
Journal of Computational Physics 472 (2023) 111690
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A non-gradient method for solving elliptic partial differential
equations with deep neural networks

Yifan Peng b, Dan Hu a,∗, Zin-Qin John Xu a

a School of Mathematical Sciences, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China
b Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2022
Received in revised form 31 August 2022
Accepted 9 October 2022
Available online 21 October 2022

Keywords:
Elliptic partial differential equations
Deep neural networks
High dimension
Nongradient method

Deep learning has achieved wide success in solving Partial Differential Equations (PDEs),
with particular strength in handling high dimensional problems and parametric problems.
Nevertheless, there is still a lack of a clear picture on the designing of network architecture
and the training of network parameters. In this work, we developed a non-gradient
framework for solving elliptic PDEs based on Neural Tangent Kernel (NTK): 1. ReLU
activation function is used to control the compactness of the NTK so that solutions with
relatively high frequency components can be well expressed; 2. Numerical discretization
is used for differential operators to reduce computational cost; 3. A dissipative evolution
dynamics corresponding to the elliptic PDE is used for parameter training instead of
the gradient-type descent of a loss function. The dissipative dynamics can guarantee the
convergence of the training process while avoiding employment of loss functions with high
order derivatives. It is also helpful for both controlling of kernel property and reduction of
computational cost. Numerical tests have shown excellent performance of the non-gradient
method.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Partial differential equations (PDEs) have prevalent applications in many fields including physics, chemistry, engineering,
and finance [1]. Standard numerical methods to compute solutions of PDEs are based on discretization of solutions, such
as finite difference method [2], finite element method [3], and finite volume method [4]. Although these methods have
achieved widespread success in the past decades, they suffer from the curse of dimensionality when the dimension of the
PDE is high (e.g., greater than four) [5].

Neural networks are powerful in handling high dimensional problems. In recent years, deep learning has achieved re-
markable success in many artificial intelligence tasks, such as computer vision and natural language processing [1]. Deep
learning has also been well used in solving high dimensional PDEs [6–11], including optimal control problems [12–14], vari-
ational problems [15], and inverse problems [16,17]. Traditional technologies and insights have also been combined with
deep learning for solving particular PDE problems: Neural parameters are set in Fourier domain to deal with long-range in-
teraction among particles [18]; Finite element method is combined with neural network to estimate the required depth and
width for solution representation [19]; Weak formulations are used to solve high-dimensional PDEs defined on arbitrary do-

* Corresponding author.
E-mail address: hudan80@sjtu.edu.cn (D. Hu).
https://doi.org/10.1016/j.jcp.2022.111690
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111690
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111690&domain=pdf
mailto:hudan80@sjtu.edu.cn
https://doi.org/10.1016/j.jcp.2022.111690

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
mains [20]; Operator splitting is used for parameter training [21]; Viscosity solutions of Hamilton-Jacobi partial differential
equations can be obtained with specific neural network architecture [22,23].

The standard framework of deep learning is to construct a loss function and use gradient type method to optimize the
loss function. For solving PDEs, widely-used loss functions include the mean square formulation [24–26] and the Ritz formu-
lation for PDEs in a variational form [15]. In the mean square formulation, the loss is simply the mean square error of the
PDE and its boundary conditions. The corresponding neural network is also called physics-informed neural network (PINN)
[25,27–30]. Under this formulation, balance of the boundary conditions or initial conditions [31,32] and the convergence
behavior of the solution [33,34] are further explored in detail. It has also been shown by the frequency principle that it is
very difficult for deep neural networks to learn high-frequency components of the solution [35–37].

In recent years, studies on Neural Tangent Kernel (NTK) [38–42] have provided theoretical understandings on the evolu-
tion of the function represented by deep neural networks with a particular parameter initialization (NTK parametrization).
In this case, the function represented by the neural network can be effectively approximated by its first-order Taylor expan-
sion at its initial parameters [42] and the evolution dynamics of the output function is approximately linear. NTK theories
have also been applied in understanding deep learning for PDEs [32]. This study provided useful understanding on the train-
ing dynamics and spectral bias based on the behavior of the kernel. Although feature learning can also be important for
deep learning under other initialization settings, it is still far from a clear understanding on the performance and training
dynamics [43].

In this work, we develop an efficient non-gradient framework to solve elliptic PDEs using deep neural networks with
NTK initialization:

1. Instead of introducing loss functions, the residual of the PDEs are directly used in training the deep neural networks.
The non-gradient training dynamics can be effectively described by corresponding integral-differential equations, which
are similar to the effective training dynamics obtained from the gradient decent dynamics based on the mean-square
or Ritz loss. In particular, the kernel of the integral-differential equation is simply the neural tangent kernel for the
non-gradient training dynamics. The dissipation of the non-gradient training dynamics leads to the convergence of the
training dynamics.

2. In order to control the spectral bias, sufficient locality of the neural tangent kernel is required for function approxima-
tion and fast convergence of the training dynamics. By studying the property of the training kernels, we select ReLU as
the activation function in the deep neural networks so as to control the locality of the support of the training kernel.

3. Numerical discretizations for differential operators are used to compute the residuals of the PDEs. This approach has
twofold benefits: It avoids problems introduced by the low smoothness of ReLU function and reduces the computational
cost for each training step.

In our numerical tests, the non-gradient method has been successfully employed in solving high-dimensional elliptic equa-
tions including Poisson equation, advection-diffusion equation, and a nonlinear elliptic equation obtained from the steady
state Fokker-Planck equation.

The paper is organized as below: In Section 2, we discuss the basic frameworks to solve partial differential equations
and the corresponding training dynamics. Then we introduce our non-gradient method and discuss the detailed techniques
of the method. In Section 3, we show basic properties of the Neural Tangent Kernel (NTK). By visualizing the NTKs and the
mean square kernels (MSKs), we show the advantage of our non-gradient method. In Section 4, we use numerical examples
to show the potential of the non-gradient method. Finally, conclusions and discussions are included in Section 5.

