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Deep learning has achieved wide success in solving Partial Differential Equations (PDEs), 
with particular strength in handling high dimensional problems and parametric problems. 
Nevertheless, there is still a lack of a clear picture on the designing of network architecture 
and the training of network parameters. In this work, we developed a non-gradient 
framework for solving elliptic PDEs based on Neural Tangent Kernel (NTK): 1. ReLU 
activation function is used to control the compactness of the NTK so that solutions with 
relatively high frequency components can be well expressed; 2. Numerical discretization 
is used for differential operators to reduce computational cost; 3. A dissipative evolution 
dynamics corresponding to the elliptic PDE is used for parameter training instead of 
the gradient-type descent of a loss function. The dissipative dynamics can guarantee the 
convergence of the training process while avoiding employment of loss functions with high 
order derivatives. It is also helpful for both controlling of kernel property and reduction of 
computational cost. Numerical tests have shown excellent performance of the non-gradient 
method.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Partial differential equations (PDEs) have prevalent applications in many fields including physics, chemistry, engineering, 
and finance [1]. Standard numerical methods to compute solutions of PDEs are based on discretization of solutions, such 
as finite difference method [2], finite element method [3], and finite volume method [4]. Although these methods have 
achieved widespread success in the past decades, they suffer from the curse of dimensionality when the dimension of the 
PDE is high (e.g., greater than four) [5].

Neural networks are powerful in handling high dimensional problems. In recent years, deep learning has achieved re-
markable success in many artificial intelligence tasks, such as computer vision and natural language processing [1]. Deep 
learning has also been well used in solving high dimensional PDEs [6–11], including optimal control problems [12–14], vari-
ational problems [15], and inverse problems [16,17]. Traditional technologies and insights have also been combined with 
deep learning for solving particular PDE problems: Neural parameters are set in Fourier domain to deal with long-range in-
teraction among particles [18]; Finite element method is combined with neural network to estimate the required depth and 
width for solution representation [19]; Weak formulations are used to solve high-dimensional PDEs defined on arbitrary do-
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mains [20]; Operator splitting is used for parameter training [21]; Viscosity solutions of Hamilton-Jacobi partial differential 
equations can be obtained with specific neural network architecture [22,23].

The standard framework of deep learning is to construct a loss function and use gradient type method to optimize the 
loss function. For solving PDEs, widely-used loss functions include the mean square formulation [24–26] and the Ritz formu-
lation for PDEs in a variational form [15]. In the mean square formulation, the loss is simply the mean square error of the 
PDE and its boundary conditions. The corresponding neural network is also called physics-informed neural network (PINN) 
[25,27–30]. Under this formulation, balance of the boundary conditions or initial conditions [31,32] and the convergence 
behavior of the solution [33,34] are further explored in detail. It has also been shown by the frequency principle that it is 
very difficult for deep neural networks to learn high-frequency components of the solution [35–37].

In recent years, studies on Neural Tangent Kernel (NTK) [38–42] have provided theoretical understandings on the evolu-
tion of the function represented by deep neural networks with a particular parameter initialization (NTK parametrization). 
In this case, the function represented by the neural network can be effectively approximated by its first-order Taylor expan-
sion at its initial parameters [42] and the evolution dynamics of the output function is approximately linear. NTK theories 
have also been applied in understanding deep learning for PDEs [32]. This study provided useful understanding on the train-
ing dynamics and spectral bias based on the behavior of the kernel. Although feature learning can also be important for 
deep learning under other initialization settings, it is still far from a clear understanding on the performance and training 
dynamics [43].

In this work, we develop an efficient non-gradient framework to solve elliptic PDEs using deep neural networks with 
NTK initialization:

1. Instead of introducing loss functions, the residual of the PDEs are directly used in training the deep neural networks. 
The non-gradient training dynamics can be effectively described by corresponding integral-differential equations, which 
are similar to the effective training dynamics obtained from the gradient decent dynamics based on the mean-square 
or Ritz loss. In particular, the kernel of the integral-differential equation is simply the neural tangent kernel for the 
non-gradient training dynamics. The dissipation of the non-gradient training dynamics leads to the convergence of the 
training dynamics.

2. In order to control the spectral bias, sufficient locality of the neural tangent kernel is required for function approxima-
tion and fast convergence of the training dynamics. By studying the property of the training kernels, we select ReLU as 
the activation function in the deep neural networks so as to control the locality of the support of the training kernel.

3. Numerical discretizations for differential operators are used to compute the residuals of the PDEs. This approach has 
twofold benefits: It avoids problems introduced by the low smoothness of ReLU function and reduces the computational 
cost for each training step.

