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Abstract. Frequency perspective recently makes progress in understanding deep
learning. It has been widely verified in both empirical and theoretical stud-
ies that deep neural networks (DNNs) often fit the target function from low
to high frequency, namely Frequency Principle (F-Principle). F-Principle sheds
light on the strength and the weakness of DNNs and inspires a series of sub-
sequent works, including theoretical studies, empirical studies and the design
of efficient DNN structures etc. Previous works examine the F-Principle in
gradient-descent-based training. It remains unclear whether gradient-descent-
based training is a necessary condition for the F-Principle. In this paper, we
show that the F-Principle exists stably in the training process of DNNs with non-
gradient-descent-based training, including optimization algorithms with gradi-
ent information, such as conjugate gradient and BFGS, and algorithms without
gradient information, such as Powell’s method and Particle Swarm Optimiza-
tion. These empirical studies show the universality of the F-Principle and pro-
vide hints for further study of F-Principle.
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1 Introduction

Understanding deep neural networks (DNNs) is an important problem in modern
machine learning, since it has permeated many aspects of daily life and important
industries. Recent studies find that DNNs with gradient-descent-based algorithms
often follow a Frequency Principle (F-Principle) proposed in Xu et al. (2019a,b) or
Rahaman et al. (2019), namely,
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DNNs tends to learn target functions from low frequency to high frequency during
the training.

Theoretical studies subsequently show that frequency principle holds in gen-
eral setting with infinite samples (Luo et al., 2019) and in the regime of wide neural
networks (Neural Tangent Kernel (NTK) regime (Jacot et al., 2018)) with finite sam-
ples (Luo et al., 2020a,b; Zhang et al., 2019) or sufficient many samples (Bordelon
et al., 2020; Cao et al., 2019; Ronen et al., 2019; Yang & Salman, 2019). E et al. (2019)
show that the integral equation would naturally lead to the frequency principle.
With the theoretical understanding, the frequency principle inspires the design of
DNN-based algorithms (Biland et al., 2019; Cai et al., 2019; Jagtap et al., 2020; Li
et al., 2020; Liu et al., 2020; Wang et al., 2020a; You et al., 2020). In addition, the F-
Principle provides a mechanism to understand many phenomena in applications
and inspires a series of study on deep learning from frequency perspective, such
as the generalization of DNNs (Ma et al., 2020; Xu et al., 2019b), the understanding
of the effect of depth in DNNs (Xu & Zhou, 2020), the difference between the tradi-
tional algorithm and DNN-based algorithm in solving PDEs (Wang et al., 2020b).

All previous studies of the F-Principle consider the gradient-descent-based train-
ing. It is still unclear whether the gradient-descent-based training is a necessary
condition for the F-Principle in DNN training process. Previous studies of the F-
Principle in finite-width network (Luo et al., 2019; Xu et al., 2019b) or infinite width
network(Cao et al., 2019; Ronen et al., 2019; Yang & Salman, 2019; Zhang et al.,
2019) all base on the gradient flow of the training. However, the deep learning can
be trained by many optimization algorithms in addition to the (stochastic) gradient
descent. In this work, we use numerical experiments to show that the F-Principle
holds stably in the DNN training process with non-gradient-descent algorithms,
such as conjugate gradient and BFGS. We further show that the F-Principle can
also exist in the DNN training process with optimization algorithms without any
gradient information in each iteration step, such as Powell’s method and Particle
Swarm Optimization. To further show the universality of the F-Principle, we de-
sign an Monte-Carlo-Like optimization algorithm that randomly selects parame-
ters, which can decrease the loss function. During the training of this Monte-Carlo-
Like optimization algorithm, we found that the F-Principle still holds well.

The rest of paper is organized as follows. Section 2 introduces experimental
details. Section 3 shows that gradient descent is not necessary for the F-Principle.
Section 4 shows that gradient information during training is not necessary for the
F-Principle. A short discussion and conclusion are given in section5.

2 Experimental details

To examine the F-Principle, it requires to differentiate the low- and high-frequency
parts of dataset. In the following, we introduce discrete Fourier transform for 1d
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synthetic data and a filtering method for high-dimensional dataset, proposed in Xu
et al. (2019b).