2. Basic framework

In this work, we use the following general form to represent elliptic PDEs

Au(x) = g(x), x ∈ � (1)

where A is a linear or non-linear elliptic operator. Without loss of generality, we assume that the real parts of the eigen-
values of A are non-negative. In particular, for second-order linear elliptic PDEs, we have

Au(x) = −∇ · (D(x) · ∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = g(x), x ∈ �, (2)

where the coefficients satisfy D(x) ≥ 0 and c(x) ≥ 0.

2.1. Loss functional for elliptic PDEs

The mean square loss functional [25] of the equation is simply

L(θ) =
∫

|A fθ (x) − g(x)|2μ(dx), (3)
�

2

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
where θ represents the parameters of the neural network and μ represents the sampling distribution. For linear elliptic
PDEs with b(x) = 0, the Ritz loss [15]

L(θ) =
∫
�

1

2
∇x fθ (x)T D(x)∇x fθ (x) + 1

2
c(x) fθ (x)2 − g(x) fθ (x)μ(dx) (4)

can also be used in training deep neural networks. Boundary conditions can also be satisfied by introducing mean square
loss of boundary conditions. In the following, we neglect the effects of boundary conditions and discuss the effective training
dynamics.

2.2. Evolution dynamics of the output function for GD training

The gradient descent dynamics based on the corresponding loss functionals is

θ t+1 − θ t = −η∇θL, (5)

where η is the learning rate. By regarding η as the time step, the continuum limit dynamics for η → 0 is

∂θ t

∂t
= −∇θL, (6)

and the evolution of the output function fθ satisfies

∂ fθ t (x)

∂t
= −∇θ fθ t (x)T ∇θL. (7)

Suppose the sample points are uniformly distributed in �. For different types of loss functionals of linear elliptic PDEs,
Eq. (7) satisfies the general form

∂ fθt (x)

∂t
= −

∫
�

K (x, y, t)(A fθt (y) − g(y))μ(dy), (8)

where the kernel function K (x, y, t) is given as follows:

1. For the deep Ritz method,

K (x, y, t) = ∇θ fθ t (x)T ∇θ fθ t (y) = �t(x, y), (9)

where �t(x, y) is exactly the Neural Tangent Kernel (NTK) [38].
2. For the mean square formulation,

K (x, y, t) = ∇θ fθ t (x)T ∇θ fθ t (y)AT = A�t(x, y), (10)

where AT is the adjoint operator of A and the differential operator A acts on variable y. This kernel will be referenced
as the MSK in this work.

Eq. (8) means that under the GD training dynamics, the output function is not modified point-to-point. Instead, if there
is a residual of the PDE at a sample point y, the output function is modified by a multiple of the kernel function K (x, y, t).
In particular, if the kernel function K (x, y, t) = δ(x − y), Eq. (8) reduces to the corresponding parabolic equation

∂ fθt (x)

∂t
= −A fθt (x) + g(x). (11)

If the kernel function K (x, y, t) is a function of (x − y) (which is approximately true under NTK parametrization), the integral
becomes a convolution. In this case,

∣∣∣K̂ (ω)

∣∣∣ provides a bias for learning rate of components of different frequencies.

2.3. Non-gradient method for elliptic equations

As we will discuss in the following, the kernel function for the deep Ritz formulation can be easily controlled for efficient
training. However, many elliptic equations do not have a variational form, such as the steady-state Fokker-Planck equation
with non-gradient forces and the steady state advection-diffusion equations. An interesting observation for these equations
is that the dissipative property of their corresponding time-dependent parabolic equations can guarantee the convergence
of the corresponding parabolic equations to steady state as time goes to infinite. In other words, although the eigenvalues
of these elliptic equations are not positive real numbers, they all have positive real parts.
3

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Inspired by the above observation of dissipation, we make a brave attempt to develop the non-gradient method to train
the parameters of deep neural networks with random samples

θ t+1 − θ t = −η
1

m

m∑
i=1

∇θ fθ (xi) (A fθt (xi) − g(xi)), (12)

where m is the sample size and xi are the sample points. For uniformly distributed sample points, when m → ∞, the
corresponding continuum-limit dynamics of the output function satisfies

∂ fθt (x)

∂t
= −

∫
�

�t(x, y)(A fθt (y) − g(y))μ(dy). (13)

This dynamics (13) has a same form with that for deep Ritz method. However, we do not require the residual A fθt (y) − g(y)

to be in a variational formulation. The relaxation of this requirement expands the application range of Eq. (12) greatly. The
convergence of the training dynamics relies on the dissipation of Eq. (13). Furthermore, Eq. (12) can also be employed to
solve nonlinear elliptic equations in case that there is a dissipation relation.

Similar to that in previous studies, boundary conditions can be satisfied by introducing a mean square loss of boundary
residues. For Dirichlet boundary conditions, the dynamics of the output function becomes

∂ fθt (x)

∂t
= −

∫
�

�t(x, y)(A fθt (y) − g(y))μ(dy) − λb

∫
∂�

θt(x, y)(u(y) − ũ(y))μ̃(dy), (14)

where λb is a weight parameter and ũ is the boundary value of the function.
In real applications, random samples are used to numerically evaluate the high-dimensional integrals in Eq. (14) in a

Monte-Carlo fashion. A training step for the non-gradient method for elliptic equations is included in Algorithm 1.

Algorithm 1 Non-gradient method (with Dirichlet boundary condition).

Input: neural network parameters θ t and uniformly distributed random samples {xt
i }m

i=1 ∈ � and {x̃t
i }mb

i=1 ∈ ∂�.
Output: neural network parameters θ t+1.

1: Compute gradients:

∇θ fθ t = (∇θ fθ t (xt
1), · · · ,∇θ fθ t (xt

m)) ∈R|θ |×m,

∇̃θ fθ t = (∇θ fθ t (x̃t
1), · · · ,∇θ fθ t (x̃t

mb
)) ∈R|θ |×mb ;

2: Compute residues:

rt = (A fθ t (x1) − g(x1), · · · ,A fθ t (xm) − g(xm))T ∈Rm,

r̃t =
(

fθ (x̃t
1) − ũ(x̃t

1), · · · , fθ (x̃t
mb

) − ũ(x̃t
mb

)
)T ∈Rmb ;

3: Update neural parameters θ t+1 = θ t − η
m ∇θ fθ t ·rt − λbη

mb
∇̃θ fθ t · r̃t .

