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Abstract

In this work, we study the mechanism underlying loss spikes observed during neural
network training. When the training enters a region, which has a smaller-loss-as-
sharper (SLAS) structure, the training becomes unstable and loss exponentially
increases once it is too sharp, i.e., the rapid ascent of the loss spike. The training
becomes stable when it finds a flat region. The deviation in the first eigen direction
(with maximum eigenvalue of the loss Hessian (λmax) is found to be dominated by
low-frequency. Since low-frequency is captured very fast (frequency principle), the
rapid descent is then observed. Inspired by our analysis of loss spikes, we revisit the
link between λmax flatness and generalization. For real datasets, low-frequency is
often dominant and well-captured by both the training data and the test data. Then,
a solution with good generalization and a solution with bad generalization can both
learn low-frequency well, thus, they have little difference in the sharpest direction.
Therefore, although λmax can indicate the sharpness of the loss landscape, devia-
tion in its corresponding eigen direction is not responsible for the generalization
difference. We also find that loss spikes can facilitate condensation, i.e., input
weights evolve towards the same, which may be the underlying mechanism for why
the loss spike improves generalization, rather than simply controlling the value of
λmax.

1 Introduction

Many experiments have observed a phenomenon, called the edge of stability (EoS) (Wu et al., 2018;
Cohen et al., 2021; Arora et al., 2022), that during the neural network (NN) training, the maximum
eigenvalue of the loss Hessian, λmax, progressively increases until it reaches 2/η (η is learning rate),
and then λmax stays around 2/η. At the EoS stage, the loss would continuously decrease, sometimes
with slight oscillation. Training with a larger learning rate leads to a solution with smaller λmax.
Since λmax is often used to indicate the sharpness of the loss landscape, a larger learning rate results
in a flatter solution. Intuitively as shown in Fig. 1, the flat solution is more robust to perturbation
and has better generalization performance (Keskar et al., 2016; Hochreiter and Schmidhuber, 1997).
Therefore, training with a larger learning rate would achieve better generalization performance. In
this work, we argue this intuitive analysis in Fig. 1 with λmax as the sharpness measure, which
encounters difficulty in NNs through the study of loss spikes.

In a neural network training process, one may sometimes observe a phenomenon of loss spike, where
the loss rapidly ascends and then descends to the value before the ascent. Typical examples are shown
in Fig. 2. We show a special loss landscape structure underlying the loss spike, which is called a
smaller-loss-as-sharper (SLAS) structure. In the SLAS structure, the training is driven by descending
the loss while entering an increasingly sharp region. Once the sharpness is too large, the loss would
ascend exponentially fast. To explain why the loss can descend so fast, we provide a frequency
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Figure 1: Schematic illustration of an ideal explanation for why flat solutions generalize well (Keskar
et al., 2016).

perspective analysis. We find that the deviation in the ascending stage is dominated by low-frequency
components. Based on the frequency principle (Xu et al., 2019, 2020) that low-frequency converges
faster than high-frequency, we rationalize the fast descent.

The study of loss spike provides an important information that the deviation at the first eigen
direction is dominated by low-frequency. We then further argue the link between λmax flatness and
generalization. In practical datasets, low-frequency information is often dominant and shared by
both the training and the test datasets. Therefore, the training can learn low-frequency well. Since
the sharpest direction, indicated by the maximum eigenvalue of the loss Hessian, relates more to
the low-frequency, a solution with good generalization and a solution with bad generalization have
little difference in the sharpest direction, verified by a series of experiments. Hence, λmax with the
intuitive explanation in Fig. 1 encounters difficulty in understanding the generalization of neural
networks, such as why a larger learning rate results in better generalization for networks with EoS
training.

We also find that a loss spike can facilitate condensation, that is, the input weights of different
neurons in the same layer evolve towards the same, which would reduce the network’s effective size.
Condensation is a non-linear feature learning phenomenon in neural networks, which may be the
underlying mechanism for why the loss spike improves generalization (He et al., 2019; Jastrzebski
et al., 2017), rather than simply controlling the value of λmax.

This work studies the loss spike from the landscape perspective and the frequency perspective, and
revisits the relation between the generalization and the flatness, defined by the maximum eigenvalue
of the loss Hessian. This work also conjectures the loss spike may improve generalization via the
facilitation of condensation.