2.1 Discrete Fourier transforms in synthetic data

Following the suggested notation in BAAI (2020), we denote the target function by
ƒ () and the DNN output by ƒθ(). For 1-d synthetic data, {(j,ƒ (j))}nj=1 and
{(j,ƒθ(j))}nj=1, we examine the relative error of each frequency during the train-
ing. The discrete Fourier transforms (DFT) of ƒ () and the DNN output (denoted
by ƒθ()) are computed by:

ƒ̂k=
1

n

n
∑

j=1

ƒ (j)e−i2πjk/n, and ƒ̂θk=
1

n

n
∑

j=1

ƒθ(j)e−i2πjk/n,

where k is the frequency. We compute the relative difference between the DNN
output and the target function for each frequencies k at each training epoch, that
is, ∆F(k)= |ƒ̂θk− ƒ̂k |/|ƒ̂k |, where |·| denotes the norm of a complex number.

F-Principle is tenable when ∆F(k) converge to 0 one by one in the training pro-
cess, from low frequency components to high-frequency components. For our ex-
periments of 1-d situation in the following texts, {j}nj=1 will choose evenly sam-

pled points from [−3.14,3.14] with sample size 201, and each elements in W []

and b[] are initialized by a distribution, namely, they are sampled fromN(0, 2
m+1+m

),
where m is the neuron number of th layer. The loss function is chosen as mean
squared error (MSE) here. The activation function for fully-connected networks is
sigmoid function.

2.2 Real data

For high-dimensional data, it is hard to compute the high-dimensional Fourier
transform. We now introduce a filtering method proposed in Xu et al. (2019b) to
examine the F-Principle in a real data set (e.g., MNIST).

We train the DNN by the original dataset {(x,y)}
n−1
=0 , where x is an image

vector, y is a one-hot vector. At each training epoch, the low frequency part can be
derived by a low-frequency filter, that is, the convolution with a Gaussian function,

ylow,δ =
1

C

n−1
∑

j=0

yjGδ(x−xj), (2.1)

where C=
∑n−1

j=0 G
δ(x−xj) is a normalization factor and δ is the variance of the

following Gaussian function

Gδ(x−xj)=exp
�

−|x−xj|2/(2δ)
�

. (2.2)
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The high frequency part can be derived by

yhigh,δ ¬y−ylow,δ .

We also compute hlow,δ and hhigh,δ for each DNN output h= ƒθ().
To quantify the convergence of hlow,δ and hhigh,δ, we compute the relative error

elow and ehigh at each training epoch,

elow=

 
∑

 |y
low,δ
 −hlow,δ |2
∑

 |y
low,δ
 |2

!

1
2

, (2.3)

ehigh=

 
∑

 |y
high,δ
 −hhigh,δ |2
∑

 |y
high,δ
 |2

!

1
2

, (2.4)

where hlow,δ and hhigh,δ are obtained from the DNN output, which evolves as a
function of training epoch, through the same decomposition. If elow<ehigh for
different δ’s during the training, F-Principle holds; otherwise, it is falsified.

We use a MSE loss and a small sigmoid-CNN network, i.e., two convolutional
layers (one convolution layer of 5×5×32, a max pooling of 2×2, one convolution
layer of 5×5×64, a pooling layer of 2×2), followed by a fully connected multi-layer
neural network 1024-10 equipped with a softmax.

Due to the memory constrained of some training algorithms, we only train 550
randomly selected samples from MNIST data, and we only perform experiments
of Conjugate Gradient algorithm and L-BFGS in the following experiments. Other
algorithms perform badly for the high-dimensional MNIST data.

3 Gradient descent is not necessary for F-Principle

In this section, we would examine the F-Principle in the DNN training with algo-
rithms which are non-gradient-descent algorithms but still use gradient informa-
tion in each iteration step.

The algorithms used in this section are variants of Newton method. New-
ton method is faster than the Gradient Descent in terms of iteration step number.
However, due to the difficulty of ensuring Hessian matrix positive definite and the
complexity of computing the inverse of the Hessian matrix, the original Newton’s
method is rarely used for large scale computations. Instead, the conjugate gradi-
ent algorithm (CG), truncated Newton algorithm (TNC), BFGS (Nocedal & Wright,
2006) and its variant L-BFGS is popular for practical simulations.