2.4. Discretization

In principle, the linear or nonlinear elliptic operator A fθ on the network output function can be evaluated analyti-
cally. Nevertheless, the higher order derivatives in the operator put forward requirements for the smoothness of activation
functions used in the deep neural networks. As we will discuss in the following section, Relu activation function has its ad-
vantages in controlling the compactness of the kernel. In order to solve this dilemma, we use central difference to discretize
the elliptic operators at all sample points. Namely, the residual rt in Algorithm 1 is evaluated by

rt = (Ah fθ t (x1) − g(x1), · · · ,Ah fθ t (xm) − g(xm))T ,

where h is the adjustable step size for the discretization. In particular, the linear operators can be discretized as

Ah fθ (x) =
d∑

i=1

D(x + h
2 ei) (fθ (x + hei) − fθ (x)) − D(x − h

2 ei) (fθ (x) − fθ (x − hei))

h2

+
d∑

i=1

bi(x) (fθ (x + hei) − fθ (x−hei))

2h
+ c(x) f (x),

where ei are the standard basis vectors.
4

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
2.5. Evaluation of computational cost

Here we compare the computational cost for each sample point of the non-gradient method with that of the loss-based
methods deep learning methods.

For each sample point x, the computational cost includes two parts – evaluation of the output function f at 2d + 1
nearby points (or analytically evaluate the residual at the sample point) and calculates the gradient ∇θ fθ (x); whereas in
the stochastic gradient descent dynamics for the mean square formulation, the computational cost includes evaluation of the
residual and computes the gradient with respect to θ of 2d + 1 functions (the output function fθ (x), d terms in its gradient
∇x fθ (x), and d terms in its Laplacian �x fθ (x)). In deep Ritz method, since there is no need to compute ∇θ�x fθ (x), the
computational cost is approximately half that of the mean square formulation. Since the computational cost for function
evaluation is much smaller than that for gradient calculation for deep neural networks, the non-gradient method signifi-
cantly reduces the computational cost in comparison with the mean square formulation.

3. Properties of the training kernels

Clearly, the properties of the kernel function can influence the training dynamics deeply. Neural tangent kernels are
usually continuous (or even smooth) functions. The convolution property implies that high frequency components of the
solution are learned very slowly because the Fourier transform ̂K (ω) (which is the eigenvalue of the convolution operator
and ω is the spatial wavenumber) becomes very small for large ω. In order for a relatively fast learning rate for components
of given frequencies (e.g., when we have some a priori knowledge on the spectral property of the solution), we need to
control the compactness of the kernel so that ̂K (ω) is sufficiently large for desired frequencies. In particular, the Fourier
modes of widely spread kernels decay faster with the frequency than that of locally compacted kernels. Locality of the
kernels are important in learning high frequency components of the solution. Meanwhile, the kernel should also not be too
local for high dimensional problems. Otherwise, the number of sample points required for training the neural network grows
exponentially with the dimension and it becomes impossible to train a network for high dimensional problems. Therefore,
it is important to carefully control the locality of the training kernels for efficient training.

In the following, we first briefly review the important theories on NTKs; then we show the properties (with an emphasize
on the locality) of the kernels under different activation functions and discuss their effects.

3.1. Theories of neural tangent kernel

In the widely used initialization strategy of neural network parameters, such as LeCun’s initialization, the weights and
bias parameters are given by Gaussian distributions with mean zero and variance inversely proportional to the number of
input units. Such initialization strategy is very similar to that used in NTK parametrization [38]. For a network with L layers
given by

α̃(l+1)(x) =
√

1 − β2
√

nl
W (l)α(l)(x) + βb(l),

α(l+1)(x) = σ(α̃(l+1)(x)), (15)

where αl(x) (l = 1, 2, · · · , L) are the outputs of layer l and α0(x) = x is the input of the network, W (l) and b(l) are the
weight matrices and bias vectors, respectively, nl is the network width of layer l, β is an adjustable coefficient for the
bias vector b(l) , and σ() is the activation function, the NTK parametrization simply initializes all weights, W (l) and b(l) ,
using independent standard Gaussian distribution N (0, 1). Note that the variance of the effective weights

√
1−β2√

nl
W (l) is

also inversely proportional to the number of input units nl due to the prefactor. In general, we assume that the activation
function σ() has been normalized, namely, we have Ex∼N (0,1)[σ 2(x)] = 1. Otherwise, we can normalize σ by

σ̃ (x) = σ(x) −Ex∼N (0,1)σ (x)√
Ex∼N (0,1)(σ (x) −Ex∼N (0,1)σ (x))2

. (16)

By this normalization, the output vector α̃l(x) of each layer satisfies the standard Gaussian distribution.
For simplicity of description and notations, we use θ to represent all the parameters W (l) and b(l) . As mentioned above,

the Neural Tangent Kernel (NTK) is defined as �t (x, y) = ∇θ fθ t (x)T ∇θ fθ t (y). In particular, �0(x, y) = ∇θ fθ0 (x)T ∇θ fθ0 (y) is
the initial NTK, where θ0 is the initial value of parameters.

We briefly collect the important theories of NTKs in below [38]. In the rigorous proof of these theories, one needs to
assume that the input x lies on a sphere ‖x‖2 = c. In real applications, this requirement is not crucial.

Theorem 1. When the width nl of hidden layers approaches to infinity, the NTK approaches to a deterministic matrix:

�t(x, y) → �∞(x, y) (17)

for any x, y.
5

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Table 1
Value of r for different activation function and different value of β .