2 Related works

Previous works (Cohen et al., 2021; Wu et al., 2018; Xing et al., 2018; Ahn et al., 2022; Lyu et al.,
2022; Wang et al., 2022) conduct an extensive study of the EoS phenomenon under various settings.
Lewkowycz et al. (2020) observe that when the initial sharpness exceeds 2/η, gradient descent
“catapults” into a stable region and converges. Arora et al. (2022) analyze progressive sharpening
and the edge of stability phenomenon under specific settings, such as normalized gradient descent.
Damian et al. (2022) show that the third-order terms bias towards flatter minima to understand EoS.

Ma et al. (2022) attribute the progressive sharpening to a subquadratic structure of the loss landscape,
i.e., the maximum eigenvalue of the loss Hessian is larger when the loss is smaller in a direction. They
also propose a flatness-driven motion to study the EoS stage, that is, the training would move towards
a flatter minimum, such that the fixed flatness can correspond to points with smaller and smaller
loss values due to the subquadratic property. We call this structure a smaller-loss-as-flatter (SLAF)
structure. The SLAF structure should expect a continuous decrease in the loss rather than a loss spike.
Agarwala et al. (2022) use a quadratic regression model with MSE to study EoS. Similarly, in their
model, the loss spike can not happen. Ma et al. (2022) study the loss spike from the perspective of

2



adaptive gradient optimization algorithms, while we focus on the loss landscape structure and use
gradient descent training in this paper.

A series of works link the generalization performance of solutions to the landscape of loss functions
through the observation that flat minima tend to generalize better (Hochreiter and Schmidhuber, 1997;
Wu et al., 2017; Ma and Ying, 2021). Algorithms that favor flat solutions are designed to improve the
generalization of the model (Izmailov et al., 2018; Chaudhari et al., 2019; Lin et al., 2018; Zheng
et al., 2021; Foret et al., 2020). On the other hand, Dinh et al. (2017) show that sharp minimum can
also generalize well by rescaling the parameters at a flat minimum with ReLU activation. In this
work, we study the relationship between flatness and generalization from a new perspective, i.e., the
frequency perspective, without the limitation of the activation function.

Luo et al. (2021); Zhou et al. (2022) mainly identify the linear regime and the condensed regime
of the parameter initialization for two-layer and three-layer wide ReLU NNs, which determines the
final fitting result of the network. In the linear regime (Jacot et al., 2018; Arora et al., 2019), the
training dynamics of NNs are approximately linear and similar to a random feature model. On the
contrary, in the condensed regime, active neurons are condensed at several discrete orientations. At
this point, the network is equivalent to another network with a reduced width, which may explain
why NNs outperform traditional algorithms (Breiman, 1995; Zhang et al., 2021). For the initial stage
of training, A series of works (Zhou et al., 2021; Chen et al., 2023; Maennel et al., 2018; Pellegrini
and Biroli, 2020) study the characteristics of the initial condensation for different activation functions.
Andriushchenko et al. (2022) find that stochastic gradient descent (SGD) with a large learning rate can
facilitate sparse solutions and attributes it to the noise structure of SGD. In our work, we find that for
the noise-free full-batch gradient descent algorithm, the loss spike can also facilitate the condensation
phenomenon, implying that the noise structure is not the intrinsic cause of condensation.

The frequency principle is examined in extensive datasets and deep neural network models (Xu et al.,
2019; Xu and Zhou, 2021; Rahaman et al., 2019). Subsequent theoretical studies show that the
frequency principle holds in the general setting with infinite samples (Luo et al., 2021). An overview
for frequency principle is referred to Xu et al. (2022). Based on the theoretical understanding, the
frequency principle inspires the design of deep neural networks to learn a function with high-frequency
fast (Liu et al., 2020; Jagtap et al., 2020; Biland et al., 2019).