3.1 Conjugate Gradient algorithm

Conjugate gradient (CG) algorithm is a popular algorithm for solving nonlinear
optimization problems. The features of CG are that it requires no matrix storage
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and are faster than the gradient descent. The detail of CG algorithm is given in
Appendix.

We use CG algorithm to train the 1-100-10-1 DNN to learn the target function
with three frequency peaks, namely,

ƒ ()=sin+sin3+sin5. (3.1)

As shown in Figure 1, the DNN converges gradually from low-frequency to high
frequency in Fourier analysis.

Figure 1: Using CG to learn ƒ ()=sin+sin3+sin5. ∆F(k) of three selected
important frequencies against different training epochs. Blue indicates large rela-
tive error, while red indicates small relative error.

We also use CG algorithm to train a convolutional network to fit MNIST. The
F-Principle also holds in the training process, see Figure 2 for different variances δ
of the Gaussian function.

3.2 Truncated Newton algorithm

Truncated Newton algorithm (TNC), also called Newton Conjugate-Gradient, is
a nonlinear method based on Newton method. The CG method is designed to
solve positive definite systems, however, the Hessian matrix may have negative
eigenvalues to lead to an inaccurate solution. TNC is a Hessian-free optimization
method (Nash, 1985). The detail of TNC algorithm is given in Appendix.

In this experiment, we use TNC to train the 1-100-10-1 DNN to learn the target
function with two frequency peaks, i.e., ƒ ()=sin+sin3. Again, as shown in
Figure 3, the DNN converges gradually from low-frequency to high frequency.

In our experiments, we point out that the results of training DNN by TNC to
regress the target function (3.1) are not perfect, which is caused by the fact that the
search direction is not the descent direction. This also may be influenced by the
Hessian matrix, which may not keep positive definite in the training process. For
ƒ () = sin+sin3, the low-frequency components is converged first, and it is
regressed perfectly.
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(a) δ=2 (b) δ=7

Figure 2: Using CG to learn MNSIT. The F-Principle is examined for different δ.
elow and ehigh indicated by color against training epoch.

Figure 3: Using TNC to learn ƒ ()=sin+sin3. ∆F(k) of three selected impor-
tant frequencies against different training epochs.

3.3 BFGS and L-BFGS

In this subsection, we use BFGS and L-BFGS, which are quasi-Newton methods, to
train neural networks. The detail of BFGS algorithm is given in Appendix.

In Figure 4(a), we use BFGS to train a DNN of 1-100-10-1 to learn the target
function (3.1). Similarly, the DNN converges gradually from low-frequency to high
frequency.

L-BFGS uses a limited memory algorithm based on BFGS. This method only
uses the data of the recent steps, which can simplify the computation and memory
(Byrd et al., 1995; Nocedal & Wright, 2006). The detail of L-BFGS algorithm is given
in Appendix.

In Figure 4(b), we use L-BFGS to train a DNN of 1-500-50-1 to learn the target
function (3.1). It is clear that the DNN converges gradually from low-frequency to
high frequency in this example.

We further use L-BFGS to train a CNN to learn MNIST. As shown in Fig. 5,
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(a) BFGS (b) L-BFGS

Figure 4: Using BFGS in (a) and L-BFGS in (b) to learn ƒ ()=sin+sin3+sin5.
∆F(k) of three selected important frequencies against different training epochs.

(a) δ=2 (b) δ=7

Figure 5: Using L-BFGS to learn MNSIT. The F-Principle is examined for different
δ. elow and ehigh indicated by color against training epoch.

for different filter width, we still observe that the high frequency part converges
slower, that is, F-Principle.

In this section, we have used experiments to show that a training algorithm,
which uses gradient information but not a gradient-descent method, can still lead
to the phenomenon of F-Principle. In the next section, we would show that even
using a training algorithm without using gradient information, the F-Principle can
still hold.