β 0.0 0.1 0.2 0.3 0.4 1.0

ReLU 1.47 1.45 1.41 1.33 1.23 0.00
ELU 1.08 1.07 1.06 0.98 0.91 0.00
Swish 1.21 1.20 1.16 1.10 1.02 0.00

The correctness of this theorem relies on two facts: First, as nl → ∞, we have �0(x, y) → �∞(x, y) as a consequence of
the central limit theorem; Second, under NTK parametrization, the change of parameters during training is small for large
network width nl . In real applications, nl is usually not so big. As a result, there is usually a slight but visible change of
parameters during training. In this case, the NTK can also be slightly changed. Nevertheless, the property of the NTK is
largely determined by the initial value. Therefore, we can pay our main attention on the initial NTK, which is determined
by the network structure (e.g., the depth of the network) and the activation functions.

When the input x lies on a sphere ‖x‖2 = c, the kernel �∞(x, y) can be written in the form of �∞(‖x − y‖2). This
provides the convolution property of Eq. (13). As we have discussed above, the locality and compactness of the NTK is
crucial in determining the spectral bias effect of the training dynamics (13). The next theorem provides deep insight in
understanding the properties of NTKs �∞(x, y) [40].

Theorem 2. Denote r = (1 − β2)Ex∼N (0,1)[σ̇ 2(x)], where σ̇ (x) is the derivative of σ with respect to x, and denote the normalized
NTK

ϑ L(x, y) = �∞(x, y)√
�∞(x, x)�∞(y, y)

.

where L emphasises the depth of neural network. If the NTK parametrization is used and r > 1 (the chaos region), we have

|ϑ L(x, y)| ≤ ChL
0 (18)

for x = y, where C is a constant and h0 = h0(x, y) < 1 is a function dependent only on x and y for given σ(·) and β .

From numerical tests one can estimate that h0(x, y) is generally a decreasing function of ‖x − y‖2 (at least when ‖x − y‖2
is not too big). Therefore for r > 1, Theorem 2 means that the kernel �t is locally compacted for sufficiently deep neural
networks, since the upper bound ChL

0(x, y) (‖x − y‖2 > R0) becomes very small for sufficiently large L, where R0 is the
effective radius for the compact kernel.

It is worth noting that r = (1 − β2)Ex∼N (0,1)[σ̇ 2(x)] depends on both β and the activation function. For each activation
function, r is an decreasing function of β (β > 0) and reaches the maximum at β = 0. In Table 1, we show r for different
β under the above three activation functions. In the following, we will show that r is critical in determining the function
h0(x, y), thus plays a dominate role in the locality and compactness of the NTK.

3.2. Compactness of kernels

Next, we discuss the properties, in particular, the compactness of the kernels under different activation functions, differ-
ent network depth, different dimension, and different choices of the parameter β . Based on these properties, we select a
good choice for general applications in solving elliptic equations.

Three activation functions with different smoothness are discussed in the following:

1. Swish(x) = x
1+e−x ;

2. Elu(x) =
{

x, if x > 0,

ex − 1, else;
3. Relu(x) = max (x,0).

Normalization of the activation functions are performed based on Eq. (16).
Without loss of generality, the domain for kernel testings are set to be [−π

2 , π2]d . Since the NTKs are approximately
translation invariant, the numerically normalized kernels ϑ(x, y) are averaged for 20 equally spaced values of y to visualize
the kernels. Meanwhile, since the kernels are approximately axi-symmetric, one-dimensional curves are used to illustrate
the kernels. The width of each layer is fixed to be 2000 in the tests to efficiently remove numerical fluctuations.

3.2.1. Compactness of NTKs
As discussed above, the training kernels are exactly the NTKs under the deep Ritz formulation and our non-gradient

formulation. In other words, the training effect under these formulations is largely determined by the characteristics of the
NTKs. In the following, we study the compactness of the NTKs numerically. As we will see that the Relu activation function
can be easily used in controlling the compactness of the NTKs by carefully selected bias parameter β and network depth L.
6

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 1. Kernels for r = 1.07 and network depth L = 3, 6, and 9 under different activation functions. The input dimension d = 16.

Fig. 2. Kernels for β = 0.2 under different activation functions and network depths. The input dimension is 16.

The quantity r defined in Theorem 2 is crucial in determining the compactness of the kernels – as we can see for all
tested activation functions, the greater the parameter r is, the more locally compacted the kernel is.

In Fig. 1, the normalized NTKs are shown for the case that r = 1.07 with the input dimension d = 16. Note that β is
different for the three activation functions (see Table 1). In particular, r almost reaches its maximum for the Elu activation
function. Since r is not relatively small in these cases, the kernels are not well compacted locally — they all maintain a
relatively large value on the domain boundary |x| = π/2.

In all following tests, we fix β = 0.2 for a fair comparison of the compactness of the NTKs under different activation
functions.

The NTKs for β = 0.2 are shown in Fig. 2. Since r for the Relu activation function is much greater than that for the other
two activation functions, the NTKs under Relu activation function are much more compacted than the others. Furthermore,
we can see from both Fig. 1 and 2 that as the depth of the network increases, the kernels become more locally compacted.
This is consistent with the power law bound in the inequality (18). In fact, this power law inequality can help us to estimate
the changes of the NTKs as the depth of the network increases.

In the original NTK theory [38–42], the input x is defined on the unit sphere. In this case, the NTK �∞(x, y) depends
only on the angle between x and y. Namely, the NTK is independent on the dimension of the input x. However, in our
applications, the input x is defined in the entire cubic domain. In this case, the input dimension of x also plays an important
role in determining the compactness of the NTKs. In general, the NTKs become less compacted for larger dimension d. One
may also map x onto the unit sphere by introducing a virtual dimension. Under this mapping, the angle between the images
of X and Y is also dependent on the spatial dimension.

A comparison for the case of d = 2 and d = 16 are shown in Fig. 3. From Fig. 2 and 3, we can see that deeper networks
are required to maintain sufficient compactness of kernels in higher dimensional spaces. In particular, networks with Relu
activation function have much better performance in controlling the compactness than networks with the other two activa-
tion functions. In other words, using Relu activation function allows us to obtain compacted kernels with relatively shallow
networks.
7

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 3. Kernels for different input dimensions under different activation functions. The depth L = 3 and the bias parameter β = 0.2.