3 Preliminary: Linear stability in training quadratic model

We consider a simple quadratic model with the loss R(θ) = λθ2/2 trained by gradient descent with
learning rate η, θ(t + 1) = θ(t) − η · dR(θ)/dθ. To ensure the linear stability of the training, it
requires |θ(t + 1)| < |θ(t)|, which implies |1 − λη| < 1, i.e., otherwise, the training will diverge.
Note that λ is the Hessian of R(θ). Similarly, to ensure the linear stability of training a neural
network, it requires that the maximum eigenvalue of the loss Hessian is smaller than 2/η, i.e., 2 over
the learning rate. Therefore, the maximum eigenvalue of the loss Hessian is often used as the measure
of the sharpness of the loss landscape.

4 Loss spike

In this section, we study the phenomenon of loss spike, where the loss would suddenly increase and
decrease rapidly. For example, as shown in Fig. 2(a, d), we train a tanh fully-connected neural network
(FNN) with 20 hidden neurons for a one-dimensional fitting problem, and a ReLU convolutional
neural network (CNN) for the CIFAR10-1k classification problem with MSE. Both two models
experience loss spikes. The red curves, i.e., the λmax value, show that the loss spikes occur at the
EoS stage.

4.1 Typical loss spike experiments

To observe the loss spike clearly, we zoom in on the training epochs around the spike, shown in Fig.
2(b, e). The selected epochs are marked green in Fig. 2(a, d). When the maximum eigenvalue of
Hessian λmax (red) exceeds 2/η (black dashed line), the loss increases, and when λmax < 2/η, the
loss decreases, which are consistent with the linear stability analysis.
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We then study the parameter space for more detailed characterization. Given t training epochs, and let
θi denote model parameters at epoch i, we apply PCA to the matrix M = [θ1−θt, · · · ,θt−θt], and
then select the first two eigen directions e1, e2. The two-dimensional loss surface based on e1 and e2

can be calculated by RS(θt + αe1 + βe2), where α, β are the step sizes, and RS is the loss function
under the dataset S. The trajectory point of parameter θi can be calculated by the projection of θi−θt
in the PCA directions, i.e., (〈θi − θt, e1〉, 〈θi − θt, e2〉). Parameter trajectories (blue dots) and loss
surfaces along PCA directions are shown in Fig. 2(c, f). In two distinct examples, they exhibit similar
behaviors. At the beginning of the ascent stage of the spike, the parameter is at a small-loss region,
where the opening of the contour lines is towards the left, indicating a leftward component of descent
direction. In the left region, the contour lines are denser, implying a sharper loss surface. Once
λmax > 2/η, the parameters become unstable, and the loss value increases exponentially. In the
large-loss region, the opening of the contour shifts to the right, indicating a rightward component of
the descent direction, resulting in a sparser contour, i.e., a flatter loss surface. After several steps,
when λmax < 2/η, the training returns to the stable stage.
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Figure 2: (a, d) The loss value (black) and λmax (red) vs. training epoch, where the λmax is calculated
every 100 epoch. (b, e) The loss value and λmax of a specific epoch interval, which is marked green
in (a, d), respectively. (c, f) The loss surface and the trajectory of the model parameters along the first
two PCA directions. (a, b, c) Two-layer tanh NN with width 20. The sum of the explained variance
ratios of the first two PCA directions is 0.9895. (d, e, f) Two-layer ReLU CNN with Max Pooling.
The sum of the explained variance ratios of the first two PCA directions is 0.9882.

4.2 Smaller-loss-as-sharper (SLAS) structure

The above experiments reveal a common structure that causes a loss spike, namely, the λmax sharpness
increases in the direction of decreasing loss. We call this structure smaller-loss-as-sharper (SLAS)
structure. The SLAS structure differs from the SLAF (smaller-loss-as-flatter) structure studied in
Ma et al. (2022), which is also common in the EoS stage as shown in Fig. 3(a). A toy example of
the SLAS structure is shown in Fig. 3(b). The left cross-section of the loss landscape has a flatter
curvature while the right one has a sharper curvature. At the minimum of the left cross-section (the
L1 dashed line), the opening of the contour lines towards the right and the parameter point will also
move right, which makes the curvature sharper. Once η > 2/λmax, it starts to diverge to a large-loss
region and the opening of the contour turns left (the L2 dashed line), which makes the curvature
flatter.