4 Gradient is not necessary

In this section, we use two non-gradient-based optimization algorithm (i.e., Pow-
ell’s method, Particle Swarm Optimization (PSO)) and a Monte-Carlo-like algo-
rithm, to examine the F-Principle.
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(a) Powell’s Method (b) PSO

Figure 6: Using non-gradient-based method to learn ƒ ()= sin+sin3. ∆F(k)
of selected important frequencies against different training epochs.

4.1 Powell’s method

Powell’s method, a conjugate direction method, performs sequential one-dimensional
minimization along each vector of a direction set, in which the direction set is up-
dated at each iteration (Powell, 1964). The method used here is a modification of
Powell’s method. The loss function can be non-differentiable, since no derivative
is taken. The detail of Powell’s method is given in Appendix.

The Powell’s method is slow in solving large scale optimization problems, such
as training DNN, since it needs large internal memory and computations. There-
fore, we use Powell’s method to train a small DNN of 1-100-1 to learn ƒ () =
sin+sin3. Considering the two frequency peaks of the target function, as
shown in Figure 6(a), one can see that the DNN converges the low-frequency com-
ponents first.

4.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) does random search in parameter space, in-
spired by the moving of the swarm of birds. It can be viewed as a mid-level form
of artificial life or biologically derived algorithm, and highly depends on stochastic
processes. The PSO algorithm is given in appendix:

In this experiment, we use PSO to train a DNN of 1-100-10-1 to learn target
function: ƒ ()=sin+sin3. As shown in Figure 6(b), the DNN learns the low-
frequency components first.
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4.3 Monte-Carlo-Like algorithm

We found the F-Principle also holds in the following Monte-Carlo-Like algorithm:
θj+1 is any element in

S={θ|L(θ)<L(θj),


θ−θj


<δ},

unless S is empty. We train a DNN of 1-500-200-1 to learn target function ƒ ()=
sin+sin3. Considering the important frequency peaks of the target function.
As shown in Figure 7, the DNN converges the low-frequency components first.

Figure 7: Using Monte-Carlo-Like algorithm to learn ƒ ()=sin+sin3. ∆F(k)
of selected important frequencies against different training epochs.

5 Discussion and Conclusion

In this paper, we report the F-Principle in the training process of DNN using several
non-gradient-descent-based methods. These empirical studies significantly extend
the current understanding of the F-Principle. For future work, it is worth to study
a mechanism of the F-Principle independent of gradient descent.
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A Gradient

For the evaluation of gradient, we use the following difference scheme:

Lθ(θ)≈gθ(θ)=
L(··· ,θ−1,θ+ζ,θ+1,···)−L(··· ,θ−1,θ,θ+1,···)

ζ

∇L=(Lθ1 ,··· ,Lθ ,··· ,LθP)≈gθ=(gθ1 ,··· ,gθ ,··· ,gθP) ∀ 0≤ ≤P
(A.1)

Here, P=(m0+1)×m1+(m1+1)×m2+(m2+1)×m3+···(mH−1+1)×mH is
the number of the parameters, and ζ is a small number defined by user, usually
associated with ε or the accuracy of the machine’s floating point: cc. We set
ζ=
p
cc, which is approximately 1.49×10−8 in the following experiments.

B 1-d search

Before the introduction of the 1-d line search, there are some sub-options needed
to introduce first, the evaluation of α0 is in the Algorithm 1:

Algorithm 1 Evaluation of α0 in 1-d search

1: procedure (Input αmin, αmx, αr , ϕ, )
2: if >0 then
3: cchk :=0.2|αmx−αmin|,α0 :=cbcmn(αmx,αmin,αr ,ϕ)
4: if >0 or mn{|αmx−α0|,|αmin−α0|}≤cchk then
5: qchk :=0.1|αmx−αmin|, α0 :=min(αmx,αmin,ϕ)
6: else
7: output α0 and end this algorithm
8: if min{|αmx−α0|,|αmin−α0|}≤qchk then
9: α0 := αmx+αmin

2 , output α0 and end this algorithm

In the algorithm, cbcmn(αmx,αmin,αr ,ϕ) returns the minimum of C()
in [αmin,αmx], where C() is a cubic polynomial that goes through the points
(αmin,ϕ(αmin)), (αmx,ϕ(αmx)), (αr ,ϕ(αr)) with derivative atαmin of ϕ′(αmin);
in the Step3, qdmn(αmx,αmin,ϕ) returns the minimum ofQ() in [αmin,αmx],
whereQ() is a quadratic polynomial that goes through the points (αmin,ϕ(αmin)),
(αmx,ϕ(αmx)) with derivative at αmin of ϕ′(αmin).

