. As shown in the Figure [T[a), because both nodes in the first
layer contain the same information [a], they can attend to each other via the same
token matching mechanism. Specifically, it suffices that the weight matrices satisfy
Wak(D)pvo0).T — T in which case

q([ak(1a1W©® 4 )T = [a]WHEOWeO T 19T — 1477217 & 1,



That is, the final token node will allocate nearly all of its attention to the previous node
containing the same information [a], thereby transmitting [b] to the final node in
the next layer. In this way, a single-step reasoning is achieved. Multi-step reasoning
follows the same principle.
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(a) Linear Reasoning (b) Parallel Reasoning

Figure 1: Illustration of linear reasoning and parallel reasoning.

2.3 Parallel Reasoning

However, we note that the above-described mode, where each layer performs only one
step of reasoning, is far from the upper limit of the Transformer model. As shown in
Figure [T[b), adjacent position matching and same token matching can occur multiple
times within a single layer, thereby enabling even shallow Transformer models to per-
form multi-step reasoning. We refer to this phenomenon as parallel reasoning. The
central question considered in this paper is: given only adjacent position matching and
same token matching, what are the upper and lower bounds of the parallel reasoning
step that a transformer with L layers attention blocks can perform?

3 Informal Theorems

To investigate the above question, we first consider the simplest case in which all rea-
soning relations are arranged sequentially. As shown in Figure PJa), the information
flow of reasoning in this setting exhibits a clear “binary tree” structure. It then follows
directly that the reasoning steps scale as O(2%~1). In what follows, we will provide
a rigorous proof of this result by mathematical induction. We note that permuting the
order of reasoning pairs within the sequential arrangement does not disrupt the flow
of sequential reasoning. Hence, when logical relations are arranged in sequence, the
reasoning steps of a Transformer constitute the lower bound among all possible cases.

On the other hand, we observe that for a 3-layer model, when the data are arranged
as illustrated in Figure 2(b), the final layer carries the maximum amount of informa-
tion. The data in this case exhibit an evident fractal structure. The advantage of such



a configuration is that each local terminal node can simultaneously match two pre-
ceding nodes by leveraging both the maximum and minimum information it carries,
thereby expanding its information content. Consequently, the reasoning steps scale as
O(3L~1). Therefore, we arrive at the following informal conclusion:

Layer 3

Layer 2

Layer 1

(a) Lower bound case (b) Upper bound case

Figure 2: Example of lower bound and upper bound of parallel reasoning.

Theorem 3.1 (Informal Corollary [6.4). The maximal number of reasoning steps a
transformer with L layers attention blocks can perform has a lower bound O(2F~1)
and an upper bound O(3-1).

Next, we will provide a formal statement of the problem and a rigorous proof of
the conclusion.

4 Symbolic Reasoning Task

In this section, we give a brief introduction to the reasoning task and some related
definitions. Moreover, we shall introduce the rules of information propagation.

A reasoning task typically involves a question and an answer to that question, along
with the rule and process to get the answer. For example, given A; C As and A; C Ajg,
the question is the relation of A; and As, and the answer is A; C A3. We shall use a
more symbolic way to express reasoning tasks as in the following example in figure 3]

Figure 3: Three steps reasoning task. One step reasoning leads to 2, two steps reasoning

leads to 3.
We use a sequence (1,2,2,3,3,4) to denote this reasoning task. Indeed, this se-

quence is composed of three bigrams (1, 2), (2, 3), (3,4), and each bigram represents
one step of reasoning. We call these bigrams reasoning pairs, which we will define
below.



Definition 4.1. A reasoning pair is an element in 7* of the form a; = (a}, a?) where

; 1,2 1 2
i €Z a;, a; € Zand a; # a;.

79

The set of all reasoning pairs is denoted as A. a! — a? represents one step of

reasoning.
It is natural that we shall define the s step reasoning chain as follows.

Definition 4.2. An s step reasoning chain is a finite sequence (a;)1<i<s with a; € A,
and it shall satisfy the following conditions:

2 1 ; .
cai=a; forl<i<s—1;

* For any subsequence (a;,, )., ez of (@;)1<i<s, we have a}nin{z} #+ afnax{z} (no
loop), where T is a subset of {1,2,-- - , s} containing at least two elements.

The first condition ensures that the reasoning chain does not break before the final
step, and the second condition ensures that there is no loop of arbitrary size in the rea-
soning task. For example, the sequence ((1,2), (2,3), (3,1)) and ((1,2), (3,4), (4,5))
are not reasoning chains.

Remark 4.3. For notational simplicity, here and in the sequel, we shall write (a;) for
(a;)icr when the index set 1 is clear from the context.

We shall also consider the case when the reasoning chain is of infinite length.

Definition 4.4. A sequence (a;);cz is called a reasoning chain if it satisfies the fol-
lowing conditions:

*a; € A;

ca?=al  foricZ;

* For any subsequence (a;,, )i, ez of (an), we have allnin{I} # afnax{z}, where
T C Z containing at least two elements.

Note that for any i, s € Z, we can truncate the reasoning chain (a,,) as follows
ap = @451, 1L <k <s 4)

to get an s step reasoning chain (@y).

In practice, a sentence may consist of reasoning pairs which are not in order. Due to
the mask condition which is common in the LLM, the order of reasoning pairs may in-
fluence the information propagation. To describe the order of these reasoning pairs and
their relation to the reasoning chain, we need to introduce the concept of permutation.

Definition 4.5. A symmetric group Sym(S) on a countable set S is a group whose
elements are all bijective maps from S to S and whose group operation is that of
function composition.

The elements of a symmetric group are called permutations. And we shall focus on
Sym(Z).



Definition 4.6. Given a reasoning chain (a,)mez and a permutation o € Sym(Z),
a sequence (x;);cz is called a reasoning sequence constructed from (Qm)mez and o
if it satisfies: ( :
2—(i mod 2
o(15) ©)
Also, (@) mez and o are called the constructing reasoning sequence and constructing
permutation of (x;), respectively.

Ti=a

When referring to a reasoning sequence (x;), we are actually denoting the tuple
((z), (am), o). Moreover, if o = Id, then the reasoning sequence is called a sorted
reasoning sequence. Note that from the relation (5)) we also have

a; = Ag(o-1(i)) = (T2o-1(1)=1> T20-1(i)), (6)

where o1 is the inverse of ¢ satisfying g oo™l =01 oo =1d € Sym(Z).

Remark 4.7. In the definition of reasoning sequence we use the permutation to change
the order of reasoning pairs which does not break the relation inside each reasoning
pair. Moreover, no permutation should be applied to the original sequence (x;). For
example, the sequence (1,2,2,3,3,4) can be (2,3,3,4,1,2) or (3,4,2,3,1,2) under
some certain permutations. Both of these sequences are related to the reasoning chain
((1,2),(2,3),(3,4)). However, it cannot be transformed into (1,3,3, 4,2, 3) through
any permutation that acts on reasoning pairs.

©,01,02,03,04, "

y Bg(1)) A5 (2) Ao (3)) Ao (4)s """

ol

* X1, X2, T3, T4, T5,T6, LT, T, " "+

Figure 4: Relationship between reasoning chain and reasoning sequence.
Similarly, we shall also use a reasoning sequence of finite length.

Definition 4.8. An s step reasoning sequence (x;)1<i<2s With constructing reasoning
chain (am)1<m<s and constructing permutation o is defined as:

zi=a> Um0 1 < < 2s. )
o(L52)

Example 4.9. The sequence (z;);>1 = (|%])i>1 can be seen as a sorted reasoning
sequence with constructing permutatiOn o = Id and constructing reasoning chain

((0,1),(1,2),(2,3), (3,4),---)-

Example 4.10. The sequence (x;
soning chain (a.,) = ((1,2), (2,
o satisfying o(1) = 1, a( )=

a; = (1,2) = ((El,(EQ), as = (2,4) = (1’571'6), as — (4,6) = ((Eg,xlo).

) =(1,2,6,3,2,4,3,5,4,6) with constructing rea-
4),(4,6),(6,3), (3,5)) and constructing permutation
, 0(3) =2, 0(4) =5, o(5) = 3. In this example,



Figure 5: Reasoning task represents by (;) in example[4.10]

When considering a finite step reasoning sequence, the concept of reasoning start,
which indicates where the reasoning task should begin, is also needed. More specif-
ically, we consider an s step reasoning sequence (z;)1<i<2s With constructing rea-
soning chain (aa,)1<m<s and constructing permutation 0. Then one more element
Zos+1 is added to the end of the reasoning sequence (z;), and xo511 = a,ln0 for some
Ay € (Q).

Example 4.11. We set the sequence (x;) = (1,2,6,3,2,4,3,5,4,6,4) with construct-
ing reasoning chain (a,,) and constructing permutation o as in example In
addition, the reasoning start is set to be 4. Then one step reasoning result is 6 and two
steps reasoning result is 3.

Next we define nodes which serves as containers of information.