3.2.2. Compactness of the MSKs
As discussed above, the training kernel for the mean square formulation is A�(x, y). The properties of the MSKs also

determine the performance of the training process under the mean square formulation. In the following, we will compare
NTKs and MSKs to show part of the benefits of non-gradient method. Without loss of generality, we only consider the
Poisson equation in which A = −�. Further more, due to the nonsmoothness of the Relu activation function, we use the
discretized operator �h to calculate MSKs. Similarly, the MSKs are normalized in the following numerical tests.

A comparison of the NTKs and MSks are shown in Fig. 4. We can see that the MSKs for the Relu activation function are
too local due to the sharp peak at the origin. Thus very large amount of sample points are required to train networks in
high dimensional spaces when Relu activation function is used under the mean square formulation (PINN). For the Swish
activation functions, the compactness of the MSKs are even worse than the corresponding NTKs.

The MSKs for Elu activation function maintain relatively good compactness. This suggests that using networks with
Elu activation function to solve high dimensional elliptic equations can be efficient under the mean square formulation.
However, we can also see that as the network depth increases, the compactness of the MSKs do not change significantly.
This means that it can be hard to control the compactness of MSKs by tuning the hyper-parameters and the network depth.

3.3. Kernel control

In principle, the convergence speed and training efficiency is determined by the eigenvalue of the training dynamics (e.g.,
the integro-differential operator on the right hand side of Eq. (13)). For data fitting problems, this eigenvalue is directly
̂�∞(ω), whereas for the training dynamics of our non-gradient method (13), the eigenvalue is ̂�∞(ω)̂A(ω), where ̂A(ω)

is the eigenvalue of the elliptic operator (e.g., if the operator is A = −�, ̂A(ω) = |ω|2.) Therefore, if there are relatively
high frequencies of interest in the solution, we need to use a relatively local kernel. As discussed above, such a task can be
achieved by carefully choosing the activation function, the parameter β , and the network depth L. In particular, the Relu
activation function is welcome in our non-gradient method. For high-dimensional equations with important high frequency
components in the solution, sufficiently deep networks are helpful for the training efficiency.

4. Numerical results

Next, we show the numerical results obtained with our non-gradient method. In our simulations, the ReLU activation
function is used so that the training kernels are well compacted. Three types of elliptic equations, including a symmetric
equation, an asymmetric equation, and a nonlinear equation, are used for numerical tests.

In our numerical tests, Adam optimizer [44] and the default decay strategy for learning rate in Tensor Flow is used for
all problems. The initial learning rate is 0.01 and the decay step is 1000. The width of each hidden layer is fixed to be 2000.
In order to analyze the convergence of the non-gradient method, the L2 relative error

erel =
√√√√∑Ntest

i=1 (fθ (xi) − u∞(xi))
2

∑Ntest
i=1 fθ (xi)

2

is calculated on Ntest = 10000 random samples, where u∞ is the exact solution.
8

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 4. The NTKs (blue) and MSKs (orange) for different activation functions and network depth. The activation functions for the upper, the middle, and the
bottom rows are ReLU, Elu, and swish, respectively. The network depth L for the left, the middle, and the right columns are 3, 6, and 9, respectively. The
dimension d = 16 and bias parameter β = 0.2.

4.1. Symmetric elliptic equation

The first equation we considered is a symmetric equation,{ −�u(x) + cu(x) = g(x), in � = [−π
2 , π

2]d,

u(x) = u∞(x), on ∂�,
(19)

where c = 2 and g(x) is given by u(x) = u∞(x) in each following case.
First, we consider a two-dimensional case with relatively high frequency components, u∞(x) = ∑2

i=1 (cos(xi) + cos(15xi)).
Thus a network with layers is used. For the two-dimensional case, L = 3 is sufficient to make the NTK sufficiently compact.
In each iteration, we use 1000 random samples in the domain and 200 samples on the boundary. The solution of the
equation converges well after 20000 epochs. The solution and L2 error are shown in Fig. 5. Note that the analytic solutions
9

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 5. Left: Numerical solution of the two dimensional case. Middle: The corresponding absolute error. Right: Convergence of the L2 relative error.

Fig. 6. The normalized NTKs before and after training for two dimensional example. Left: the first dimension; Right: the second dimension.

of the equations are all known in our examples, which allows us to evaluate the L2 error. Nevertheless, the L2 error and
information of the solution is not used in our non-gradient method. We can see that the high frequency components are
resolved very well.

As shown in Fig. 6, the change of NTKs is insignificant during the training. This implies that a well-behaved initial NTK
is sufficient to ensure fast convergence and high accuracy approximation of the solution.

Next, we consider a ten-dimensional example with u∞(x) = cos(10x1) + cos(10x2) + ∑10
i=1 cos(xi). Note that there are

high frequency components in the first two dimensions. In order to make the NTK sufficiently compact, the depth of network
is set to be L = 6. The sample size is m = 10000 and mb = 5000. The solution of the equation converges very well after
30000 epochs of training. The solution on three cross sections are shown in Fig. 7. Similarly, the high frequency components
are well resolved.

4.2. Advection diffusion equation

When the elliptic operator is asymmetric, the deep Ritz formulation can not be applied. However, our non-gradient
method is still efficient in handling this kind of elliptic equations. As an example, we consider the advection-diffusion
equation

−�u(x) + �b(x) · ∇u(x) + 2u(x) = g(x), (20)

where x = (x1, · · · , xd) ∈ � = [−π
2 , π2]d and �b(x) = (sin(x1), · · · , sin(xd)). g(x) and the Dirichlet boundary value are given by

the exact solution u∞(x) = cos(10x1) + ∑d
i=1 cos(xi).