In the 1-d line search, under a given boundary αmx, we use the following
method (for the computation of θk+1 in our algorithms) to find a point in interval
[θk,θk+αmxd], which makes the searching process dsatisfy strong Wolfe condi-
tions in Algorithm 2.

In algorithm 2, there is an option called ′Ete α0 ′, which is the algorithm
1, and ϕ′ is defined by the difference scheme similar in Appendix A. One may use
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Algorithm 2 Finding α0 satisfy strong Wolfe conditions

1: procedure (Input Input θk, direction d)
2: Set :=0, αmn:=0, αm:=50, α0=1, αr=0, σ=0.9, ρ=10−4,mter=

10, ϕ(α)=L(θk+αd), α0=1.01×2
ϕ(α0)−ϕ(0)

ϕ′(0)
3: if α0<0 or α0=N then
4: α0=1
5: while ≤mter and

�

�ϕ′(α0)
�

�>−σϕ′(αmn) do
6: if ϕ(α0)>ϕ(0)+ρα0ϕ′(0) or ϕ(α0)≥ϕ(αmn) then
7: αr :=αm, αm :=α0;
8: else if ϕ′(α0)(αm−αmn)≥0 then
9: αr :=αm, αm :=αmn;

10: αmn=α0;
11: else
12: αr=αmn;
13: αmn=α0;
14: Evaluate α0 using αmn, αm, αr , , ϕ;
15:  := +1
16: if

�

�ϕ′(α0)
�

�≤−σϕ′(αmn) then
17: Output: θk+1 :=θk+α0d, and end this algorithm;
18: else
19: Output: ’algorithm failed’ and end this algorithm;
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some other algorithm to make the searching satisfy strong Wolfe conditions, the
above one is also used in Python’s scipy.optimize.

Algorithm 3 CG

1: procedure (Input θj :=θ0, ε>0, M∈N)
2: Set j :=0;
3: Compute gj=g(θj);
4: while j≤M and



gj


>ε do
5: dj :=−gj;
6: Do 1-d line search (d :=dj), evaluate θj+1, j := j+1;
7: Compute gj=g(θj);

8: β :=
gT
j
(gj−gj−1)

gTj−1gj−1
, dj :=−gj+βdj−1;

9: if dTj gj>0 then
10: dj :=−gj;
11: output θj and end this algorithm;
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Algorithm 4 TNC

1: procedure (Input θj :=θ0, ε>0, M∈N)
2: Set j :=0;
3: Compute gj=g(θj), Hj=H(θj);
4: while j≤M and



gj


>ε do
5: p0=0, r0=−gj, 0=r0, δ0=rT0 r0, =0;
6: while T


q>εδ and <M do

7: α=
rT

r

T q
, p+1=p+α, r+1=r−αq

8: if ‖r+1‖‖gj‖ ≤η then

9: dj= pi;
10: break;
11: else
12: β=

rT
+1r+1

rT r
, +1=r+1+β, δ+1=rT+1r+1+β

2

δ;  := +1;

13: dj=

�

0 =0
p ≥0

14: Do 1-d line search (d :=dj), evaluate θj+1, j := j+1;
15: Compute gj=g(θj), Hj=H(θj);

16: output θj and end this algorithm;

Algorithm 5 BFGS

1: procedure (Input θj :=θ0, ε>0, M∈N, H0= )
2: Set j :=0;
3: Compute gj=g(θj);
4: while j≤M and



gj


>ε do
5: dj :=−Hjgj;
6: Do 1-d line search (d :=dj), evaluate θj+1, gj+1=g(θj+1), sj=θj+1−θj,
yj=gj+1−gj;

7: Compute Hj+1=(−
sjyTj
sTj yj

)Hj(−
yjsTj
sTj yj

)+
sjsTj
sTj yj

;

8: β :=
gT
j
(gj−gj−1)

gTj−1gj−1
, dj :=−gj+βdj−1, j= j+1;