Definition 4.12. A node corresponding to a reasoning sequence (x;) is a set of two
sets. More specifically, for i € N, an lth layer node is defined as N} = {V}, I'} where
V% is called a value set whose elements are integers, and I} C 7 is an index set. Also,
we require that V = | {=; }.

in €T}

We define the information quantity of a node N} = {V}!, I'} as C! = |V}!|. More-
over, we denote A/? as the set of all Ith layer nodes.

We denote the information propagation between two nodes as N1 = N! x N/
where N! x N} := {VL UV 1L UTHY. The case i # m represents the attention
mechanism, more specifically, the node N}, attends to the node N} and the result is
stored in the node [V, il+1. The case ¢ = m represents the residual connection, in which
case N, ilH = N}. Moreover, there may be more than one node transmitting information
to a node Nil. In this case, we denote the set of all such nodes as N% C N where 7
is some index set. The information propagation process in this case is then defined by

I+1 I+1 1+1
Ni+ = N%*Nil = {UiaeI Vzla UVz‘+ ’UiaeIIz;a UIi+ }

5 Rules of information propagation

We can extract the following rules of information propagation from the behavior of
transformer as follows.

* Rule 0 (Initial setup): The nodes in Oth layer are constructed as NY = {{xz;}, {i}}.
For ! > 1, the Ith layer of nodes are initially constructed as Nil ={0,0}.

* Rule 1 (Mask Condition): Attention happens only from former nodes to later nodes.
That is, the attention mechanism N/ ™' = N! x N! is performed only when m < i.
For the multiple nodes information transmission case, the operation N/ ** = NLx N}
is performed only when i, < ¢ for all i, € Z.



* Rule 2 (Adjacent position matching): For [ = 1, the information in an odd position
node can be transmitted to the subsequent even position node. In this case, the mask
condition is satisfied automatically. More specifically, the nodes in 1st layer are of
the form N3, = N9, | x N9, after position matching.

* Rule 3 (Same token matching): For! > 2, anode N} is updated as N} = NI 1N/~
provided there exists a set Né_l C N1 satisfying the mask condition i, < 4 and
VITt AVt £ O forall iy € T

* Rule 4 (Residual Connection): For [ > 1,VN! ¢ N, N} = (VI-tuvi 17t uTl}.

Remark 5.1. With a slight abuse of notation, we still denote the value set and index
set of anode N} as V! and I} after the information propagation process. For example,
through residual connection N} is updated as N} = {V!=* UV}, 'V U 1!}, and we
still denote the sets V}™' UV} and I U It as V! and IV, since we only care about
the result after each layer’s information propagation.

Remark 5.2. It makes no difference whether the residual connection happens before
or after same token matching or position match. The result stored in the next layer
remains unchanged.

Remark 5.3. In the above information propagation rules we require that the adjacent
position matching only happens when | = 1 and the same token matching only happens
when | > 2. We can also set the same token matching to happen when | = 1 and
adjacent position matching to happen when | > 2, since the index set I f in fact encodes
the position information. The necessary condition for adjacent position matching to
happen is 31} and Ijl- s.t. there exist i € IJZ- and iy, € I satisfying miniy, i; mod 2 =
Land |i; —i| = 1. It is easy to see that the index set I} in this same token matching
first rules plays the same role as V! in above adjacent position matching first rules, and
there will be no essential difference for the result in our main theorems under these two
different rules. For simplicity, we only consider the above adjacent position matching
first rules.

Two concepts of layer arise in this framework: the layer of attention blocks and the
layer of nodes. The Ith layer attention block takes (I — 1)th layer of nodes as input
and produces the Ith layer of nodes as output. Due to this relation, we use “layer [”
referring to the /th layer of attention blocks and Ith layer of nodes interchangeably.

6 Main Theorems

In this section we analyze the information quantity in the process of information prop-
agation according to the above information propagation rules, and our main theorem
follows.

Theorem 6.1. Under the rules of information propagation, given any reasoning se-
quence ((2;)iez, (@m)mez, o), for any given x € {x;}icz, and for any | € ZT there



exists i € 77 such that x € Vil, and we have the following bound for T'(z) =
max{C; | = € Vi}:
7

21 41 < ThHx) <3141, (8)

The whole proof is based on mathematical induction. Here we only give a sketch
of the proof. The complete proof can be found in the appendix

Given a reasoning sequence ((;), (am), o), when considering the lower bound, by
Rule 2 the value sets of nodes in layer 1 contain only one reasoning pair except the case
where only residual connection happens. Suppose that j < i and the node N} contains
a,,.,az, asvalue set, or simply we say N contains a,,,, and N} contains a,, ;. Two

m; 'my
cases may happen, n; +1 = n; and a,,, = a,, orn;+1=n;anday, = a, . Both
cases will lead to N? containing a,,,, and an,; by Rule 3. This process is the same for
any other two nodes containing two adjacent reasoning pairs respectively. The process
for layer 3 is analogous to that for layer 2: information contained in two nodes in layer
2 is propagated to one node in layer 3. The whole structure is in fact a binary tree and
hence the bound is powers of 2.

Regarding the upper bound, due to the mask condition (Rule 1), the permutation o
may affect the information propagation. However, the upper bound is always bounded
by the case when the mask condition is lifted. Therefore, we ignore the mask condition
to find the upper bound. Just like the proof of the lower bound which use two adjacent
reasoning pairs, now we use three adjacent reasoning pairs. Suppose the nodes N/},
N jl and N ,3 contain the reasoning pairs a,,,, a,; and a,, respectively and m; +1 =
m; = my — 1. Then by Rule 3, at least one of the node N 32 contains @y, G,; and
a,,,. As for layer 3, there are nodes that contain information propagated from three
nodes like V. J3 The whole structure is a ternary tree and hence the bound is powers of
3.

Theorem 6.2. Under the rules of information propagation (3)), for any s step reasoning
sequence ((x;)1<i<2s: (@m)1<mss, 0) With reasoning start o541, for any 1 satisfying
that 1 <1 < 1+ log, s, we have the following estimate for C’és_H.

2Tt <l <3 )

The proof of this theorem is similar to the proof of Theorem [6.1] with two main
differences. First, we need to take into account the reasoning start which requires
using mathematical induction twice: once on the node of reasoning start and once on
the nodes in the sequence. Second, the reasoning sequence is now finite, and we require
it to be long enough to support the structure of the binary tree and the ternary tree. The
complete proof is included in the Appendix [B]

Remark 6.3. In the proof of this theorem, the mask condition was relaxed to obtain
the upper bound. However, we showed in Appendix|C|that there is a way to construct
a large class of reasoning sequences such that the upper bound is attained under mask
condition. This proves that the upper bound is indeed tight.

Corollary 6.4. For a given transformer with L layers of attention blocks and an input
sequence of lengthn = 2s + 1, where s € Z" and 1 < L < 1 + log, s, the maximal
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number of reasoning steps Sy, it can perform satisfies the following bounds:

3L-1 1
2L71 1<, < — (10)
Remark 6.5. Although the upper bound on information quantity as we show in The-
orem is 3¥=1, this only implies that up to 3*~1 — 1 reasoning steps are involved.

However, since the process does not track information back through the reasoning
S |

chain, only reasoning steps are effective in the reasoning tasks. A quick ex-
ample is the sequence (0,1,1,2, 1) with reasoning start 1. For | = 2 there are two
reasoning steps in total but only one effective reasoning step 1 — 2.

7 Experiments and Discussions

7.1 Training task

Our task aligns with the reasoning sequence described earlier. Specifically, we begin
with a reasoning sequence denoted as (x;)1<;<2s. Subsequently, we introduce xgs41
as the starting point. The complete sequence (z;)1<;<2s+1 serves as the input to the
transformer. The output corresponds to the reasoning result from the starting point with
a fixed reasoning step (an example in Fig. [6).

35| e8] (27 (35 [21] [27] (68 (45 [27—>(68]

Figure 6: A two-step reasoning example.

7.2 Experimental results

The detailed hyperparameter settings are provided in the appendix [E| Reasoning pairs
in the test set are totally different from the training set in order to prove transformer can
learn reasoning instead of remembering these sequences. In this section, we present key
experimental results. We begin by examining a 3-layer transformer architecture. As
predicted by our theoretical analysis, this model is capable of solving 3-step reasoning
problems with perfect accuracy. Furthermore, we observe that the model dimension
d,, in our construction is notably large and a higher hidden dimension aids in storing
more intermediate information. To validate these findings, we investigate whether a
transformer can be trained to achieve exact accuracy on 3-step reasoning tasks and
whether a large d,,, is indeed necessary. Our experiments confirm that such a model can
be successfully trained, and that a sufficiently large d,, is critical for achieving optimal
performance. The relationship between the model dimension d,,, and test accuracy is
summarized in the table below.
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Table 1: Relationship between d,,, and test accuracy
dm 64 128 256 512 1024

Test accuracy (%) 9.6 119 722 99.6 99.6

As shown in Table [I] test accuracy increases monotonically with dimension d,,,
eventually approaching 100%, which confirms that a 3-layer transformer can solve 3-
step reasoning tasks.