The following quadratic model is a simple example of SLAS structure,

f(x, y) = (50x+ 200)y2 − x+ 5, (1)
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where (x, y) ∈ (−4,+∞)× R. For any constant C, y = 0 is the minimum point of f(C, y), and the
larger x is, the sharper the loss landscape in the y-direction. As shown in Fig. 3(c, d), the loss curve
and the trajectory of parameters are similar to the realistic example above, where the parameters move
toward the sharp direction at the beginning of the loss spike, and then move toward the flat direction.
The intuitive explanation for the above phenomenon is that as x increases, f(x, 0) decreases, which
means that f(x, 0) has a smaller value at the sharp region, i.e., the SLAS structure, which makes the
opening of the contour lines towards different directions at different loss levels.

0.0 0.2

0.00

0.02

0.04

0.06

0.035

0.037

0.037

0.040

0.040

0.045

0.045

0.050

0.050

0.060

0.060

0.070

0.070

0

500

1000

1500

2000

ep
oc

h(
+1

48
00

0)

(a) SLAF example (b) schematic illustration

0 25 50 75 100
epoch

300

350

400

450

m
ax

 e
ig

en
va

lu
e

101

102

lo
ss

loss
max

2/
max loss

(c) toy model, loss

1 0 1
x

2

1

0

1

2

y 7

50

50

300

300

600

600

900

900

0

50

100

ep
oc

h

(d) toy model, trajectory

Figure 3: (a) The loss surface and the trajectory of the model parameters along the first two PCA
directions in the EoS stage. (b) Schematic illustration of SLAS structure. (c) The loss value and the
maximum eigenvalue of the Hessian matrix of a loss spike process of the toy model. (d) The loss
surface and the GD trajectory of the two-dimensional parameters of the toy model.

For this example, we can exactly compute the derivative of Eq. (1) as follows:

∂f(x, y)

∂x
= 50y2 − 1.

Thus we have

∂f(x, y)

∂x


> 0 if f(x, y) < 9

= 0 if f(x, y) = 9

< 0 if f(x, y) > 9

,

which indicates that the toy model has a positive gradient component in the x direction when the
parameters are in the small-loss region (f(x, y) < 9), while a negative gradient component in the x
direction when the parameters are in the large-loss region (f(x, y) > 9).

Although the SLAS structure can explain the mechanism of the ascent stage based on the toy model, it
can not explain the reason for the rapid descent of the loss in the descent phase of the loss spike, which
takes much fewer steps than the training from the same level loss at the initialization. For instance,
for the quadratic model in the Preliminary section, the descent would be very slow if the learning rate
is slightly smaller than 2/λmax. Moreover, due to the high dimensionality of the parameter space,
the parameter trajectory does not always align with the first eigen direction, otherwise, as shown in
the toy model, the loss would not decrease continuously. In the following, we take a step toward
understanding the rapid decrease from the frequency perspective.

4.3 Frequency perspective for understanding descent stage

In this subsection, we study the mechanism of the rapid loss descent during the descent stage in a
loss spike from the perspective of frequency.

We base our analysis on a common phenomenon of frequency principle (Xu et al., 2019, 2020; Zhang
et al., 2021; Luo et al., 2021; Rahaman et al., 2019; Ronen et al., 2019), which states that deep NNs
often fit target functions from low to high frequencies during the training. A series of frequency
principle works show that low-frequency can converge faster than high-frequency. Compared to the
peak point of the loss spike with the point with the same loss value at the initial training, the descent
during the spike should eliminate more low-frequency with a fast speed while the descent from the
initial model should eliminate more high-frequency with a slow speed. To verify this conjecture, we
study the frequency distribution of the converged part during the descent stage.
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Figure 4: Low-frequency proportion for different low-frequency thresholds. The NN we used is a
two-layer tanh NN with width 20. For the random output difference, we calculate the mean value and
the error bar with 100 random samples.

The peak of the loss spike is denoted as θmax, the initial point which has the similar loss of θmax

is denoted as θini,m, the parameter at the end of the loss spike (a point is roughly selected when
the descent is slow) is denoted as θend. We then study the frequency distribution of spike output
difference fpeak,diff := fθmax

− fθend
and initial output difference fini,diff := fθini,m

− fθend
.

For comparison, we also randomly select parameter θrnd := θend +(‖θend−θmax‖2/‖ε‖2)ε, where
ε ∼ N(0, I) is a random variable. We then study the frequency distribution of random output
difference frnd,diff := fθrnd

− fθend
.