The network structure and sample size are the same as the above ten dimensional case for the symmetric equations.
Two cross-sectional illustrations of the solution and the convergence of the numerical error are shown in Fig. 8. The good
approximation of the solution shows the effectiveness of our non-gradient method for asymmetric elliptic equations.
10

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 7. The solution in three cross sections and the convergence of the L2 relative error.

Fig. 8. Cross-sectional illustrations of the solution and convergence of the L2 relative error of the ten dimensional advection-diffusion equation.

4.3. Fokker-Planck equation

The Fokker-Planck equation

∂ P (x, t) = ∇ · (−b(x)P (x, t) + ε∇ P (x, t)), (21)

∂t

11

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 9. Cross-sectional illustration and convergence of the L2 relative error for the 10-dimensional Fokker-Planck equation.

describes the evolution of the probability density function (PDF) of Brownian particles (or systems) under the driven force
b(x). The steady state solution P (x) of the Fokker-Planck equation is important in many applications such as many rare
event dynamics. When ε is small, the PDF P can change drastically, which brings difficulty in numerical methods. Another
difficulty is that the PDF must be kept positive. Therefore, people turn to solve the equation of u(x) = −ε log P (x),

ε(�u(x, t) + ∇ · b(x)) − ∇u(x, t) · b(x) − ‖∇u(x, t)‖2 = 0. (22)

Note that Eq. (22) can be obtained by substituting P (x) = exp(− u(x)
ε) into the steady state equation of Eq. (21). Eq. (22) is

a nonlinear elliptic equation. The corresponding parabolic equation of Eq. (22) also maintains a natural energy dissipation
relation.

In our simulation, the exact solution is selected to be

u∞(x) = (1 − x1
2)2

4
+ x1x2 +

∑d
i=2 xi

2

2

and b(x) is given by

b(x) = ∇ × F − 1

ε
∇u(x) × F − ∇u(x), (23)

where the cross product “×” acts only on the first three dimensions and the other components are all zero. A generalization
of the cross product can be defined by exterior differentiation. It is direct to verify that u∞ is the solution of Eq. (22)
once b(x) is given by Eq. (23). Furthermore, when F = 0, u cannot be trivially read from b(x) (e.g., by solving the equation
�u = ∇ · b).

In our simulation, we simply use F = (1, 0, 0, · · · , 0) to define b(x). The cross-sectional illustrations of solution are shown
in Fig. 9. We can see that the solution is also approximated very well.

Note that ε = 2.0 is used in our simulation. When ε is small (compared to the energy barrier of u∞), the elliptic operator
of the original Fokker-Plank equation (21) has an exponentially small eigenvalue corresponding to the rare event dynamics
12

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 10. Cross-sectional illustrations of the solutions learned by the PINN method with ReLU (the upper panel) and Swish (the bottom panel) activation
functions.

due to the energy barrier in u∞ . This small eigenvalue results in a slow dissipation of both Eq. (21) and Eq. (22). As a result,
the non-gradient method also converges very slowly. Note that this is not due to a drawback of our non-gradient method
but an intrinsic difficulty of the original problem. Under the mean square formulation, the small eigenvalue also results in a
large condition number of the optimization problem and the solution can not be directly found.

4.4. Comparison against PINN

Since the Deep Ritz method is effectively equivalent to our non-gradient method for elliptic equations with positive
definite operators, we mainly compare our non-gradient method with the Physics-informed Neural Network (PINN) method
based on the mean square loss of the residual.

The same example in subsection 4.2 is used for the comparison. The same network setup and learning rate as in subsec-
tion 4.2 are used for a relatively fair comparison, although the best learning rate for different methods may be different.

The cross-sectional illustrations of solutions obtained by the PINN method are shown in Fig. 10. We can see a relatively
large numerical error in the solution obtained with the Relu activation function. The convergence analysis of the PINN
method with different activation functions and the non-gradient method with Relu activation function is shown in Fig. 11.
We can see that the convergence of the L2 error is comparable for the non-gradient method and the PINN method with Elu
and Swish activation functions, whereas the PINN method with Relu activation function converges slowly. Interestingly, the
PINN loss also receives a decay in the training process of the non-gradient method, although the decay is less than that of
the PINN method with Elu and Swish activation functions.

Although theoretical analysis has shown that the NTK (and MSK) can hardly change under the NTK parameterization if
the network width goes to infinity, the MSKs obtained in our training process change a lot in fact, as shown in Fig. 12.
13

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Fig. 11. Convergence of L2 relative error (Left) and the PINN Loss (Right).

Fig. 12. The initial and final MSKs with different activation functions.

In other words, the training in the PINN method has learned certain features. It is of interest to see that all final MSKs
maintain certain locality regardless of their initial shape.

5. Conclusion and discussion

In this work, we develop a non-gradient method to solve elliptic PDEs using deep neural networks. In our non-gradient
method, the training kernel is exactly the neural tangent kernel (NTK).

The first advantage of our non-gradient method is that we do not require a loss functional to find the solution. Instead,
we directly use the residual of the equation to train the network. The second advantage of our method is that the training
kernel can be well controlled by the activation function, the network depth, and the parameter β in NTK parameterization.
By well controlled NTKs, the training dynamics can be efficient and the solution can be well approximated. Furthermore,
using numerical discretization to evaluate the residual reduces the computational cost significantly. It also allows us to
use the ReLU activation function for elliptic equations with high order derivatives. Comparing to the Deep Ritz method,
our non-gradient method can be applied to asymmetric elliptic equations; Comparing PINN (the mean square formulation),
the training kernel of the non-gradient method can be controlled more easily, which is important for learning of relatively
high-frequency components in the solution.

Our numerical examples show the great potential of our non-gradient method in solving elliptic PDEs, where the el-
liptic operator can asymmetric or nonlinear. In this case, the training dynamic is no longer a gradient flow. Instead, the
convergence of our non-gradient method relies on the dissipation of the training dynamics. Although we have assumed the
equivalence between the dissipation properties of the corresponding parabolic equation and the training dynamics for an
elliptic equation, there is no theoretical guarantee so far. Based on this assumption, we only require all eigenvalues of the
(linearized) elliptic operator to maintain positive real parts instead of requiring the operator to be positive definite. For PDEs
with one or a few negative eigenvalues, such as the Helmholtz equation, the non-gradient method cannot be applied yet.