We further investigate scenarios where the model exhibits partial or complete fail-
ure. According to the theoretical analysis presented earlier Corollary[6.4] for reasoning
step lengths in the interval [2L-1 %], the model can produce correct answers un-
der certain sequence ordering conditions. However, when the number of steps exceeds

3L71

T_l, information propagation to the final token becomes insufficient, resulting in

incorrect answers. Since this implies that high accuracy is unattainable in such regimes,
experimental validation remains partial.

. . < 3—1
We consider a 3-layer Transformer. Given that 2371 = 4 and 2 5 =1 — 4, the
model can solve 4-step reasoning tasks when sequence order conditions are satisfied,
but fails for 5-step reasoning. Experimental results under these settings are as follows:

* For 4-step reasoning, the model achieves a test accuracy of 46.1%.
* For 5-step reasoning, the test accuracy drops to 25.1%.

The decrease in accuracy for the 5-step case provides empirical support for theoret-
ical results. We also find that if the reasoning pairs satisfy a proper order, the network
can obtain accurate results for 4-step cases |l 1| but not for 5-step cases Complete
training curves and additional experiments are provided in the Appendix

8 Related Work

In-context learning (ICL) was first introduced by [Brown et al|[2020]. This was sub-
sequently followed by numerous studies [Olsson et al.| [2022| |Garg et al., [2022, Wang
et al., 2022, [Miiller et al., 2021}, |Goldowsky-Dill et al.| |2023] Bietti et al., 2024, Nichani
et al., 2024}, Edelman et al., 2024, |Chen et al., 2024, Todd et al., 2023, |(Chen and Zou,
2024] to investigate the ICL using induction heads, which can be seen as a special case
of one-step reasoning.

Various reasoning tasks were proposed to study the multi-step reasoning such as
recognizing context-free grammars [Zhao et al.|[2023], learning sparse functions [Edel-
man et al.| 2022]], learning compositionality [Hupkes et al., 2020|], generalizing out of
distribution when learning Boolean functions [[Abbe et al., |2024], matrix digits task
[Webb et al.,2023]], SET game tasks [|Altabaa et al., 2023|], reasoning tasks designed by
anchor function [Zhang et al.| [2024c]. Kil et al.|[2024], Li et al|[2024a] use Chain-of-
Thought (CoT) reasoning [Wei et al.||[2022] to achieve multi-step reasoning via prompt
engineering. Zhang et al.|[2023]] introduced the beam retrieval framework for multi-hop
QA improving the few-shot QA performance of LLMs. |Li et al.| [2024b], |Yang et al.
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[2024], Shalev et al.| [2024] locate the potential intermediate answers within middle
layers which play a causative role in shaping the final explicit reasoning results. Zhang
et al.[[2024Db], Yao et al.|[2025]],[Wang et al.|[2025al] show that with small initialization,
Transformers in condense regime [Luo et al.,[2021} | Xu et al.;, 2025]] can learn reasoning
better. [Wang et al.[[2025b]] investigated the k-fold task which is similar to the k-hop
induction head task in|Sanford et al.|[2024]]. Our paper’s difference from Sanford et al.
[2024] is that we consider the transformer with mask and FNN whereas they ignore
mask and FNN, which indicates that our framework operates under assumptions that
align more directly with practical Transformers.

LLM / AI Tool Disclosure. During the preparation of this manuscript, we used
DeepSeek-V3 (July 2024) to assist with language polishing (grammar, wording). All
substantive content, ideas, and core writing remain the authors’ own, and the authors
are fully responsible for any error including those introduced during polishing.
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A  Proof of Theorem

We first prove the lower bound.

According to Rule 0, the nodes in first layer are constructed as N} = {(z;), {i}, {i}}.
According to Rule 2, we have the nodes in second layer are constructed as Nj, =
{{z2i_1,72:},{2i},{2i — 1,2i}} fori € Z. Clearly, we have C3, = 2.

We use mathematical induction to prove that for & > 2, forany z; € {z;}iez, there
exists an integer ¢ € Z such that

o 7. k
xz; € VT,

* We denote o(I}) to be the set {o(| =1 ])}; /v, and we have max o(IF) —
o([Z31]) > 251 — 1 which implies that CF > 2F—1 4 1.

For k = 2, given any z; € (z;), according to Rule 2, we know that z; is contained
in the value set V21 ;41 of node N} ., .
Bl 251
For simplicity, we assume that j is an even number, then V21L = le ={zj_1,2;}
and I} = {j—1,;}. We now want to find a node N} such that V! N le = {z;}. Todo
s0, by definition of reasoning sequence and using the relation (5) we know that x; ;
and z; comes from the reasoning pair aysy- By definition of reasoning sequence and

relation (6) we have

2 1

i) T Po(i)+1

an

Ao ()41 = <x2a—1(0(%)+1)—1’x2o—1(a(%)+l)> :

Seti = 207! (¢(%) + 1). Itis now clear that the node N} have value set V;! satisfying

Vi NV} = {z;} and index set I = {i — 1,i}. By Rule 3, the node N7 _ . ., have
value set Vrr21ax{1':,j} such that {z;_1,2;,z;41} C ‘/Iiax{i,j}' Hence, Cfnax{iJ} > 3and

cd)+1-0(d)=122"1-1.
Now we assume the induction hypotheses hold for 3 < k < kg and consider the
case k = ko + 1. There exists a node N such that

zj € Vo, (12)

max o (1% ) — a(%) > ko=l _ (13)
k ko—1

Cko > ko1 41, (14)

Set & = max o (I}%)) then using relation (6) we know that a2 = 23,-1(a) € Viko.
Using definition of reasoning sequence and relation (3)) we know that

xZo'_l(a-‘,-l)—l = aé+1 = ai = :C2o—1(a). (15)

Note that o ( LWD = a + 1. And then the induction hypotheses implies
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that there is a node N} such that

Too—1(at1)-1 € Vinl, (16)
maxo(I[°) — (a+1) > 2%~ —1, 17)
k ko—1
Crp 22777+ 1. (18)
This construction ensures that X9, -1(q11)-1 = Z25-1(a) € V,fg N Vn’j‘;, then by Rule
3, we know that the node V. I’;‘;J;%mo ma} have value set Vxﬁgi{lmoml} and index set
I I’;‘;%mo_’ml} satisfying that
:C] E Vrﬁg‘i{lmo,mly (]9)
Ly, ULy, IV (20)

Combining (T3), and leads to

k J :
maxo(]moai%mmml}) - 0(5) > 2ko 1,
which implies that C*0 T} > 2ko+1=1 4 1 This completes the proof for lower

max{mo,m1} =
bound.

Next we prove the upper bound.

It is clear that if Rule 1 is removed, the information quantity in each node can
only maintain unchanged or increase. Therefore, we consider the no-mask condition,
without loss of generality, we consider the reasoning sequence to be {z; = | £]};en
with constructing permutation o = Id and constructing reasoning chain (a,,,) = ((m —

1,m)).
We will use mathematical induction to prove that for £ > 2 and m € Z, the value
. Qk—1 Qk—1 qk—1_
set of node N& satisfies Vi, € {m — 25+ m —3—+H 4 1... m+ =1}

and C§, < 3F1+1.

Since the index set of a node will play no rule in this proof, we will just ignore
them in the expression of a node.

When k = 2, By Rule 2 the nodes N;! are of the form N3, = {{z2;_1, 72}, {2i}}.
Then by Rule 3 the nodes in layer 3 are of the form N3, = {{i —2,i—1,4,i+1}{2i}}.
Therefore, the conclusion holds for &k = 2.

Assuming the conclusion holds for £ < ky. When & = kg + 1, by inductive

hypotheses, there are three nodes NQk;;L, Nzk;;zl , N2k7312 with value sets V;ﬁ%, VQkT;’M , Vzlj%z-
We require that
3ol —1 3ot 41
Mt Ty T T @1
ko=l ko=l 41
e
Simple calculation shows that
my =m—+ 3571 my =m — 3k~ (22)
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And the three nodes N0 | N¥o NFo

2ms> No(ako-1) No(m_sro-1) have value sets

3](,‘071 1 3k071 1 3k071 -1
. Zho—1 _ 1 Zho—1 _ 1 ko=l _ 1
k
‘é(gn+3k0—1)g{m+ 2 7m+ 2 +177m+ f}ﬁ (24’)
3]6()71 + 1 3k071 + 1 3k071 +1
k
Vz(gn_gkrrl) C{m— 3 ,m — 5 +1,---,m— T} 25)
Again by Rule 3, we know that the node Nyot! = N;”'(Om gy % N;“gm_gk,z) * Nko
have value set Vzlf;{"l C{m- ?’kOT'H, m— ?’kOT'H +1,--- ,m+ 3k02_1 }, and therefore,

C’ffnﬂ < 3% + 1. This completes the proof.