We characterize the frequency distribution by taking different low-frequency thresholds to study
low-frequency proportion. For a low-frequency threshold K, a low-frequency proportion (LFP) is
defined as follows to characterize the power proportion of the low-frequency component over the
whole spectrum,

LFP(K) =

∑
k≤K‖f̂θ(k)‖2∑
k‖f̂θ(k)‖2

, (2)

where f̂θ indicates the Fourier transform of function fθ.

As shown in Fig. 4, the low-frequency proportion of the spike output difference is significantly larger
than the low-frequency proportion of the initial output difference and the random output difference,
where we take 100 samples of random variable ε for the mean value and the error bar for each
low-frequency threshold. The large low-frequency proportion of the spike output difference is the
key reason for the rapid drop in the loss value during the descent stage, as suggested by the frequency
principle.

5 Revisit the flatness-generalization picture

Motivated by the loss spike analysis from the frequency perspective, we further revisit the common
flatness-generalization picture. A series of previous works (Hochreiter and Schmidhuber, 1997; Li
et al., 2017) attempt to link the flatness of the loss landscape with generalization, so as to characterize
the model through flatness conveniently. A classic empirical illustration is shown in Fig. 1, which
vividly expresses the reason why flat solutions tend to have better generalization. Usually, the training
loss landscape and the test landscape do not exactly coincide due to sampling noise. A flat solution
would be robust to the perturbation while a sharp solution would not. For such a one-dimensional
case, this analysis is valid, but the loss landscape of a NN case is very high-dimensional, and such
simple visualization or explanation is yet to be validated.

The first eigen direction of the loss Hessian, i.e., the eigen direction corresponding to the maximum
eigenvalue, is the sharpest direction. Based on the flatness-generalization picture, it is natural to
use the maximum eigenvalue as the measure for the flatness, which can also indicate generalization.
However, this naive analysis is not always correct for neural networks.
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5.1 Frequency perspective

Since the maximum eigenvalue of the loss Hessian can indicate the linear stability of the training, it
is often used as a measure for flatness/sharpness, that is, a larger maximum eigenvalue indicates a
sharper loss landscape. As shown by the linear stability analysis, once the maximum eigenvalue is
larger than 2/η, the training would oscillate and diverge along the first eigen direction. Meanwhile,
as the parameter moves away from the minimum point along the first eigen direction, the loss spike is
mainly due to the large low-frequency difference as shown in Fig. 4. Therefore, the deviation in the
first eigen direction of the loss Hessian mainly leads to the deviation of low-frequency components.

In order to examine the above analysis, we first obtain the model parameter θtrain with poor gener-
alization by training the model initialized in the linear regime (Luo et al., 2021), and then further
train the model parameter θtrain on the test dataset with a small learning rate to obtain the model
parameter θtest.

We study the impact of each eigen direction on the test loss by eliminating the difference between
θtrain and θtest in the i-th eigen direction νi, where i is the index of eigenvalues. As shown in Fig.
5(a), we study the change of the test loss L(i) with the eigenvalue index i as follows to study the
effect of eigenvectors on generalization,

L(i) = RStest

θtrain +

i∑
j=1

〈θtest − θtrain,νj〉νj

 ,

where Stest is the test dataset. The movement of parameters on the eigenvectors corresponding
to large eigenvalues has a weak impact on the test loss, while the movement of parameters on the
eigenvectors corresponding to small eigenvalues has a significant impact on the test loss.

A reasonable explanation from the perspective of frequency is as follows. In common datasets, low-
frequency components often dominate over high-frequency ones. For noisy sampling, the dominant
low-frequency is shared by both the training and the test data. When the parameters move along
the eigen directions corresponding to the large eigenvalues, the network output often changes at
low-frequency, which is already captured by both θtrain and θtest. Therefore, the improvement of
model generalization often requires certain high-frequency changes. As shown in Fig. 5(b), we
move the corresponding θtrain along the first nine eigen directions, and show the difference between
the network outputs before and after the movement, i.e., fθ

train+νi/
√
λi
− fθtrain , where the 1/

√
λi

item is to make the loss of the network moved in different eigen directions approximately the same.
From the difference between the outputs before and after the movement, it can be seen that when the
parameters move along the eigen direction corresponding to the larger eigenvalue, the change of the
model output is often less oscillated, i.e., dominated by the lower-frequency. Since the low-frequency
is captured by both θtrain and θtest, they should be close in the eigen directions corresponding to
large eigenvalues, which is verified in the following subsection.