In our numerical tests, the non-gradient method has been successfully employed in solving high-dimensional elliptic equa-
tions including Poisson equation, advection-diffusion equation, and a nonlinear elliptic equation obtained from the steady 
state Fokker-Planck equation.

The paper is organized as below: In Section 2, we discuss the basic frameworks to solve partial differential equations 
and the corresponding training dynamics. Then we introduce our non-gradient method and discuss the detailed techniques 
of the method. In Section 3, we show basic properties of the Neural Tangent Kernel (NTK). By visualizing the NTKs and the 
mean square kernels (MSKs), we show the advantage of our non-gradient method. In Section 4, we use numerical examples 
to show the potential of the non-gradient method. Finally, conclusions and discussions are included in Section 5.

2. Basic framework

In this work, we use the following general form to represent elliptic PDEs

Au(x) = g(x), x ∈ � (1)

where A is a linear or non-linear elliptic operator. Without loss of generality, we assume that the real parts of the eigen-
values of A are non-negative. In particular, for second-order linear elliptic PDEs, we have

Au(x) = −∇ · (D(x) · ∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = g(x), x ∈ �, (2)

where the coefficients satisfy D(x) ≥ 0 and c(x) ≥ 0.

2.1. Loss functional for elliptic PDEs

The mean square loss functional [25] of the equation is simply

L(θ) =
∫

|A fθ (x) − g(x)|2μ(dx), (3)
�

2
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where θ represents the parameters of the neural network and μ represents the sampling distribution. For linear elliptic 
PDEs with b(x) = 0, the Ritz loss [15]

L(θ) =
∫
�

1

2
∇x fθ (x)T D(x)∇x fθ (x) + 1

2
c(x) fθ (x)2 − g(x) fθ (x)μ(dx) (4)

can also be used in training deep neural networks. Boundary conditions can also be satisfied by introducing mean square 
loss of boundary conditions. In the following, we neglect the effects of boundary conditions and discuss the effective training 
dynamics.

2.2. Evolution dynamics of the output function for GD training

The gradient descent dynamics based on the corresponding loss functionals is

θ t+1 − θ t = −η∇θL, (5)

where η is the learning rate. By regarding η as the time step, the continuum limit dynamics for η → 0 is

∂θ t

∂t
= −∇θL, (6)

and the evolution of the output function fθ satisfies

∂ fθ t (x)

∂t
= −∇θ fθ t (x)T ∇θL. (7)

Suppose the sample points are uniformly distributed in �. For different types of loss functionals of linear elliptic PDEs, 
Eq. (7) satisfies the general form

∂ fθt (x)

∂t
= −

∫
�

K (x, y, t)(A fθt (y) − g(y))μ(dy), (8)

where the kernel function K (x, y, t) is given as follows:

1. For the deep Ritz method,

K (x, y, t) = ∇θ fθ t (x)T ∇θ fθ t (y) = �t(x, y), (9)

where �t(x, y) is exactly the Neural Tangent Kernel (NTK) [38].
2. For the mean square formulation,

K (x, y, t) = ∇θ fθ t (x)T ∇θ fθ t (y)AT = A�t(x, y), (10)

where AT is the adjoint operator of A and the differential operator A acts on variable y. This kernel will be referenced 
as the MSK in this work.

Eq. (8) means that under the GD training dynamics, the output function is not modified point-to-point. Instead, if there 
is a residual of the PDE at a sample point y, the output function is modified by a multiple of the kernel function K (x, y, t). 
In particular, if the kernel function K (x, y, t) = δ(x − y), Eq. (8) reduces to the corresponding parabolic equation

∂ fθt (x)

∂t
= −A fθt (x) + g(x). (11)

If the kernel function K (x, y, t) is a function of (x − y) (which is approximately true under NTK parametrization), the integral 
becomes a convolution. In this case, 

∣∣∣K̂ (ω)

∣∣∣ provides a bias for learning rate of components of different frequencies.