B  Proof of Theorem

We shall also use the mathematical induction to prove this theorem. 4
We first assert that for 1 < I < 1+ log, s and for j satisfying 1 < U(L%J) <
s — 271 1 there exists a node N,i such that
l
U o (o282 )10 201 (o1 252 4a) } € Vi (26)
0<ag2i-1—1
For [ = 1, the relation (26)) can be verified easily since after position matching the
nodes in N'* are of the form N3, = {{Zam_1,T2m}, {2m}, {2m — 1,2m}}. And
. . _ 1
note that z; € {x%*l(ﬂ(L%J))—l’x%*l(ﬂ(L%J))} - V2L%J'
Now we assume that (26) holds for I = Iy, then we prove it still holds for [ = [y +1.
Given z; € (z;) with 1 < o(|ZEL]) < s — 2% + 1, itis clear that 1 < o(|ZEL]) <
s — 2o~ 4 1. Then by inductive hypotheses we know that there exists a node NN, ,l;;
such that

l
U Goosfosstpra)1 @0 (it pra)t S Vi @D

0<a2lo-1 -1

On the other hand, since 1 < o(| 25! ]) < s—2 +1wehave 1 < o([ 25 ])+2~1 <

s — 2= 4 1, and again by inductive hypotheses there exists a node IV, ,lc‘; such that

l
U {xQ(,—*l(U(L%J)+2l0*1+a)717IZUfl(J(L%J%FWO*lJra)} C ng- (28)

0<ag2l0-1-1
Note that by the definition of reasoning sequence we have
Lo 4 j+1 lo—1 =Ty __1 j+1 lp—1 .
201 (o (L L2 ))+2001) -1 201 (o (L L +])+200 1 1)

By Rule 3, there exists a node Ni‘f;{l{ ko ks } such that

! 1 lo+1
U {%a—l(a(L%J)m)—p%a—l(a(L%JHa)} Vi UVis © Vidas{or ka}
0<ag2io—1

19



This completes the proof of our assertion.
Set the reasoning start as w2541 = x;, we then assert that

l
U {x2ﬂ*1(0(L%J)+o¢)—l’xQU*I(U(L%J)-&-Q)} < Vv28+1' (29)

0<ag2li-1-2

When | = 2 the assertion can be easily verified. We assume holds for
l = lp and consider the case [ = [y + 1. By assertion , we know there exists IV, ,io
such that

l
U {x20*1(J(L%J)+2l0*171+a)71’ $2071(J(L%D+2L0—171+a)} c VkU.
0<ag2lo—1-1

(30)
Again, by definition of reasoning sequence we have

Lao=1(o(| 2 ))+200-1=1)~1 = T20-1(o(| 141+ ) +2l0—1 2)"
And by Rule 3 we know that
U {1‘20*1(0([%“%&1)717xZJfl(J(L%JH*Oz)} - Vklo U V2lg+1 - Vgg-‘tll
0<ag2lo —2

This completes the proof of assertion , which implies that for [ > 2, C%,,; > 2!~
For [ = 1, it is clear that C3, 41 = 1 since only residual connection happens. And
we complete the proof for the lower bound.
The upper bound is proved similarly as in the proof of Theorem [6.1] except we
consider mainly the reasoning start position, which results in one fewer element.

C Examples where the theoretical bounds are achieved

In this section we give some examples related to Theorem[6.2] In fact, both the lower
bound and upper bound can be attained.

Lower bound

We construct a reasoning sequence (1,2,2,3,3,4,4,5--- ,2s—1,2s,1). Assume that
1 <1< 1+]log,s, itisclear that C,,; > 2!~!
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1,2’...721*1

- 0000000

[1,2,3] [25-2,25-1,25]

Figure 7: Lower bound example

Upper bound

In this section, we shall use the concept of truncation of a reasoning sequence. This
truncated reasoning sequence contains a finite step reasoning chain and some irrelevant
reasoning pairs which serves as some redundant information as in practice. In fact, we
truncate a reasoning sequence (z;) as follows:

1. Firstly, we truncate the constructing reasoning sequence (a.,) to be an s step
reasoning chain (ax) = (a;, @it1,** , Giys—1)-

2. Secondly, we use the relation @ to find those elements constructed from this s
step reasoning chain. That is

E = {xQ(o—l(i)fl)ax2((r—1(i)71)+17 Ty X201 (i4s—1)—1)> $2(o—1(i+571)71)+1}~
(€29)

3. Thirdly, we set

Ip={2(07"(0) = 1),2(c7 (i) = 1) +1,---,

(32)
200 N i+s—1)—1),2(c " i+s—1)—1)+ 1},

which is the set of all subscripts of elements in E. Moreover, we take the sub-
sequence (Z;) = (Tmin{z,}+i—1) as the truncated reasoning sequence, where
1<i<max{Zg} — min{Zg} + 1.

We call this sequence (Z;) the truncated reasoning sequence containing ().

With this definition of truncation, we provide a method to construct finite step rea-
soning sequences which allows the upper bound in Theorem|[6.2]to be attained. This is
achieved in a recursive way.
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Consider a reasoning sequence (a;);cz. For a given integer ¢ we define

51(1) = (a;), s2(i) = (@i, @iv2, i41),
and
Ss(i) = (az" Qi1 2, Ait1,Ait6,Ait8, A7, A4 3, Ajt5, a'i+4)-

For simplicity, we use the notation

s3(i) = (82(4), 82(i + 6), s2(i + 3))
= (ai7 Ai42, Ajt1, Ait6, Ait 8, Ait 7, Aj4-3, Ajt5, ai+4)>

and with this notation s3(¢) is still a sequence of reasoning pairs.
For k > 3 we define

si(i) = (sko1(i), se-1(i 4+ 2 x 3572, s (i + 3572)).

Same notation as in s3(7) and all sy(4) are sequences of reasoning pairs.
We now construct our reasoning sequence.
e ) ) . . ,
Setry = (s-1(i — 25=2), -+, 83(i — 13),82(i — 4),81(i — 1), 51(1), s2(i +
1),s3(i+4), -, 810 =1)), it is clear that there exist ¢ € Sym(Z) such that
(a s(1=81) 5 Bo(1), Ba(2), " 5 @ (3171_1)) = r1. By the construction of 71 we

know all the reasoning pairs in 1 forms a finite step reasoning chain (a 317% @iy @iyl @ #olog ),
we extend this finite step reasoning chain to an infinite reasoning chaln a by adding
reasoning pairs to both sides. And we take a permutation 7 € Sym(Z) satisfying
Qr(ip,) = Qo(m) where i,, € I with I = {7:173LT—1,"' JU1,00, " ,Z@} and
G _sion << <dp < <Z3l—21_3.
We truncate the reasoning sequence ((x;),@,7) to contain the finite reasoning
chain (a LTS +u) to getasequence( i) = (Tmin{Zp}+j—1)1<j<max{Zg}—min{Zp}+1-
Here F and I  are defined as in (3 1)) and (32 . This (Z;) with reasoning start Cmax 7,41 =
a! is the sequence we want.

Remark C.1. Under the rules of information propagation, the elements in (Z;) con-
tributing to the node Nllnax 7,41 are those come from the reasoning chain (ai TR e ).
= =

. . . l . . . .
Hence, the information in N .. 7 . will be the same if we consider the reasoning
sequence constructed from (ai Sl— 1o N3 +31 1_3 ) and 0. However, the above

complicated way we construct truncated sequence lS still necessary which shows that
there is a large class of reasoning sequence allows the upper bound to be attained.

Proposition C.2. We consider the reasoning sequence (x;) with constructing reason-

ing chain (a,,) = ((m,m + 1))1 iy il and constructing permutation o
— T2 SMST
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satisfying that

3141 32 +1

(G‘U(l)a A5 (2)s° 70‘0_( 31_721,1)) = (31(1)a 82(2)’ 83(5)3 e asl(T)? e s[_l(

(@ sity Foaslzay Go0) =

331 3-3
2

(s7_4(
(34)

If the reasoning start is set be to x = a%, then for 1 <1 < l~, we have

20(31=1) 1
1 _ al—1

C al—1_1 =3

20(=———)+1

To prove this proposition we need the following two lemmas.

Lemma C.3. Form > 1, Vk € {%}2@'@: there exists i(y, ;) € [1, -1 _ 11NZ
depending on m and k such that the node N{(’Z . have value set Vz’(’fn o satisfying the
following property.

{k,k+1,--~,k+3’”*1}gmﬁk). (35)
Lemma C4. Form > 1, Vk € {¥}2<J’<l~’ there exist i(m, 1) € [1 — 31, 0)NZ
such that the node N[(”m 0 have value set V[(’Zn 0 satisfying the following property.