5.2 Difference on each eigen direction

We then examine the projection of θtest−θtrain in each eigen direction ofH(θtrain). As shown in Fig.
6, we show the projection of θtest − θtrain on each eigenvector νi (blue bar) for the FNN on function
fitting problem and the CNNs on CIFAR10 classification problem. Due to the high complexity of
calculating the eigenvectors of the large-size Hessian matrix, we use the Lanczos method (Cullum
and Willoughby, 2002) to numerically compute the first N eigenvalues and their corresponding
eigenvectors. For n < N , we use

∑n
i=1λ

2
i /
∑N

i=1λ
2
i to represent the explained variance ratio, i.e., to

measure how much flatness information the first n eigen directions (orange line) can explain. For
different network structures and model tasks, the projection value of θtest − θtrain on the eigenvector
νi has a positive correlation with the eigenvalue index i, which confirms that θtrain and θtest have
little difference on low-frequency part. Note that in Fig. 6(d), the two minima, θsmall and θlarge,
are found by small and large batch sizes, respectively, and they also have little difference in eigen
directions corresponding to large eigenvalues.

5.3 Implications

The above analysis suggests the following implications: i) The maximum eigenvalue of the loss
Hessian is a good measure of sharpness for whether the training is linearly stable but not a good
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Figure 5: Two-layer tanh FNN with a width of 500. (a) The variation of the test loss with the
eigenvalue index i when eliminating the difference between θtrain and θtest in the first i eigen
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Figure 6: Blue bar: (a, b, c) show the projection values of in each eigen direction of H(θtrain) for
θtest − θtrain, and (d) for θlarge − θsmall. Orange line: the sum of the first n eigenvalues over all
eigenvalues. (a) Two-layer tanh FNN for the one-dimensional fitting problem. (b) Two-layer ReLU
CNN with Max Pooling for the CIFAR10 classification problem. (c) Three-layer ReLU CNN with
Max Pooling for the CIFAR10 classification problem. (d) Five-layer ReLU CNN with Max Pooling
for the CIFAR10 classification problem.

measure for generalization; ii) The common low-dimensional flatness-generalization picture suffers
difficulty in understanding the high-dimensional loss landscape of neural network. The generalization
performance is a combined effect of most eigen directions, including those with small eigenvalues.

6 Loss spike facilitates condensation

From the analysis above, the restriction on λmax does not seem to be the essential reason why loss
spike affects the generalization of the model. In this section, we study the effect of loss spike on
condensation, which may improve the model’s generalization in some situations (He et al., 2019;
Jastrzebski et al., 2017). A condensed network, which refers to a network with neurons condensing
in several discrete directions, is equivalent to another smaller network (Zhou et al., 2021; Luo et al.,
2021). It has a lower effective complexity than it appears. The embedding principle (Zhang et al.,
2021, 2022; Fukumizu et al., 2019; Simsek et al., 2021) shows that a condensed network, although
equivalent to a smaller one in approximation, has more degeneracy and descent directions that may
accelerate the training process. The low effective complexity and simple training process may be
underlying reasons for good generalization. We show that the loss spike can facilitate the condensation
phenomenon for the noise-free full-batch gradient descent algorithm.

As shown in Fig. 7, we train a tanh NN with 100 hidden neurons for the one-dimensional fitting
problem to fit the data using MSE as the loss function. Additional experimental verification on ReLU
NNs is provided in Appendix B.1. To clearly study the effect of loss spike on condensation, we
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take the parameter initialization distribution in the linear regime (Luo et al., 2021) that does not
induce condensation without additional constraints. For NNs with identical initialization, we train
the network separately with a small learning rate (blue) and a large learning rate (orange). For the
left subfigure in Fig. 7, the loss value has a significant spike for the large learning rate, but not for
the small one. At the same time, the middle subfigure reveals that the model output without a loss
spike (blue) during the training process has more oscillation than the model output with a loss spike
(orange). We study the features of parameters to understand the underlying effect of loss spike better.