2.3. Non-gradient method for elliptic equations

As we will discuss in the following, the kernel function for the deep Ritz formulation can be easily controlled for efficient 
training. However, many elliptic equations do not have a variational form, such as the steady-state Fokker-Planck equation 
with non-gradient forces and the steady state advection-diffusion equations. An interesting observation for these equations 
is that the dissipative property of their corresponding time-dependent parabolic equations can guarantee the convergence 
of the corresponding parabolic equations to steady state as time goes to infinite. In other words, although the eigenvalues 
of these elliptic equations are not positive real numbers, they all have positive real parts.
3
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Inspired by the above observation of dissipation, we make a brave attempt to develop the non-gradient method to train 
the parameters of deep neural networks with random samples

θ t+1 − θ t = −η
1

m

m∑
i=1

∇θ fθ (xi) (A fθt (xi) − g(xi)), (12)

where m is the sample size and xi are the sample points. For uniformly distributed sample points, when m → ∞, the 
corresponding continuum-limit dynamics of the output function satisfies

∂ fθt (x)

∂t
= −

∫
�

�t(x, y)(A fθt (y) − g(y))μ(dy). (13)

This dynamics (13) has a same form with that for deep Ritz method. However, we do not require the residual A fθt (y) − g(y)

to be in a variational formulation. The relaxation of this requirement expands the application range of Eq. (12) greatly. The 
convergence of the training dynamics relies on the dissipation of Eq. (13). Furthermore, Eq. (12) can also be employed to 
solve nonlinear elliptic equations in case that there is a dissipation relation.

Similar to that in previous studies, boundary conditions can be satisfied by introducing a mean square loss of boundary 
residues. For Dirichlet boundary conditions, the dynamics of the output function becomes

∂ fθt (x)

∂t
= −

∫
�

�t(x, y)(A fθt (y) − g(y))μ(dy) − λb

∫
∂�

θt(x, y)(u(y) − ũ(y))μ̃(dy), (14)

where λb is a weight parameter and ũ is the boundary value of the function.
In real applications, random samples are used to numerically evaluate the high-dimensional integrals in Eq. (14) in a 

Monte-Carlo fashion. A training step for the non-gradient method for elliptic equations is included in Algorithm 1.

Algorithm 1 Non-gradient method (with Dirichlet boundary condition).

Input: neural network parameters θ t and uniformly distributed random samples {xt
i }m

i=1 ∈ � and {x̃t
i }mb

i=1 ∈ ∂�.
Output: neural network parameters θ t+1.

1: Compute gradients:

∇θ fθ t = (∇θ fθ t (xt
1), · · · ,∇θ fθ t (xt

m)) ∈R|θ |×m,

∇̃θ fθ t = (∇θ fθ t (x̃t
1), · · · ,∇θ fθ t (x̃t

mb
)) ∈R|θ |×mb ;

2: Compute residues:

rt = (A fθ t (x1) − g(x1), · · · ,A fθ t (xm) − g(xm))T ∈Rm,

r̃t =
(

fθ (x̃t
1) − ũ(x̃t

1), · · · , fθ (x̃t
mb

) − ũ(x̃t
mb

)
)T ∈Rmb ;

3: Update neural parameters θ t+1 = θ t − η
m ∇θ fθ t ·rt − λbη

mb
∇̃θ fθ t · r̃t .

2.4. Discretization

In principle, the linear or nonlinear elliptic operator A fθ on the network output function can be evaluated analyti-
cally. Nevertheless, the higher order derivatives in the operator put forward requirements for the smoothness of activation 
functions used in the deep neural networks. As we will discuss in the following section, Relu activation function has its ad-
vantages in controlling the compactness of the kernel. In order to solve this dilemma, we use central difference to discretize 
the elliptic operators at all sample points. Namely, the residual rt in Algorithm 1 is evaluated by

rt = (Ah fθ t (x1) − g(x1), · · · ,Ah fθ t (xm) − g(xm))T ,

where h is the adjustable step size for the discretization. In particular, the linear operators can be discretized as

Ah fθ (x) =
d∑

i=1

D(x + h
2 ei) ( fθ (x + hei) − fθ (x)) − D(x − h

2 ei) ( fθ (x) − fθ (x − hei))

h2

+
d∑

i=1

bi(x) ( fθ (x + hei) − fθ (x−hei))

2h
+ c(x) f (x),

where ei are the standard basis vectors.
4
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2.5. Evaluation of computational cost

Here we compare the computational cost for each sample point of the non-gradient method with that of the loss-based 
methods deep learning methods.

For each sample point x, the computational cost includes two parts – evaluation of the output function f at 2d + 1
nearby points (or analytically evaluate the residual at the sample point) and calculates the gradient ∇θ fθ (x); whereas in 
the stochastic gradient descent dynamics for the mean square formulation, the computational cost includes evaluation of the 
residual and computes the gradient with respect to θ of 2d + 1 functions (the output function fθ (x), d terms in its gradient 
∇x fθ (x), and d terms in its Laplacian �x fθ (x)). In deep Ritz method, since there is no need to compute ∇θ�x fθ (x), the 
computational cost is approximately half that of the mean square formulation. Since the computational cost for function 
evaluation is much smaller than that for gradient calculation for deep neural networks, the non-gradient method signifi-
cantly reduces the computational cost in comparison with the mean square formulation.