{k,k+1,--- k+3™ 1} Ccym

t(m, k)"

(36)

Proof of Proposition|C.2]. The case | = 1 is trivial and omitted. We use mathematical

induction to prove this proposition. We assert that for [ > 2 the reasoning start node

N have value set V'
20

i - satisfyin
20(3 =1y 41 3oty ying
3 — 3l—1 3 — 3l—1 3l—1 + 1
1,---,0,1,2,---,—— =YV ) 37
{ 2 9 2 + ) s Uy Ly &y ) 2 }_ 20_(3L—21,1)+1 ( )

The case | = 2 can be verified easily. We assume that for [ = [y € [2, - 1] N Z the

node N . have value set V' satisfying
20(E—5=1)+1 20(E5=1)+1
3 — 3l0—1 3 — 3l0—1 3l0—1 + 1
1,-+,0,1,2, -+, ————}CV" . (38
{ 2 9 2 + 9 s Uy Ly 4y ) 2 }_ 20_(3172171)_"_1 ( )

Now forl = [y + 1, by Lemma we know there exists a node N _lo such

1(%%)
that
3ol 41 A glo=13 € plo
2 772 = il 2oty
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And by Lemma there exist a node N' a0 such that
i 07
3 — 3l 3-3 I
{ TR +3°7}CV (1o, 3230 )
We then have
lo—
lo N0 lo - — 3 ! + 1}
; 3lo—14q al—1_1 2 ’
i(lo, ") 20(——)+1 (39)
3 — 3lo-1
ylo nvh ={—
i(10, 2730 T op(3Tl=t) 1y 2 b
and by Rule 3, we know that the node N lo+1 have value set VotL
(31 1 S 20(31 1 —1y41
satisfying
3—3b 3o +1 . . .
e 0.1.2.--- S VAU o uve 1
{ 9 P ) 9 } il 310—22+1) 20(3172171)+1 i(l0,3*3"2°_ )
C Vl0+1
% (31 1_ 1)+1
(40)

This completes the proof of our assertion. From above assertion we know that

l

Qg(w%yrl

> 3!=1. Combining the proof of Theorem , we know that C"

3!=1. And therefore C" o =3-1
20(——5—

; <
20(25=1)+1

Proof of Lemma|C.3]. We use mathematical induction to prove this lemma. The case
m = 2 can be verified easily through Rule 2. We assume that for m = myg, Vk €

{3”2-',-1

}zglgi’

{kk+1,--- [ k+3™ 11 CV,

Z(mo k)"

(41)

For m = mq + 1, by assumption, there exists i(mq, k), i(mg, k + 3™ 1), i(mg, k +
2 x 3mo~1) such that

Seti(mo + 1, k)

{k,--  k+3m~ 1y Cymo

i(mo,k)’

{k+3momh e k4 2x 3T C VIR gy

{k+2x3m7h . k4 3m0} C Vi(mo,k+2x3mo-1)-

3 and (@2) we know that

(k-

(42)

= max{i(mo, k), i(mo, k+3™°71),i(mg, k+2x 3™ 1)}, by Rule

k+3me} e UV UV C Vet

i(mo, k) i(mo,k+3m0~ 1) i(mo,k+2x3™M0~ 1) = Ti(mo+1,k)’

which completes the proof.

The proof of Lemma|[C.4]is analogous to that of Lemma[C.3]and is omitted.
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D Construction of transformer

D.1 Embedding

We assume that d,, is large enough. We choose a suitable embedding (which can be
done by choosing a suitable basis of R%") such that the non-zero elements of all value
vector X P°% are located in the first  coordinates and all the elements in X ‘9¢ located
at the first n coordinates are zero.

We denote X 9t =

R%n . Similarly, we denote XP%° =
(Xl(l),TvXQ(l),T’ .

xPNT.

tgt, T tgt, T
(Xl 7)(2 S

tgt,T tgt _ (ytgt yrtgt
, X190 T with each X; = (X7, X5,

pos,T pos,T
(X3 , X5 o

XposTT and X =

)

We correspond each element in the set E to an index i.e., the set E is of the form
, U4 }. Moreover, each v; is of the form (0,0,--- ,0,0,---,1,---,0),
——

E={v,vy,

and we denote k; the position of 1. Let n <
bedding is chosen such that k; satisfies that

N Zeros

k1 < ko < --- < kg, we require the em-

ki —n>2(n+1)3Y+1),

—1
ki — ki1 > 2(n +1)(3% + 1), for2<z‘<n2 , (44)
dyp — kna >2(n+1)(3% +1).
D.2 Construction of parameters
We set the weight matrices as follows:
wal) — I0<Ii< L), 45)
wveld) = [(1 <1< L), W =R, (46)
-1
wkDT _ Z R'(1>1), WHO) = me 1P3;- “47)

Here p; is the positional encoding and arbitrary two positional encodings are or-
thogonal to each other. Moreover, R € RdmXdm g defined as R = [Rij}, with

Ri+1,i =1= Rldm for 1 <1 < dm

to be 0. In fact,

—_ O O

0

— 1, and all the other elements of R are set

o

1

o O =

0

This matrix R is called the left shift matrix. When we apply R to a vector v =
(1)27 cee

(1)1,’1)27"' )

vg,,) then result is vR =
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means that the matrix R act i times, i.e., vR! = vRR - -- R. Also, the inverse of mR
is called the right shift matrix, and R~! = RT.
For any given matrix M = [m;;], we define the mask operation as

O]

myy  —00  —00 —00

m(l) m®  _x o

2,1 2.2

_ ) ) O} _
mask(M) = | Mgy M3y M33 oo | . (48)

3 3 : o :l

m'EL,)l m’EL,)Q m'(n,)n—l msly)"

Furthermore, we denote
Agl)l —00 —00 —00
i l

Ag)l Aé)Q —00 —00
AD = mask( XOWaOWrOT x0Ty — | AV A, Ay, . o0
: . : l :l
Agz,)1 Agl,)z Agl)n 1 A,
(49)

We shall still use the notation N} to denote the ith node in Ith layer with slightly
modification: the value set V! is now a set V;! which contains the embedded value as
element.

Given any reasoning chain (a,,)1<i<n. after embedding it is of the form

(@) = (@), @) 1<icn = (g W™, a2 W) cicn.

It

We define a sequence (b, )1<y<n+1 as follows:

o
I

v = a,, forl <v < n,
(50

1
v
2
n

(<2}
Il
N

forv=n+1.

v

Assume the node N/ contains the information from (a;), then its value set V! must
contain the elements from a subsequence of b,c|y, v,)nz Where v1,v2 depends on i

and I. For simplicity, we set b} , = by, w1 for v € [1,v3 — v + 1] N Z. In fact,
vy —v1 +1=CL
With these notations, we define the FNN as follows

Lév(fil(Xfo(l)) + (Xlao(l) Z b; le?’ —It+k fori > 2,
1<k<CY &))

I () + (X770)) = X ROV for i = 1.
Here Ly stands for LayerNorm and j € [1,n] N Z satisfies bé_j = Xitgt.

Remark D.1. Note that this is not an accurate expression, since we can not simply
define the output of a FNN. However, we can show that there exist fi(l) for each layer
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such that the output of Ly (f} (Xfo(l)) + (Xfo(l))) differs very little from the right-

hand side of (51). And also the information propagation won’t be affected by this error.
This will be explained in detail in later sections.

By this construction the reasoning information contained in the node N} is encoded

by Ly (f1(-) + (1))
In order to extract the result after m-step reasoning, we set

WP — 1_1—7131’—m-‘,—lQv‘/'ernb,T7 (52)

where @Q satisfies Qv = vy, ..., Qug = vy and maps other basis to 0. Note that last
token on the s-th layer is x\D = b R™ I 4 + b, R 7, and we have

-er(y,L) WP — bn;lR_j_mJ’_QQanb’T T 4 bn;th—j—’m-‘rleemb,T’ (53)

and the output
Y = argmaz(5(XPWP)). 54

Whenm +j —1 < ¢, X,(LL)WT’ = bn;mﬂ_lWemb*T and the above setting yields
the desired reasoning result. However, when m + j — 1 > ¢, XT(,,L)WP = 0 and
therefore we can not get a right reasoning result.

In fact, the sufficiency of transformer depth s relative to the required reasoning
steps m is a key factor in ensuring accurate reasoning result.

We can roughly categorize this relationship into three cases

e Caselm <281 —1;
L—1
+ Case22°! <m < 21,

« Case3m > %
For the first case, note that t — j + 1 > 2L=1 _ 1 and therefore m +5-1<t
which means we can get the result. For the third case, since t — j + 1 < % and
consequently m + 7 — 1 > ¢, the model can not derive the result. The second case
is more complicated, since we can not derive the relationship of ¢ — 7 + 1 and ¢ from
the relationship of m and s. Whether the model can derive the reasoning result now
dependsont — j + 1 and ¢.

D.3 Explanation

First, we explain how the same token matching rule works in this construction. More
specifically, the attention matrices defined above satisty the following property.