To study the parameter features, we measure each parameter pair (aj ,wj) by the feature direction
ŵj = wj/‖wj‖2 and amplitude 2 Aj = |aj |‖wj‖2. For a NN with one-dimensional input, after
incorporating the bias term, wj is two-dimensional, and we use the angle between wj and the unit
vector (1, 0) to indicate the orientation of each neuron. The scatter plots of {(ŵj , |aj |)}mj=1 and
{(ŵj , ‖wj‖2)}mj=1 of tanh activation are presented in Appendix B to eliminate the impact of the
non-homogeneity of tanh activation.

The scatter plots of {(ŵj , Aj)}mj=1 of the NN is shown in the right subfigure of Fig. 7. Parameters
without loss spikes (blue) are closer to the initial values (green) than those with loss spikes (orange).
For the case with loss spikes, non-zero parameters tend to condense in several discrete orientations,
showing a tendency to condensation.
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Figure 7: Comparison of two-layer tanh NNs with identical initialization but different learning rates
η. The loss spike occurs at a large learning rate (orange), while not at a small learning rate (blue).
Left: loss vs. epoch. The small picture in the upper right corner shows the occurrence of the loss
spike in more detail. Middle: output. Right: The weight feature distribution of the trained models
and the initial one.

7 Conclusion and discussion

In this work, we provide an explanation for loss spikes in neural network training. We explain the
ascent stage based on the landscape structure, i.e., the SLAS structure, and for the descent stage,
we explain it from the perspective of frequency. We revisit the common flatness-generalization
picture based on the frequency analysis. We also find that noise-free gradient descent with loss
spikes can facilitate condensation, which may be an underlying reason for the good generalization
in some situations. Obviously, many questions remain open. For example, why the eigen direction
corresponding to a large eigenvalue is dominated by low-frequency? Why the loss spike can facilitate
the condensation? We leave the discussion of these important questions to future work.
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A Experimental setups

For Fig. 2(a-c), Fig. 3(a), Fig. 4, we use the two-layer tanh FNN with a width of 20 to fit the target
function using full-batch gradient descent as follows,

f(x) = sin(x) + sin(4x).

The initialization of the parameters θ ∼ N(0,m−1), where m is the width of the NN, and the
learning rate η = 0.05. For Fig. 2(a), the λmax is calculated every 100 epochs. Fig. 2(c) and Fig. 3(a)
show the parameter trajectories of different epoch intervals, which are indicated on the label of the
color bar. For Fig. 4, the θmax is selected at epoch 114320, and the θend is selected at epoch 114400.

For Fig. 2(d-f), we use the two-layer ReLU CNN with a Max Pooling layer behind the activation
function for the CIFAR10-1k classification problem, i.e., using the first 1000 training data of the
CIFAR10 as the training data. The number of the convolution kernels is 16 and the size is 3× 3. We
use the MSE as the loss function with learning rate η = 0.1.

For Fig. 3, we use the following quadratic model as the toy model to illustrate the SLAS structure,

f(x, y) = (50x+ 200)y2 − x+ 5,

where (x, y) ∈ (−4,+∞)× R. The training uses the gradient descent algorithm with learning rate
η = 5× 10−3 and the initial value (x, y) = (0.5, 0.00001).

For Fig. 5(a, b) and Fig. 6(a), we use the two-layer tanh FNN with a width of 500 to fit the target
function using full-batch gradient descent as follows,

f(x) = tanh(x− 6) + tanh(x+ 6).

The initialization of the parameters θ ∼ N(0,m−0.4), where m is the width of the NN, and the
learning rate η = 0.001. The training dataset is obtained by sampling 15 points equidistantly in
the [−12, 12] interval, and the test dataset is obtained by sampling 14 points equidistantly in the
[−11.14, 11.14] interval, which is approximately the midpoint of the pairwise data of the training set.