3. Properties of the training kernels

Clearly, the properties of the kernel function can influence the training dynamics deeply. Neural tangent kernels are 
usually continuous (or even smooth) functions. The convolution property implies that high frequency components of the 
solution are learned very slowly because the Fourier transform ̂K (ω) (which is the eigenvalue of the convolution operator 
and ω is the spatial wavenumber) becomes very small for large ω. In order for a relatively fast learning rate for components 
of given frequencies (e.g., when we have some a priori knowledge on the spectral property of the solution), we need to 
control the compactness of the kernel so that ̂K (ω) is sufficiently large for desired frequencies. In particular, the Fourier 
modes of widely spread kernels decay faster with the frequency than that of locally compacted kernels. Locality of the 
kernels are important in learning high frequency components of the solution. Meanwhile, the kernel should also not be too 
local for high dimensional problems. Otherwise, the number of sample points required for training the neural network grows 
exponentially with the dimension and it becomes impossible to train a network for high dimensional problems. Therefore, 
it is important to carefully control the locality of the training kernels for efficient training.

In the following, we first briefly review the important theories on NTKs; then we show the properties (with an emphasize 
on the locality) of the kernels under different activation functions and discuss their effects.

3.1. Theories of neural tangent kernel

In the widely used initialization strategy of neural network parameters, such as LeCun’s initialization, the weights and 
bias parameters are given by Gaussian distributions with mean zero and variance inversely proportional to the number of 
input units. Such initialization strategy is very similar to that used in NTK parametrization [38]. For a network with L layers 
given by

α̃(l+1)(x) =
√

1 − β2
√

nl
W (l)α(l)(x) + βb(l),

α(l+1)(x) = σ(α̃(l+1)(x)), (15)

where αl(x) (l = 1, 2, · · · , L) are the outputs of layer l and α0(x) = x is the input of the network, W (l) and b(l) are the 
weight matrices and bias vectors, respectively, nl is the network width of layer l, β is an adjustable coefficient for the 
bias vector b(l) , and σ() is the activation function, the NTK parametrization simply initializes all weights, W (l) and b(l) , 
using independent standard Gaussian distribution N (0, 1). Note that the variance of the effective weights 

√
1−β2√

nl
W (l) is 

also inversely proportional to the number of input units nl due to the prefactor. In general, we assume that the activation 
function σ() has been normalized, namely, we have Ex∼N (0,1)[σ 2(x)] = 1. Otherwise, we can normalize σ by

σ̃ (x) = σ(x) −Ex∼N (0,1)σ (x)√
Ex∼N (0,1)(σ (x) −Ex∼N (0,1)σ (x))2

. (16)

By this normalization, the output vector α̃l(x) of each layer satisfies the standard Gaussian distribution.
For simplicity of description and notations, we use θ to represent all the parameters W (l) and b(l) . As mentioned above, 

the Neural Tangent Kernel (NTK) is defined as �t (x, y) = ∇θ fθ t (x)T ∇θ fθ t (y). In particular, �0(x, y) = ∇θ fθ0 (x)T ∇θ fθ0 (y) is 
the initial NTK, where θ0 is the initial value of parameters.

We briefly collect the important theories of NTKs in below [38]. In the rigorous proof of these theories, one needs to
assume that the input x lies on a sphere ‖x‖2 = c. In real applications, this requirement is not crucial.

Theorem 1. When the width nl of hidden layers approaches to infinity, the NTK approaches to a deterministic matrix:

�t(x, y) → �∞(x, y) (17)

for any x, y.
5
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Table 1
Value of r for different activation function and different value of β .

β 0.0 0.1 0.2 0.3 0.4 1.0

ReLU 1.47 1.45 1.41 1.33 1.23 0.00
ELU 1.08 1.07 1.06 0.98 0.91 0.00
Swish 1.21 1.20 1.16 1.10 1.02 0.00

The correctness of this theorem relies on two facts: First, as nl → ∞, we have �0(x, y) → �∞(x, y) as a consequence of 
the central limit theorem; Second, under NTK parametrization, the change of parameters during training is small for large 
network width nl . In real applications, nl is usually not so big. As a result, there is usually a slight but visible change of 
parameters during training. In this case, the NTK can also be slightly changed. Nevertheless, the property of the NTK is 
largely determined by the initial value. Therefore, we can pay our main attention on the initial NTK, which is determined 
by the network structure (e.g., the depth of the network) and the activation functions.