Lemma D.2. Forl > 1, we have

A =o0.if j=1,
AV =0 if izj=2 Vinv] =4, (55)
AV >1 0 izj>2, VNV #£0.
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Proof. Start with given any X (©) = (X(O) x\0. XT(lO))T, we denote X =
(Xf”,Xé”, X)) with X = 300 b R13L+“ @, where C! = |V}!| and

u=1 Yiu
bl
A(f] 1) _ Xi(lfl)Rq(l—l)Rk(l—l),TXj(_lfl),T 56)
Cl*1 1 0171
= Z bl 1R13 tu—d{'” 1>)( Z Z bl 1R]3L+v - 1))T
m=—(n+1)3L
(57)
Cl 1 Cl 1
=2 Z > pio LR TV st —od T hmp 1T sy
nu Jiv
u=1 m=—(n+1)3L v=1
Foranyi > j > 2and V]~ 1ﬂVl L=,
1-1)

Since —(n +1)3F < i3F 4 u—d'Y — j3L v+ d(lfl) +m < (n+1)3F
and bl L b] ,» We have bi;ulRl3L+u dEl D _ ;3L u+d<l 1>+mb§ 1)1 T 0. Therefore,
A0

1,7 ‘

Wheni > j > 2 and Vil*1 N lefl £ 0,

.' Cl t
oL (1—1) .oL (-1 _
_ Z Z Z bé;_ulRZS +u—d; —33 —v+dj +mb§_;v1,T (59)
u=1 m=—(n+1)3L v=1
Since V;l_l N le_l = (), there exists j, v, 4, vg such that blj_v1 = bi‘vi Moreover,
since 1 < '3L—|—u—d(l_1)—j3L—v+d§l_1)+m < (n+1)3% and there exists j, v, 4, vg

. 1 iaL gD oL (-1 =17 _
such that b'-! = b'~L, there exists my s.t. bé.leZd +uo—d; 33" —votd; ™ mopy(I-1),

Jiv ;00 J3vo
1. This indicates that Azl; D >1
When j =1,
CZ 1

Az('fl_l) Z z bl 1R13L+u alt= (n+1)3L71+mX7lfgt,T (60)
u=1 m=—(n+1)3L

Since —2(n+1)3F — 1 < i3l +u—d'"™" = (n+1)3L =1+ m < —1, we know
that A{'; Y = 0. O

D.4 Information propagation

Next, we explain how the above defined transformer extract reasoning result.
X a0(0) — x(0) 4 xakv(0)
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When [ = 0, fori > j, using (3), (46), and (@9) we have

71.—1

A(O) X(O Zthp?t 1)x(0)

t=1
n—1 TL 1 ?’L 1
2
T T T
=) X" paupy,_ X" +ZXP PP 1 X" +ZXP P21 X[
t=1 t=1 t=1
n 1

X [t p2tp2t 1XpoS T

t=1
(61)
It is clear that

A(O)fl wheni = j+ 1 and ¢ mod 2 =0, ©2)
AE?:O, when i # j + 1 or i mod 2 # 0.

Then for m € [1,7] N Z, we get Xa@ = 7 %X(O)R +x0,
j=1¥P

. . 1 1
when m mod 2 = 0, we can get reasoning chain (bfn)l, b1(’n,)2)

In fact, we set all the coefficient WL(O(L(O)) to be 0, then X fno(l) is of the form
L exp(A,,;

exp(1) 1) )
Et . exp(A(S) )b R + bm;2'

By we have L?V( 7(3) (ano(o)) + X;#)(O)) — bgrlz) RmBL—l + b(l) Rm3L

When m mod 2 # 0and m > 1, we can recognize bffj? = X9 and L0 0 (S (X4

O 1 me El

Xi0) = o RS

When m = 1, we can recognize bglf = X9 and LY, (£ (x 70 4 x0°0)y) =
bgiR(n+1)3L.

After the first layer decoder, the even positions pass information to subsequent odd
positions. And we can eliminate the position vectors on the second floor.

In fact, by our construction we have

; -1
Xao(lfl) o 21: exp(A'g,j ))

7 - i 1—
j=1 D=1 eXP(Az(‘,t 1))
. -1 -1
! exp(A(l 1) G <

_ Z bl 1R33L+u al!=v Z bl 1R13L+u aft="
=1 Dt ex A” V) '
1= =

x{V e x{Y (63)

(64)

For any ¢, j such that ¢ # j, note that |u—d§l_1)| < L;l and |v—d§l_1)| < ?’2—’1,
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by theorem[6.2] we have

g3t +u—d™ — i3t — v d V| = (- )3 tu—v—dl T 4 dl Y

(65)
(-1 , 40-1)
23" —|u—v—d; +d; | =1, (66)
i3% +u—d'" V) < (n+1)3%, (67)
1-1 j3F +u—d{ Y 1-1 pigtu—d—Y
And therefore, the nonzero element of b "R i andb; R i

(i # j) won’t locate at the same coordinate.
Denote XY = (Xao(l_l), e XZZEYZL_D). Firstly, set the number on the axis

which equals to mm1<]<l{Xa° (=5 0} to be 0.

Suppose the nonzero component of X 9% ocated at the kp-th axis. Then, Xfo(l (1 Tz 4138 =

0 (1-1) 3
S eap( ()A(l_l)) Since mm {X‘w > 0} = m there remains
1<i<i #PP U =1 P

the information propagated frorn X ;l Dt A(l_l) > 1 which indicates that Vl_1

V.l_1 # (). We use the sequence (bﬁ;_ll, RN
(bé 117 : bl ;l 1
N}in the followmg two rules.

ol ) associated to N} Iand the sequence

) associated to V. ;_1 to construct a new sequence (b!) associated to

* If V; C Vj(resp. V; C V;), then we set (bl) = (b)) (resp. (bl) = (bé_l)).

* IfV; € Vyand V; € V;. Since ViﬁV;j # () without loss of generality we assume
the set V; NV is of the form {bi;_ll, bi;_Ql, cee bﬁ_k?l} for some k; < C’f_l. Also,
there exist k; C’l- such that bé_klj = bi_ll And therefore the sequence b! is set
to be (bé 117 bé 21a T bé,_klj ’ bi;_217 bi,_?)l bl Cll 1)

Moreover, for a given node IV, Zl ~1 there might exist more than one node N ]l-_l satisfying

A;lj_l) > 1. Denote Aﬁ ={j |A£? > 1}, then the information in each node N, ,ifl with

k € Al is transmitted to Nil ~1 as the above way by treating b as bé_l each time. More
specifically, we set initially N} = Nil ~! and correspondingly bl = b,lfl. Then for each
k € Al and for bff_l associated to [V, ,i_l, we update bgl) as in the above two rules by
setting ;" = b} and b, ! = bj".

Remark D.3. The information propagation in this transformer satisfies the rules as
we defined in section[] Although we ignore the information propagated from the node
N{fl by setting Agl; D=9 forl > 1, there won’t be any information loss. Since the
first node in each layer will only contain one value which is also contained in N3 by
Rule 2.

D.5 Existence of approximating FNN and error analysis

We find the FNN we required in three steps.
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* Step 1 Find continuous functions that decode the information;
* Step 2 Extend the continous function to allow small error;

* Step 3 Use universal approximation theorem to find a FNN to approximate the
extended continuous functions.

Step 1, Continuous funtions

Since {(z1,- -+ , 2z4,,)|z; € {0,1}} € Range(Ly), there exists continuous functions
it st
c®
_ _ ao(l— - i35 14— (l)
LA x et y) = S bl mST e (68)
u=1

By the universal approximation theorem (Theorem|D.9)), we know that a neural network
can approximate any continuous function with arbitrarily small error. In fact, we can
prove the following theorem.

Lemma D4. If Lx(f) is a simple function, there exists a single-hidden-layer neural
network ' for any €, such that:

Sup L (f(2)) = Ln(f' (@)l < €

where K C R® is an arbitrary compact set.

Here and in the sequel, we use the notation || - || to denote the oo norm of vectors,

i.e. forv = (vy,v2, - ,vq,) € R, ||v|| = 1?32312 |vi].

As we have discussed earlier in remark [D.1] we can not define a FNN such that it
satisfies . However, as we have shown in Lemma(D.4] we can find a FNN such that
it differs from by a small error ¢/. And we now analyze the effect caused by this
small error during the information propagation.

Step 2: Expansion of f;

To proceed, we shall use the following notations. Note that for a given node N/ the
reasoning sequence contained in this node can be transmitted from an input matrix
(X9 or a permutation of (X!9") say (X' ) where o € Z N [1,7]. In this case we

(i)
denote correspondingly the output of /th layer in transformer as X ((le or simply X, ((,l).
Also, when the input matrix is set to be X (Zg(j), we denote correspondingly the sequence

associated to each node N} as bfm-;u, the attention matrices A as A, ; ; and (X O(l))
as (X2,

o,

Moreover, for a given input matrix (X f g t) and for fixed ¢, [ and o we denote the set
D= {Y €R™ s Lo fi(¥) = XU}
N{Y eR%™ .y = X201

o,

(69)
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And for a given input matrix (X f gt) we define the equivalence class of permutations
as follows

Definition D.5. For fixed i € [1,n] N Z and fixed I € [1, L] N Z, two permutations
o € Sym(ZN[1,n]) and T € Sym(ZN[1,n]) are said to be N} level equivalent if and
only if they satisfy

x=xW (70)

And the equivalence class of o is denoted as
o)l = {7 € Symz N [L,n]) : X = X"} 1)
Moreover, we denote E! the set of all the N} level equivalent classes.