CRediT authorship contribution statement

Yifan Peng: Methodology, Programming, and Writing. Dan Hu: Conceptualization, Methodology, and Writing. Zhiqin Xu:
Programming.
14

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgement

This work is supported by the National Key R&D Program of China (2019YFA0709503), the National Natural Science
Foundation of China (Contract no. 11971312), and Student Innovation Center, Shanghai Jiao Tong University.

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.
[2] G.D. Smith, G.D. Smith, G.D.S. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, 1985.
[3] O.C. Zienkiewicz, R.L. Taylor, P. Nithiarasu, J. Zhu, The Finite Element Method, vol. 3, McGraw-Hill, London, 1977.
[4] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handb. Numer. Anal. 7 (2000) 713–1018.
[5] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, in: Proceedings of the Thirtieth Annual ACM

Symposium on Theory of Computing, 1998, pp. 604–613.
[6] W. E, J. Han, A. Jentzen, Algorithms for solving high dimensional pdes: from nonlinear Monte Carlo to machine learning, arXiv:2008 .13333, 2020.
[7] C. Beck, L. Gonon, A. Jentzen, Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial

differential equations, arXiv preprint, arXiv:2003 .00596, 2020.
[8] C. Beck, M. Hutzenthaler, A. Jentzen, B. Kuckuck, An overview on deep learning-based approximation methods for partial differential equations, arXiv

preprint, arXiv:2012 .12348, 2020.
[9] F. Hornung, A. Jentzen, D. Salimova, Space-time deep neural network approximations for high-dimensional partial differential equations, arXiv preprint,

arXiv:2006 .02199, 2020.
[10] T. Dockhorn, A discussion on solving partial differential equations using neural networks, arXiv preprint, arXiv:1904 .07200, 2019.
[11] J. Berg, K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317

(2018) 28–41.
[12] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic

differential equations, Commun. Math. Stat. (2017) 349–380.
[13] J. Han, W. E, Deep learning approximation for stochastic control problems, arXiv:1611.07422, 2016.
[14] T. Nakamura-Zimmerer, Q. Gong, W. Kang, Qrnet: optimal regulator design with lqr-augmented neural networks, IEEE Control Syst. Lett. 5 (4) (2020)

1303–1308.
[15] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. (2018) 1–12.
[16] Y. Khoo, L. Ying, Switchnet: a neural network model for forward and inverse scattering problems, J. Sci. Comput. 41 (5) (2019) A3182–A3201.
[17] Y. Fan, L. Y, Solving inverse wave scattering with deep learning, arXiv:1911.13202, 2019.
[18] Y. Peng, L. Lin, L. Ying, L. Zepeda-Núñez, Efficient long-range convolutions for point clouds, arXiv preprint, arXiv:2010 .05295, 2020.
[19] J. He, L. Li, J. Xu, C. Zheng, Relu deep neural networks and linear finite elements, arXiv preprint, arXiv:1807.03973, 2018.
[20] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411 (2020) 109409.
[21] C. Beck, S. Becker, P. Cheridito, A. Jentzen, A. Neufeld, Deep splitting method for parabolic pdes, arXiv:1907.03452, 2019.
[22] J. Darbon, G.P. Langlois, T. Meng, Overcoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network

architectures, Res. Math. Sci. 7 (3) (2020) 1–50.
[23] J. Darbon, T. Meng, On some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton–Jacobi partial

differential equations, J. Comput. Phys. 425 (2021) 109907.
[24] J. Sirignano, K. Spiliopoulos, Dgm: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[25] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[26] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic pdes, J. Comput. Phys.

420 (2020) 109707.
[27] E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational physics-informed neural networks for solving partial differential equations, arXiv preprint, arXiv:

1912 .00873, 2019.
[28] S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of Fourier feature networks: from regression to solving multi-scale pdes with physics-informed

neural networks, arXiv preprint, arXiv:2012 .10047, 2020.
[29] A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, J. Com-

put. Phys. 404 (2020) 109136.
[30] M.A. Nabian, R.J. Gladstone, H. Meidani, Efficient training of physics-informed neural networks via importance sampling, Comput.-Aided Civ. Infrastruct.

Eng. (2021).
[31] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient pathologies in physics-informed neural networks, arXiv preprint, arXiv:2001.

04536, 2020.
[32] S. Wang, X. Yu, P. Perdikaris, When and why pinns fail to train: a neural tangent kernel perspective, arXiv preprint, arXiv:2007.14527, 2020.
[33] Y. Shin, J. Darbon, G.E. Karniadakis, On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type pdes,

arXiv preprint, arXiv:2004 .01806, 2020.
[34] S. Mishra, R. Molinaro, Estimates on the generalization error of physics informed neural networks (pinns) for approximating pdes, arXiv preprint,

arXiv:2006 .16144, 2020.
[35] Z.-Q.J. Xu, Frequency principle: Fourier analysis sheds light on deep neural networks, Commun. Comput. Phys. 28 (5) (2020) 1746–1767.
[36] Z.-Q.J. Xu, Y. Zhang, Y. Xiao, Training behavior of deep neural network in frequency domain, in: International Conference on Neural Information