When the input x lies on a sphere ‖x‖2 = c, the kernel �∞(x, y) can be written in the form of �∞(‖x − y‖2). This 
provides the convolution property of Eq. (13). As we have discussed above, the locality and compactness of the NTK is 
crucial in determining the spectral bias effect of the training dynamics (13). The next theorem provides deep insight in 
understanding the properties of NTKs �∞(x, y) [40].

Theorem 2. Denote r = (1 − β2)Ex∼N (0,1)[σ̇ 2(x)], where σ̇ (x) is the derivative of σ with respect to x, and denote the normalized 
NTK

ϑ L(x, y) = �∞(x, y)√
�∞(x, x)�∞(y, y)

.

where L emphasises the depth of neural network. If the NTK parametrization is used and r > 1 (the chaos region), we have

|ϑ L(x, y)| ≤ ChL
0 (18)

for x = y, where C is a constant and h0 = h0(x, y) < 1 is a function dependent only on x and y for given σ(·) and β .

From numerical tests one can estimate that h0(x, y) is generally a decreasing function of ‖x − y‖2 (at least when ‖x − y‖2
is not too big). Therefore for r > 1, Theorem 2 means that the kernel �t is locally compacted for sufficiently deep neural 
networks, since the upper bound ChL

0(x, y) (‖x − y‖2 > R0) becomes very small for sufficiently large L, where R0 is the 
effective radius for the compact kernel.

It is worth noting that r = (1 − β2)Ex∼N (0,1)[σ̇ 2(x)] depends on both β and the activation function. For each activation 
function, r is an decreasing function of β (β > 0) and reaches the maximum at β = 0. In Table 1, we show r for different 
β under the above three activation functions. In the following, we will show that r is critical in determining the function 
h0(x, y), thus plays a dominate role in the locality and compactness of the NTK.

3.2. Compactness of kernels

Next, we discuss the properties, in particular, the compactness of the kernels under different activation functions, differ-
ent network depth, different dimension, and different choices of the parameter β . Based on these properties, we select a 
good choice for general applications in solving elliptic equations.

Three activation functions with different smoothness are discussed in the following:

1. Swish(x) = x
1+e−x ;

2. Elu(x) =
{

x, if x > 0,

ex − 1, else;
3. Relu(x) = max (x,0).

Normalization of the activation functions are performed based on Eq. (16).
Without loss of generality, the domain for kernel testings are set to be [−π

2 , π2 ]d . Since the NTKs are approximately 
translation invariant, the numerically normalized kernels ϑ(x, y) are averaged for 20 equally spaced values of y to visualize 
the kernels. Meanwhile, since the kernels are approximately axi-symmetric, one-dimensional curves are used to illustrate 
the kernels. The width of each layer is fixed to be 2000 in the tests to efficiently remove numerical fluctuations.

3.2.1. Compactness of NTKs
As discussed above, the training kernels are exactly the NTKs under the deep Ritz formulation and our non-gradient 

formulation. In other words, the training effect under these formulations is largely determined by the characteristics of the 
NTKs. In the following, we study the compactness of the NTKs numerically. As we will see that the Relu activation function 
can be easily used in controlling the compactness of the NTKs by carefully selected bias parameter β and network depth L.
6
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Fig. 1. Kernels for r = 1.07 and network depth L = 3, 6, and 9 under different activation functions. The input dimension d = 16.

Fig. 2. Kernels for β = 0.2 under different activation functions and network depths. The input dimension is 16.

The quantity r defined in Theorem 2 is crucial in determining the compactness of the kernels – as we can see for all 
tested activation functions, the greater the parameter r is, the more locally compacted the kernel is.

In Fig. 1, the normalized NTKs are shown for the case that r = 1.07 with the input dimension d = 16. Note that β is 
different for the three activation functions (see Table 1). In particular, r almost reaches its maximum for the Elu activation 
function. Since r is not relatively small in these cases, the kernels are not well compacted locally — they all maintain a 
relatively large value on the domain boundary |x| = π/2.

In all following tests, we fix β = 0.2 for a fair comparison of the compactness of the NTKs under different activation 
functions.

The NTKs for β = 0.2 are shown in Fig. 2. Since r for the Relu activation function is much greater than that for the other 
two activation functions, the NTKs under Relu activation function are much more compacted than the others. Furthermore, 
we can see from both Fig. 1 and 2 that as the depth of the network increases, the kernels become more locally compacted. 
This is consistent with the power law bound in the inequality (18). In fact, this power law inequality can help us to estimate 
the changes of the NTKs as the depth of the network increases.