9: output θj and end this algorithm;
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Algorithm 6 L-BFGS

1: procedure (Input θj :=θ0, ε>0, M∈N, m∈N)
2: Set j :=0;
3: Compute gj=g(θj), d0=g0;
4: while j≤M and



gj


>ε do
5: Do 1-d line search (d :=dj), evaluate θj+1, gj+1=g(θj+1), sj=θj+1−θj,
yj=gj+1−gj, ρj= 1

yTj sj
, j := j+1;

6: if j≤m then
7: δ :=0, L := j;
8: else
9: δ := j−m, L=m;

10: qL=gj, =L−1;
11: while ≥0 do
12: k= +δ, α=ρksTkq+1, q=q+1−αyk ;
13:  := −1;
14: r0= q0=q0,  :=0;
15: while ≤L−1 do
16: k= +δ, β=ρkyTk r, r+1=r+(α−β)sk ;
17:  := +1;
18: dj=rL;

19: output θj and end this algorithm;
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Algorithm 7 Powell’s algorithm

1: procedure (Input θj :=θ0, y0=θj, ε>0, M∈N, S0=(s0,s1,··· ,sp−1)= )
2: Set j :=0, k :=1;
3: Compute gj=g(θj);
4: while k≤p do
5: λk−1=rgmnL(yk−1+λsk−1), yk=yk−1+λk−1sk−1;
6: k :=k+1;
7: sp=yp−y0;
8: while j≤M and



sp


>ε do
9: ∆m=m{L(y)−L(y+1), 0≤ ≤p−1}=L(ym)−L(ym+1);

10: ƒ1=L(y0), ƒ2=L(yp), ƒ3=L(2yp−y0);
11: if 2(ƒ1−2ƒ2+ƒ3)(ƒ1− ƒ2−∆m)2<∆(ƒ1− ƒ3)2 then
12: λp=rgmnL(yp+λsp), θj+1=yp+λpsp;
13: sk=sk+1, for k=m :p−1;
14: else
15: θj+1=yp, j := j+1;

16: while k≤p do
17: λk−1=rgmnL(yk−1+λsk−1), yk=yk−1+λk−1sk−1;
18: k :=k+1;
19: sp=yp−y0;

20: output θj and end this algorithm;
Note: This algorithm uses golden section method (0.618 method) to find

the minimum of λ in the bracket between [0,1].

Algorithm 8 PSO

1: procedure (Input θj := θ0, ε > 0, M ∈N, m ∈N, N = 2p, H0 = (,−) =
(h1,··· ,hN), θ

(1)
j ,θ

(2)
j ,··· ,θ(N)j are randomly set around θ0)

2: Set j :=0;
3: Set αj()=rgmin{L(α),α∈{L(θ

()
0 ),L(θ

()
1 ),··· ,L(θ()j )}}, ∀1≤ ≤N

4: θj+1=rgmin{L(α),α∈{αj(1),αj(2),··· ,αj(N)}};
5: while j≤M and



θj−m−θj


>ε do

6: θ
()
j :=θ

()
j−1+h+2r

(,j)
1 (α

()
j −θ

()
j−1)+2r

(,j)
2 (θj−θ

()
j−1);

7: Set αj()=rgmin{L(α),α∈{L(θ
()
0 ),L(θ

()
1 ),··· ,L(θ()j )}}, ∀1≤ ≤N

8: θj+1=rgmin{L(α),α∈{αj(1),αj(2),··· ,αj(N)}};
9: j := j+1;

10: output θj and end this algorithm;

Note: r
(,j)
1 , r

(,j)
2 ∼U([0,1]), while U([0,1]) is the uniform distribution on

[0,1].
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Algorithm 9 Monte-Carlo-like method

1: procedure (Input θj :=θ0, ε>0, M∈N, m∈N)
2: Set j :=0;
3: while j≤M and



L(θj)−L(θj−m)


>ε do

4: θ
(k)
j ∼N(θj,δ) independently, ∀ 1≤k≤M;

5: θj+1 :=rgmn{L(θj),L(θ
(k)
j )| ∀ 1≤k≤M}, j := j+1

6: output θj and end this algorithm;
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