It is clear that D, ; are all finite sets since Sym(Z N [1,7]) is a finite set. We shall
also use the notation d(x,y) = ||z — y|.
To expand the f! defined in , we need the following lemma.

, ol I+1
Lemma D.6. For oy,02 € Sym(ZN[1,n]), and fori € ZN[1,n], if (b, ;) # (b, ),
thenfor X € DL and Y € D‘l;gll we have d(X,Y ) > 0.

01,2

Since the sets D' . are all finite, then by Lemma for o1 and o9 satisfying

0,1

V. # V] wehave

ditt = min d(X,Y) > 0. (72)
! XeD, ., YeD]

090

We now define the expansion of f! as follows

fil = (LlN)fl Z 1D221+[_55+1,5l;+1]n ) (73)
o)t

for some 6;*! € (0,d.™"). Here the symbol + in D! + [—6/"", 57| denotes

the addition of sets in R"™, and the condition 5Zl-+1 < dElH) ensures that are well-
defined

Step 3, approximating FNN

Note that for given i, [ and o the set DL 4 [=611 6171)™ is a compact set, according
to Lemma Vné“ > 0, there exist a single-hidden-layer neural network ff such
that

£ 3 l
sup 1L (F(X) = L (FH(X))] < i Y. (74)
XeDLT H[—siT sl

This f is the FNN we are looking for which can tranmit information as f. In fact we
have following proposition.
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Proposition D.7. For given X g;(z)’ we have
U (X550 = X7 o)
Un(FP &) e (XY + e d

R a+1) e
Proof. Without loss of generality we set L, (£ (X 2%V)) = 25;1 b R rudiTY

eglﬂ)rflﬂ) = Xé{;rl), where |r;| = 1,7; € R%". Take egl) < € and set

Zbl Wizt +u— d(l)+€2(-l)"“£l))( Z Wm Z Wizt v d§’>+6(l) ())
m=—(n+1)3

Since A(.l). = A(l)+€(” (l)( - —(nrnyzr W % (l) , we have Vi, j. I, |A§lj)_
l)| SL(n+ ) (l) (l) < no.
And therefore,

i O]
X0 3 %@m X0 4 x0
j=1 Zt 1 exp(A; t)
) G
_ M(Zbl wistrud (0,0 +Zbl wist ey (0,0
A()) —
j=1 > i1 exp( u=1
i 0 cj
= %’{)(Z)(Zjbg;uwj?’L*“‘d(” sz wish +u—d”
j=1 P 1eXP(A ) =t

L oew(Al) g
————— €, T

(76)
along with
: ex (A(l)) ex :
ottt =y [ PR e Sy e
j=1 Zt:lexp(Ai,t) Zt 1 exp(A
i A
iy exp(4; ) SOMONNONG
i A(l)
j=1 > i—1 €xp( )
77
Direct calculation and leads to
1X2o0 — x200| < T+1L (78)
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where

exp(A(l)) exp(A(l))
['=max| AONE )
o) Zt 1 eXp(Ai t) Zt:l eXp(Ai’t)

ex
qu p(A (l) Dl 4 Dy 0. (80)
Zf 1exp( )

Take 79 small enough such that V|z| < ng, | exp(z) — 1| < 2. We then have

I, (79)

< o { |exp(AL)) - cxp(A ADDI iy exp(AT)|
(Xioy exp(A))(Th_; exp(ALTH))
L [ Ei(exp(a A"~ exp(Aﬁ-,;))Hexp( “>>|}
(Xi-y exp(A)) (i, exp(AL)

< max {n x | exp(fil(g — Agl])) -1 exp(Az(f])-) exp(M) 8D

# (O ep(AL) ~ AlD 1) exa(4l) exp<M>>}

< 2n770 exp(2M) + 2nng exp(2M)

< 4nng exp(2M)

II<(n+1)e (82)
Combining (77), (81) and (82) leads to

X250 — X290 <1+ 1 < dn exp(2M) + (n+ 1)e. (83)

We then choose 7y and e small such that 4nng exp(2M) + (n + 1)e < 51(1), and
thus X“O(l) € DI 4 (=671, 6,71 )™. Moreover, we have

ot
IR = 5 bR ) € XU
(84)
where |r;| = 1,7; € R This completes the proof of our proposition. U
Lemma D.8. LayerNorm of the form Ly (z) —2=B@ 1 3 where a, B and ¢

- a\/'\/ar(:c)+e

are constants and the function E(-), Var(-) stands for the expectation and variance
respectively, is injective (i.e., For any x1 # o, we have Ly (x1) # Ly (x2)).

Proof of Lemma[D.8] Note that Ly (z) = « \/% + 5,

For any 21 # o, if Ly (21) = Ly(x2), then we have
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1 _ E n_x 1 _ E n_x
! (1) e ! (1) +8) = (a ) (22) 18, L2 (22) +8),
Var(z1) + € Var(z1) + € Var(zz) + € Var(zz) + €
which leads to
Lo —Blan) 1 8= ﬂ—i—ﬁ,forlgign. (85)
Var(z1) + € Var(zz) + ¢

Therefore, summation from 1 to n in both sides of (83)) leads to

anE(xl) — E(x1) nE(z2) — E(z2)

np =a np,
Var(z1) + € Var(za) + €
which indicates that
E(:L‘l) _ E(mg) (86)
VVar(zi) +e  \/Var(z) +e
By (83), we also have
i i
71 - 2 forl<i<n. (87)
VVar(z1) + € /Var(zs) + e
Combining (86) and (87) yields that
T E(z1) _ Var(z1) + € (88)
2 E(z) Var(zz) + ¢
Set k = E(“; then 2i = kai, E(z1) = kE(x3), and therefore Var(z1) =
k? Var(z2). These relations together with lead to
1 - ki , for1 <i < n. (89)

VVar(z1) + € /k? Var(xq) +e
Since € > 0 and « # 0, it is cleat that k£ must be 1, which contradicts with z; # zo. [

Proof of Lemma[D.6] We prove this lemma by contradiction.
Suppose that there exist X € DlJrl andY € DH'1 such that d(X,Y") = 0.

I+1 I4+1 41 I+1
Since (b,1;) # (b, ;). there exists ig and jo such that bl oo €AbS N1 ba1 3 C(,+1)}
’ g1,
! I+1 141 PN !
and by, ;oo &b, 15 bw c““)}' For simplicity, we denote h = b,,, ; .

Ciloq

By (69), we know that

ao(l) _ : eXP(AS) ) ) 0
X = X‘Tlvl Z 4 » 5) XUl \J + Xffl,i 90)
Jj=1 Zt:l eXp(Acfl i, t)
. cl
i A(l) o1,J ] 01 ¥
_ GXP( 01,1 J) Z bal,j;uRjX3L+u d(ll)J + Z bo'l Zu 1><3L+u d(ull) ;

=1 Zi:l eXP(Affll,z ) u=t
On
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@
y = xol) _ Z eXP(Aa2 i,j) x® n x® 92)
02,1 1 o2, 02,1
’ j=1 Zt 1 eXP(Az(TQ) i, +) ! ’
l
: exp(A(l Coni o
_ 02,1,7 j><3 +u—d, z><3 +u—d
D D DL AR D
Jj=1 t=1 02,1, t u=1
93)
If h ¢ Ui_,V/, then we know that X*°) > e __ ,5q x2ol) — g
=ire g1,%U / Zt 1exP(A<(7L1>t) T2,Lu

which contradicts with our assumption.
If h € Ui, V{ then X“°?) can either be —— =20 or 0. The case X*° =

02,1,Uu iy P(A(olgt) o2,1,u
0 clearly contradicts with our assumption. Hence, we consider only the case X g"(j)u =
—=®O ___ And we then know that
Dtet eXP(Agz ,t)
ao 1 ao 0
PO xoo — PO (94)

)7 o9,1,U

[ i l
D i1 EXP(ASH) t D im1 eXP(AErQ) t)

Suppose the nonzero components of X (Stlg ’i) and X ((,Zg i) located at as the k,, ;-th axis
and the k,, -th axis respectively. Note that

x| = xtot g3t 95)
Xffﬁl = X0 ROV (%)

and that by (44)) the distance between any two embedding axis > 2(n +1)(3% + 1),
we have

exp(0)

xoom (97)
01,i,key 1—35"1n ; ’
' ' Zi:l exXp Aa'l,z t)
ao 0
O -~ exp(0) 98)

02,0,koy 1—35"1n T ]
? 2! Zi:l eXp(AO'Q,z t)
If k01,1 7& k02»1’

exp(O) o ao(l) _ ao(l)

() - 0’1,7;,’(?0111731’77/ 0’2,7;,’(301,1731’71
Zt 1 eXp( o2, t)

=0

which is impossible. Therefore, we have ky, 1 = ks, 1.