In the original NTK theory [38–42], the input x is defined on the unit sphere. In this case, the NTK �∞(x, y) depends 
only on the angle between x and y. Namely, the NTK is independent on the dimension of the input x. However, in our 
applications, the input x is defined in the entire cubic domain. In this case, the input dimension of x also plays an important 
role in determining the compactness of the NTKs. In general, the NTKs become less compacted for larger dimension d. One 
may also map x onto the unit sphere by introducing a virtual dimension. Under this mapping, the angle between the images 
of X and Y is also dependent on the spatial dimension.

A comparison for the case of d = 2 and d = 16 are shown in Fig. 3. From Fig. 2 and 3, we can see that deeper networks 
are required to maintain sufficient compactness of kernels in higher dimensional spaces. In particular, networks with Relu 
activation function have much better performance in controlling the compactness than networks with the other two activa-
tion functions. In other words, using Relu activation function allows us to obtain compacted kernels with relatively shallow 
networks.
7
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Fig. 3. Kernels for different input dimensions under different activation functions. The depth L = 3 and the bias parameter β = 0.2.

3.2.2. Compactness of the MSKs
As discussed above, the training kernel for the mean square formulation is A�(x, y). The properties of the MSKs also 

determine the performance of the training process under the mean square formulation. In the following, we will compare 
NTKs and MSKs to show part of the benefits of non-gradient method. Without loss of generality, we only consider the 
Poisson equation in which A = −�. Further more, due to the nonsmoothness of the Relu activation function, we use the 
discretized operator �h to calculate MSKs. Similarly, the MSKs are normalized in the following numerical tests.

A comparison of the NTKs and MSks are shown in Fig. 4. We can see that the MSKs for the Relu activation function are 
too local due to the sharp peak at the origin. Thus very large amount of sample points are required to train networks in 
high dimensional spaces when Relu activation function is used under the mean square formulation (PINN). For the Swish 
activation functions, the compactness of the MSKs are even worse than the corresponding NTKs.

The MSKs for Elu activation function maintain relatively good compactness. This suggests that using networks with 
Elu activation function to solve high dimensional elliptic equations can be efficient under the mean square formulation. 
However, we can also see that as the network depth increases, the compactness of the MSKs do not change significantly. 
This means that it can be hard to control the compactness of MSKs by tuning the hyper-parameters and the network depth.

3.3. Kernel control

In principle, the convergence speed and training efficiency is determined by the eigenvalue of the training dynamics (e.g., 
the integro-differential operator on the right hand side of Eq. (13)). For data fitting problems, this eigenvalue is directly 
̂�∞(ω), whereas for the training dynamics of our non-gradient method (13), the eigenvalue is ̂�∞(ω)̂A(ω), where ̂A(ω)

is the eigenvalue of the elliptic operator (e.g., if the operator is A = −�, ̂A(ω) = |ω|2.) Therefore, if there are relatively 
high frequencies of interest in the solution, we need to use a relatively local kernel. As discussed above, such a task can be 
achieved by carefully choosing the activation function, the parameter β , and the network depth L. In particular, the Relu 
activation function is welcome in our non-gradient method. For high-dimensional equations with important high frequency 
components in the solution, sufficiently deep networks are helpful for the training efficiency.

4. Numerical results

Next, we show the numerical results obtained with our non-gradient method. In our simulations, the ReLU activation 
function is used so that the training kernels are well compacted. Three types of elliptic equations, including a symmetric 
equation, an asymmetric equation, and a nonlinear equation, are used for numerical tests.

In our numerical tests, Adam optimizer [44] and the default decay strategy for learning rate in Tensor Flow is used for 
all problems. The initial learning rate is 0.01 and the decay step is 1000. The width of each hidden layer is fixed to be 2000. 
In order to analyze the convergence of the non-gradient method, the L2 relative error

erel =
√√√√∑Ntest

i=1 ( fθ (xi) − u∞(xi))
2

∑Ntest
i=1 fθ (xi)

2

is calculated on Ntest = 10000 random samples, where u∞ is the exact solution.
8
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Fig. 4. The NTKs (blue) and MSKs (orange) for different activation functions and network depth. The activation functions for the upper, the middle, and the 
bottom rows are ReLU, Elu, and swish, respectively. The network depth L for the left, the middle, and the right columns are 3, 6, and 9, respectively. The 
dimension d = 16 and bias parameter β = 0.2.