For Fig. 6(b-c), we use the CNNs for the CIFAR10-1k classification problem with structures shown
in Table 1-2, respectively. We use ReLU as the activation function, added behind each convolutional
layer. We use the Xavier initialization and the MSE loss function. The learning rate is 0.005. For Fig.
6(d), we use the CNNs for the CIFAR10-2k classification problem with structures shown in Table 3.
We use ReLU as the activation function, added behind each convolutional layer. We use the Xavier
initialization and the cross-entropy loss function. The learning rate is 0.01. The large batch size we
used is 1000, while the small one is 32.

Table 1: The architecture of the three-layer CNN used in Fig. 6(b).
Layer Output size
input 32× 32× 3

3× 3× 16, conv 32× 32× 16
2× 2, maxpool 16× 16× 16

flatten 4096
4096→ 10, linear 10

Table 2: The architecture of the three-layer CNN used in Fig. 6(c).
Layer Output size
input 32× 32× 3

3× 3× 16, conv 32× 32× 16
2× 2, maxpool 16× 16× 16
3× 3× 32, conv 16× 16× 32
2× 2, maxpool 8× 8× 32

flatten 2048
2048→ 10, linear 10
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Table 3: The architecture of the five-layer CNN used in Fig. 6(d).
Layer Output size
input 32× 32× 3

3× 3× 16, conv 32× 32× 16
2× 2, maxpool 16× 16× 16
3× 3× 32, conv 16× 16× 32
2× 2, maxpool 8× 8× 32
3× 3× 64, conv 8× 8× 64
2× 2, maxpool 4× 4× 64

flatten 1024
2048→ 500, linear 500
500→ 10, linear 10

For Fig. 7, Fig. 9, we use the two-layer tanh FNN with a width of 200 to fit the target function using
full-batch gradient descent as follows,

f(x) = tanh(x− 6) + tanh(x+ 6).

The initialization of the parameters θ ∼ N(0,m−1), where m is the width of the NN. We train the
NN with loss spikes using the learning rate η = 0.05 while using η = 0.005 for the training without
loss spikes. The training dataset is obtained by sampling 10 points equidistantly in the [−12, 12]
interval.

For Fig. 8, we use the two-layer ReLU FNN with a width of 500 to fit the target function using
full-batch gradient descent as follows,

f(x) =
1

2
ReLU(−x− 1

3
) +

1

2
ReLU(x− 1

3
).

The initialization of the parameters θ ∼ N(0,m−0.4), where m is the width of the NN. We train the
NN with loss spikes using the learning rate η = 0.05 while using η = 0.0005 for the training without
loss spikes. The training dataset is obtained by sampling 6 points equidistantly in the [−5/3, 5/3]
interval.
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B Experimental results

B.1 Loss spikes facilitate condensation on ReLU NNs

In this subsection, We verify that the ReLU network facilitates condensation with loss spikes shown
in Fig. 8, similar to the situation in the tanh NNs shown in Fig. 7 in the main text. We only plot the
neurons with non-zero output value in the data interval [x1, xn] in the situation in the ReLU NNs.
For the neurons with constant zero output value in the data interval, they will not affect the training
process and the NN’s output.
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Figure 8: Comparison of two-layer ReLU NNs with the same initialization at different learning rates
η. The loss spike occurs at a large learning rate, while does not occur at a small learning rate. Left:
The loss value under different learning rates, η = 5 × 10−4 (blue) and η = 5 × 10−2 (orange).
The small picture in the upper right corner shows the occurrence of the loss spike in more detail.
Middle: The output of the model trained under different learning rates, η = 5 × 10−4 (blue) and
η = 5×10−2 (orange). The black points are the target points. Right: The feature of the model trained
under different learning rates, η = 5× 10−4 (blue) and η = 5× 10−2 (orange) and the initialization
(green).

B.2 Detailed Features of Tanh NNs

In order to eliminate the influence of the inhomogeneity of the tanh activation function on the
parameter features of Fig. 7, we plot the normalized scatter figures between ‖aj‖, ‖wj‖ and the
orientation, as shown in Fig. 9. Obviously, for the network with loss spikes, both the input weight
and the output weight have weight condensation, while the network without loss spikes does not have
weight condensation.
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Figure 9: The normalized scatter diagrams between ‖aj‖, ‖wj‖ and the orientation of tanh NNs for
the initialization parameters and the parameters trained with and without loss spikes. Blue dots and
orange dots are the output weight distribution and the input weight distribution, respectively.
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