In addition, there exist v, € E and the corresponding kg suchthat by = kg 1 =
koy,1, the components of X ¢ (l) and Xg;)(f) on the (k, — (n + 1)3L)-th axis are equal,
which leads to
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1 1
Zi:l eXp(AU1,i7 t) Zi:l exp(Ai,Uz ) t) '

Combining and leads to contradiction with d(X,Y") = 0. And we complete
the proof of Lemma [D.6 O

Proof of Lemma[D-4, By Lemma|D.8| we can easily know that (L)~ (Li(f)) = f
is also a simple function.

According to the lemma above,

there exists a single-hidden-layer neural network f” for any € s.t

99)

sup ||f(z) — f'(2)[] < €o
rzeK

Set M = max || f'(x)||, for any ||z — y|| < €0,
rzeK

v —E@)  y-E()
Var(z) + € Var(y) + €
(x — E(z))\/Var(y) + € — (y — E(y))+/ Var(z) + €
V/Var(y) + ey/Var(z) + €

< ol Mz = = (B(e) B Varly) e

[ly — E(y |||\/Var ) +e—+/Var(y) +e|
€

[Ln(z) = Ln(y)| = |a

+ |af x

(100)
Since || E(z) —E(y)|| < ||z —y|| < €0 and Var(y) = E(y)* — (E(y))* < E(y)* <
(M + €)? we have
|E(x)? = E(y)*| = |E(z - y)(z +y)|
< VE(z —y)? E(z +y)? (101)
</€3 (2M + €)?,

and

| Var(z) — Var(y)|
V/Var(z) + ey/Var(y) + €
< |E(z)? — B(y)*| +[(E(x)* — E@)?| (102)

€
GQ(QM + 60) + 60(2M + 60)

7

|/ Var(z) + € — /Var(y) + €| =

N

€

2e0y/(M + €0)% + € + (M + ¢o) (220l to@Mco)
(L (x) = Ln(y)] < o

€

(103)
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We can set ¢y small enough such that

sup ||Ln(f(z)) — Ly(f'(@)l < sup  |[Ln(z) — Ln(y)| <€
€K V]z—y|<eo

O

Theorem D.9 (Universal Approximation Theorem[Cybenkol [1989]). For any given
continuous function f : R% — R™ and an allowable error € > 0, there exists a single-
hidden-layer neural network fo with appropriate parameters 0, such that:

sup || f(z) = fo(2)llee <,
zeK

where K C R® is an arbitrary compact set.

E Details of the experiment

E.1 Dataset

We require reasoning sequence (z;)1<i<2s Of the training set satisfy the following
condition.

To; — To;—1 Mmod b € {07 1,4} (104)

The sequence of the test set satisfy:

To; — Xo;—1 Mmod b € {2, 3} (105)

The values of each token range from 20 to 100,i.e.,z; € [20, 100].

E.2 Hyperparameters

In this section, the fixed and tunable hyperparameters employed in the model are out-
lined.

The fixed hyperparameters are as follows. Transformer architecture uses one atten-
tion head per layer. The dataset is partitioned into a training set comprising 90% of
the data and a test set comprising the remaining 10%. Training is conducted over 2000
epochs. A weight decay of 0.1 is applied. The dimension of the model d,,, is set equal
to the key dimension dj. The feed-forward network dimension dfccqforward 1S set to
1200.

Table 2:
the number of reasoning steps 3 4 5

the size of datasets 1200000 6000000 30000000
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The following hyperparameters are varied across experiments. We compare models
using both pre-layer normalization and post-layer normalization configurations. The
number of layers, the number of reasoning steps, the model dimension d,,, the learning
rate, the size of datasets (table[2)) and the batch size are also systematically varied.

E.3 About the prelayernorm and postlayernorm

We train a transformer which has 3 layers and 21 token length with batch size equal to
1000 and learning rate equal to 5 X 10~° to do 3-step reasoning. Initially, the model
is configured with post-layer normalization. However, this result in suboptimal perfor-
mance. There is figure 8 we train .

accuracy
s
°

o
accuracy

accuracy

°
=

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
epoch epoch epoch

(a) dp, = 256 (b) d,, =512 () dp, = 1024

Figure 8: postlayernorm

We therefore employ pre-layer normalization in our architecture. Empirical results
indicate that this configuration yields significantly improved performance. The corre-
sponding training curves and outcomes are presented in the figure[9]

10 10 10
08 08
06

— rtestace :
00 — wain_acc — train_acc

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
epoch epoch epoch

accuracy

accuracy

accuracy
o

°
=

°
°

°

(@) d,, = 256 (b) dpy, = 512 ©) dyn = 1024

Figure 9: prelayernorm

E.4 Causal intervention experiment

In this section, we investigate whether transformer is capable of genuine reasoning or
merely memorizes the answers, under the settings of 4-step and 5-step reasoning. We
then describe the experimental methodology employed to obtain the results.

First, a sequence that can be answered correctly will be selected. Subsequently,
a specific attention line or residual connection is masked. If transformer produces an
incorrect output after the masking of a particular attention line or residual connection,
that line will be marked in grey. If the model’s output remains correct, the line will left
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unchanged. The resulting attention graph retains only those connections that critically
influence the outcome. This approach allows for conclusions to be drawn regarding
whether the model has learned to perform reasoning.

E4.1 L=3step-order=4d,, = 1024

1.0
0.8
306
c
3
3
04 W
0.2
— test_acc
0.0 —_— tralnfacc
500 1000 1500 2000
epoch

Figure 10: accuracy of 4-step reasoning

Output seq 69 67 67 77 52 72 95 92 83 25 62 61 62 62 62 52 95 21 52 62 62 80 64 85 24
[EI NN e Noi Noi Neoi Nei Noi Nei Rei RoR RoR ReN R

Layer 2 ooooooooooooooo.oqooo.odo
Layer 1 > fooi/foéooo ¢
Layer 0 I‘ ‘ ‘ ‘ [ Mo eCeo0e ‘

Input seq 67 79 46 44 80 67 44 26 49 62 98 71 71 78 78 46 26 49 62 80 52 24 79 52 80
Figure 11: L=3, 4-step reason

Figure[TT|shows that when the input reasoning pairs satisfy some sequence relationship
((79, 52) occurs after both (67, 79) and (52, 24). ), the model produces the correct
output, and the information flow aligns with the prescribed reasoning rules.
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E.4.2 L=3step-order=5d,, = 1024
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Figure 12: accuracy of 5-step reasoning

Output seq 42 61 61 90 25 48 27 58 38 31 59 66 33 35 98 95 25 35 95 27 25 98 32 97 95

EVEEEENON NeoR NoN Noj Noi NoN NN NN NeR RoN ROE REoE =6

lyer2 Q@U@0 O00000000000CO000008OD

Layer 1 jof N BoN NoX Noi NoX Nei Jof NoX JoF Xel No

0000000000000 00G0R0R0 OO
Input seq 35 24 90 25 97 27 32 91 91 26 26 97 27 98 95 90 24 95 98 84 57 32 84 35 27

Layer 0

Figure 13: L=3, 5-step reasoning

As shown in Figure [I3] when transformer produces a correct answer in the 5-step
reasoning task, the attention and residual connections do not conform to the expected
reasoning patterns. This may suggest that the 3-layer transformer fails to adequately
learn genuine 5-step reasoning. Instead, the model might rely on memorization to
arrive at the correct response.

E.5 Guess about d,,

Based on the aforementioned experiments, it can be observed that training a model
capable of parallel reasoning—where the number of reasoning steps exceeds the depth
of the transformer (i.e., number of layers minus one)—requires a substantially large
model dimension d,,. It is therefore hypothesized that for string reasoning, wherein
the number of reasoning steps equals the depth of the transformer (layers minus one),
a significantly smaller d,,, may suffice.

We train a 4-layer Transformer model to perform 3-step reasoning. In this experi-
ment, the sequence length is set to 21, the batch size is 1000, and the learning rate is
5 x 107°. The model is trained for 500 epochs with a hidden dimension of d,,, = 128.
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Figure 14: L=4 d,,, = 128

The experimental results indicate that the blue and red strings both rapidly ap-
proach 100% success rates. Under the string reasoning condition, a transformer model
with 128 hidden dimensions demonstrates the capability to effectively perform 3-step
reasoning tasks (figure[T4). In contrast, under the parallel reasoning condition, an ar-
chitecturally equivalent model with the same number of hidden dimensions achieves
only an 11.9% success rate.
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