4.1. Symmetric elliptic equation

The first equation we considered is a symmetric equation,{ −�u(x) + cu(x) = g(x), in � = [−π
2 , π

2 ]d,

u(x) = u∞(x), on ∂�,
(19)

where c = 2 and g(x) is given by u(x) = u∞(x) in each following case.
First, we consider a two-dimensional case with relatively high frequency components, u∞(x) = ∑2

i=1 (cos(xi) + cos(15xi)). 
Thus a network with layers is used. For the two-dimensional case, L = 3 is sufficient to make the NTK sufficiently compact. 
In each iteration, we use 1000 random samples in the domain and 200 samples on the boundary. The solution of the 
equation converges well after 20000 epochs. The solution and L2 error are shown in Fig. 5. Note that the analytic solutions 
9
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Fig. 5. Left: Numerical solution of the two dimensional case. Middle: The corresponding absolute error. Right: Convergence of the L2 relative error.

Fig. 6. The normalized NTKs before and after training for two dimensional example. Left: the first dimension; Right: the second dimension.

of the equations are all known in our examples, which allows us to evaluate the L2 error. Nevertheless, the L2 error and 
information of the solution is not used in our non-gradient method. We can see that the high frequency components are 
resolved very well.

As shown in Fig. 6, the change of NTKs is insignificant during the training. This implies that a well-behaved initial NTK 
is sufficient to ensure fast convergence and high accuracy approximation of the solution.

Next, we consider a ten-dimensional example with u∞(x) = cos(10x1) + cos(10x2) + ∑10
i=1 cos(xi). Note that there are 

high frequency components in the first two dimensions. In order to make the NTK sufficiently compact, the depth of network 
is set to be L = 6. The sample size is m = 10000 and mb = 5000. The solution of the equation converges very well after 
30000 epochs of training. The solution on three cross sections are shown in Fig. 7. Similarly, the high frequency components 
are well resolved.

4.2. Advection diffusion equation

When the elliptic operator is asymmetric, the deep Ritz formulation can not be applied. However, our non-gradient 
method is still efficient in handling this kind of elliptic equations. As an example, we consider the advection-diffusion 
equation

−�u(x) + �b(x) · ∇u(x) + 2u(x) = g(x), (20)

where x = (x1, · · · , xd) ∈ � = [−π
2 , π2 ]d and �b(x) = (sin(x1), · · · , sin(xd)). g(x) and the Dirichlet boundary value are given by 

the exact solution u∞(x) = cos(10x1) + ∑d
i=1 cos(xi).

The network structure and sample size are the same as the above ten dimensional case for the symmetric equations. 
Two cross-sectional illustrations of the solution and the convergence of the numerical error are shown in Fig. 8. The good 
approximation of the solution shows the effectiveness of our non-gradient method for asymmetric elliptic equations.
10
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Fig. 7. The solution in three cross sections and the convergence of the L2 relative error.

Fig. 8. Cross-sectional illustrations of the solution and convergence of the L2 relative error of the ten dimensional advection-diffusion equation.

4.3. Fokker-Planck equation

The Fokker-Planck equation

∂ P (x, t) = ∇ · (−b(x)P (x, t) + ε∇ P (x, t)), (21)

∂t

11



Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 9. Cross-sectional illustration and convergence of the L2 relative error for the 10-dimensional Fokker-Planck equation.

describes the evolution of the probability density function (PDF) of Brownian particles (or systems) under the driven force 
b(x). The steady state solution P (x) of the Fokker-Planck equation is important in many applications such as many rare 
event dynamics. When ε is small, the PDF P can change drastically, which brings difficulty in numerical methods. Another 
difficulty is that the PDF must be kept positive. Therefore, people turn to solve the equation of u(x) = −ε log P (x),

ε(�u(x, t) + ∇ · b(x)) − ∇u(x, t) · b(x) − ‖∇u(x, t)‖2 = 0. (22)

Note that Eq. (22) can be obtained by substituting P (x) = exp(− u(x)
ε ) into the steady state equation of Eq. (21). Eq. (22) is 

a nonlinear elliptic equation. The corresponding parabolic equation of Eq. (22) also maintains a natural energy dissipation 
relation.

In our simulation, the exact solution is selected to be

u∞(x) = (1 − x1
2)2

4
+ x1x2 +

∑d
i=2 xi

2

2

and b(x) is given by

b(x) = ∇ × F − 1

ε
∇u(x) × F − ∇u(x), (23)

where the cross product “×” acts only on the first three dimensions and the other components are all zero. A generalization 
of the cross product can be defined by exterior differentiation. It is direct to verify that u∞ is the solution of Eq. (22)
once b(x) is given by Eq. (23). Furthermore, when F = 0, u cannot be trivially read from b(x) (e.g., by solving the equation 
�u = ∇ · b).