Processing, Springer, 2019, pp. 264–274.
15

http://refhub.elsevier.com/S0021-9991(22)00753-7/bibDC27EB94C773F24746A96FC0013D6A0Ds1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib6BE6993B4B32CB073303ABB23C6CD476s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib0A3F5184ABAE774362A01C0ECD90F76Fs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib6BCF090268A4CED43C0579900744CABFs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibCF5EEC676E7AD251D3EC09A4BB454082s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibCF5EEC676E7AD251D3EC09A4BB454082s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibCE9549AA22D198F17ABE81B85ACA6D71s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibA80846839BCC26E9431572ABA4255006s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibA80846839BCC26E9431572ABA4255006s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibE73D15EA4DCA18D2B63E102912C151E5s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibE73D15EA4DCA18D2B63E102912C151E5s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib72BB5BABE51C67F39E1405BAED65729Cs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib72BB5BABE51C67F39E1405BAED65729Cs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibAA485BAF36252AA747DA00B764C384F8s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB81B07E1ABB63F522FD16E14210BE6B7s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB3F57910F998F1DEA6503CC5CA16FA5Es1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB3F57910F998F1DEA6503CC5CA16FA5Es1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibFC5364BF9DBFA34954526BECAD136D4Bs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib8969340DA0F6F2DBE81CDAD9203D6129s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib8969340DA0F6F2DBE81CDAD9203D6129s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib45B003B5656AB442BC14E770044B7DF6s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibA91C78E040F7B9D158F381E197F8BEB4s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibA3C4021003E2B5EDFD62BF2C71D5C66Ds1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibC6472E02A13AF925FCBB58AF80D70BC6s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibAE226B6937514C50AE01D199AEBE296Fs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib061509103C128BD112D5622A49FD5606s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib234B837A86630858273BB684EA739A64s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib5A456D60F8BE5D61EBAE87E79EA0AAE9s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib5A456D60F8BE5D61EBAE87E79EA0AAE9s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib91BB34DEAF101A10977C98471A986DB3s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib91BB34DEAF101A10977C98471A986DB3s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibDCC0F5D8C1F5BB9F6BD8B6D092B9BE9Bs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib34AFCB53734650090791025D0D7AC83Cs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib2818596A032BC9659329BDE4141F1CCEs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib2818596A032BC9659329BDE4141F1CCEs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib393FB69FE301B2E861B9BE144D9E73E3s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib393FB69FE301B2E861B9BE144D9E73E3s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB33263533740884419EFF3376A834DF3s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB33263533740884419EFF3376A834DF3s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibCC0139325916FC941CC6CD039B4585CDs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibCC0139325916FC941CC6CD039B4585CDs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB86E1EA8F55923ADE4CBF9917D2F819Ds1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB86E1EA8F55923ADE4CBF9917D2F819Ds1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB59CF456CF68BDB251051DEB0A14D707s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibE71875993B3F08DFBBE6D108951532B2s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibE71875993B3F08DFBBE6D108951532B2s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib5A231D557711FB1A46B872A9B9CD1959s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib5A231D557711FB1A46B872A9B9CD1959s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib5F7CCBBD9E1383CBFFD57B1394A7524Cs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibE2115C644AC739A7047593F4D751142Cs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibE2115C644AC739A7047593F4D751142Cs1

Y. Peng, D. Hu and Z.-Q.J. Xu Journal of Computational Physics 472 (2023) 111690
[37] Y. Zhang, T. Luo, Z. Ma, Z.-Q.J. Xu, A linear frequency principle model to understand the absence of overfitting in neural networks, Chin. Phys. Lett.
38 (3) (2021) 038701.

[38] J. Arthur, G.G. Franck, H. Clement, Neural tangent kernel: convergence and generalization in neural networks, Adv. Neural Inf. Process. Syst. 31 (2018)
8571–8580.

[39] S. Arora, S. Du, W. Hu, Z. Li, R. Salakhutdinov, R. Wang, On exact computation with an infinitely wide neural net, Adv. Neural Inf. Process. Syst. 32
(2019) 8141–8150.

[40] J. Arthur, G.G. Franck, H. Clement, Freeze and chaos for dnns: an ntk view of batch normalization, checkerboard and boundary effects, arXiv:1907.05715,
2019.

[41] J. Huang, H. Yau, Dynamics of deep neural networks and neural tangent hierarchy, arXiv:1909 .08156, 2019.
[42] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, J. Pennington, Wide neural networks of any depth evolve as linear models under

gradient descent, Adv. Neural Inf. Process. Syst. 32 (2019) 8572–8583.
[43] G. Yang, E.J. Hu, Feature learning in infinite-width neural networks, arXiv preprint, arXiv:2011.14522, 2020.
[44] D.P. Kingma, J. Ba Adam, A method for stochastic optimization, arXiv preprint, arXiv:1412 .6980, 2014.
16

http://refhub.elsevier.com/S0021-9991(22)00753-7/bibFE5CEDC3C7C9DFEDA6835A74E0CE422As1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibFE5CEDC3C7C9DFEDA6835A74E0CE422As1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib56BCBDB380CB669C615A411544960A18s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib56BCBDB380CB669C615A411544960A18s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibC0A45342F9480136A224CE19FAC16697s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibC0A45342F9480136A224CE19FAC16697s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib00528740A2B3DEFAB0B87E5B9591593Fs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib00528740A2B3DEFAB0B87E5B9591593Fs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib3F3C270404CF83D3EB611649C784B02Fs1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib5B495CBD1CA0A001C6625EF2223A5559s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bib5B495CBD1CA0A001C6625EF2223A5559s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibBA5D7641A00223B357FEF2D79475E153s1
http://refhub.elsevier.com/S0021-9991(22)00753-7/bibB88B8F9E9C5AF9DF750A673227029C8Fs1

	A non-gradient method for solving elliptic partial differential equations with deep neural networks
	1 Introduction
	2 Basic framework
	2.1 Loss functional for elliptic PDEs
	2.2 Evolution dynamics of the output function for GD training
	2.3 Non-gradient method for elliptic equations
	2.4 Discretization
	2.5 Evaluation of computational cost

	3 Properties of the training kernels
	3.1 Theories of neural tangent kernel
	3.2 Compactness of kernels
	3.2.1 Compactness of NTKs
	3.2.2 Compactness of the MSKs

	3.3 Kernel control

	4 Numerical results
	4.1 Symmetric elliptic equation
	4.2 Advection diffusion equation
	4.3 Fokker-Planck equation
	4.4 Comparison against PINN

	5 Conclusion and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