In our simulation, we simply use F = (1, 0, 0, · · · , 0) to define b(x). The cross-sectional illustrations of solution are shown
in Fig. 9. We can see that the solution is also approximated very well.

Note that ε = 2.0 is used in our simulation. When ε is small (compared to the energy barrier of u∞), the elliptic operator 
of the original Fokker-Plank equation (21) has an exponentially small eigenvalue corresponding to the rare event dynamics 
12
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Fig. 10. Cross-sectional illustrations of the solutions learned by the PINN method with ReLU (the upper panel) and Swish (the bottom panel) activation 
functions.

due to the energy barrier in u∞ . This small eigenvalue results in a slow dissipation of both Eq. (21) and Eq. (22). As a result, 
the non-gradient method also converges very slowly. Note that this is not due to a drawback of our non-gradient method 
but an intrinsic difficulty of the original problem. Under the mean square formulation, the small eigenvalue also results in a 
large condition number of the optimization problem and the solution can not be directly found.

4.4. Comparison against PINN

Since the Deep Ritz method is effectively equivalent to our non-gradient method for elliptic equations with positive 
definite operators, we mainly compare our non-gradient method with the Physics-informed Neural Network (PINN) method 
based on the mean square loss of the residual.

The same example in subsection 4.2 is used for the comparison. The same network setup and learning rate as in subsec-
tion 4.2 are used for a relatively fair comparison, although the best learning rate for different methods may be different.

The cross-sectional illustrations of solutions obtained by the PINN method are shown in Fig. 10. We can see a relatively 
large numerical error in the solution obtained with the Relu activation function. The convergence analysis of the PINN 
method with different activation functions and the non-gradient method with Relu activation function is shown in Fig. 11. 
We can see that the convergence of the L2 error is comparable for the non-gradient method and the PINN method with Elu 
and Swish activation functions, whereas the PINN method with Relu activation function converges slowly. Interestingly, the 
PINN loss also receives a decay in the training process of the non-gradient method, although the decay is less than that of 
the PINN method with Elu and Swish activation functions.

Although theoretical analysis has shown that the NTK (and MSK) can hardly change under the NTK parameterization if 
the network width goes to infinity, the MSKs obtained in our training process change a lot in fact, as shown in Fig. 12. 
13
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Fig. 11. Convergence of L2 relative error (Left) and the PINN Loss (Right).

Fig. 12. The initial and final MSKs with different activation functions.

In other words, the training in the PINN method has learned certain features. It is of interest to see that all final MSKs 
maintain certain locality regardless of their initial shape.

5. Conclusion and discussion

In this work, we develop a non-gradient method to solve elliptic PDEs using deep neural networks. In our non-gradient 
method, the training kernel is exactly the neural tangent kernel (NTK).

The first advantage of our non-gradient method is that we do not require a loss functional to find the solution. Instead, 
we directly use the residual of the equation to train the network. The second advantage of our method is that the training 
kernel can be well controlled by the activation function, the network depth, and the parameter β in NTK parameterization. 
By well controlled NTKs, the training dynamics can be efficient and the solution can be well approximated. Furthermore, 
using numerical discretization to evaluate the residual reduces the computational cost significantly. It also allows us to 
use the ReLU activation function for elliptic equations with high order derivatives. Comparing to the Deep Ritz method, 
our non-gradient method can be applied to asymmetric elliptic equations; Comparing PINN (the mean square formulation), 
the training kernel of the non-gradient method can be controlled more easily, which is important for learning of relatively 
high-frequency components in the solution.

Our numerical examples show the great potential of our non-gradient method in solving elliptic PDEs, where the el-
liptic operator can asymmetric or nonlinear. In this case, the training dynamic is no longer a gradient flow. Instead, the 
convergence of our non-gradient method relies on the dissipation of the training dynamics. Although we have assumed the 
equivalence between the dissipation properties of the corresponding parabolic equation and the training dynamics for an 
elliptic equation, there is no theoretical guarantee so far. Based on this assumption, we only require all eigenvalues of the 
(linearized) elliptic operator to maintain positive real parts instead of requiring the operator to be positive definite. For PDEs 
with one or a few negative eigenvalues, such as the Helmholtz equation, the non-gradient method cannot be applied yet.
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