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a b s t r a c t 

Machine learning has long been considered a black box for predicting combustion chemical kinetics due 

to the extremely large number of parameters and the lack of evaluation standards and reproducibility. 

The current work aims to understand two basic questions regarding the deep neural network (DNN) 

method: what data the DNN needs and how general the DNN method can be. Sampling and prepro- 

cessing determine the DNN training dataset, and further affect DNN prediction ability. The current work 

proposes using Box-Cox transformation (BCT) to preprocess the combustion data. In addition, this work 

compares different sampling methods with or without preprocessing, including the Monte Carlo method, 

manifold sampling, generative neural network method (cycle-GAN), and newly-proposed multi-scale sam- 

pling. Our results reveal that the DNN trained by the manifold data can capture the chemical kinetics in 

limited configurations but cannot remain robust toward perturbation, which is inevitable for the DNN 

coupled with the flow field. The Monte Carlo and cycle-GAN samplings can cover a wider phase space 

but fail to capture small-scale intermediate species, producing poor prediction results. A three-hidden- 

layer DNN, based on the multi-scale method without specific flame simulation data, allows predicting 

chemical kinetics in various scenarios and being stable during the temporal evolutions. This single DNN 

is readily implemented with several CFD codes and validated in various combustors, including (1). zero- 

dimensional autoignition, (2). one-dimensional freely propagating flame, (3). two-dimensional jet flame 

with triple-flame structure, and (4). three-dimensional turbulent lifted flames. The ignition delay time, 

laminar flame speed, lifted flame height, and contours of physical quantities demonstrate the satisfying 

accuracy and generalization ability of the pre-trained DNN. The Fortran and Python versions of DNN and 

example codes are attached in the supplementary for reproducibility, which can also be found on the 

https://github.com/tianhanz/DNN-Models-for-Chemical-Kinetics. 

© 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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. Introduction 

There is an increasing need to develop novel combustion tech- 

iques for demands like carbon-neutral goals and energy sustain- 

bility. Numerical simulation is a powerful tool to advance scien- 

ific discovery and assist industrial production. Chemists have de- 

eloped many detailed combustion chemistry mechanisms to con- 
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ider real fuel effects. However, it is a long-standing issue that sim- 

lations involving the direct integration (DI) of detailed chemistry 

re computationally expensive. Thus, developing numerical meth- 

ds to accelerate simulations with detailed chemistry is a central 

opic within the combustion community [1] . 

Machine learning has been introduced in the combustion area 

o accelerate computation since the 1990s. Christo et al. [2,3] were 

he first to combine the joint PDF method with artificial neural 

etworks (ANNs) to predict chemical kinetics in turbulent jet dif- 

usion flames. They compared global peak values and averaged ra- 

ial profiles to demonstrate the reasonable accuracy of the ANN- 
. 

https://doi.org/10.1016/j.combustflame.2022.112319
http://www.ScienceDirect.com
http://www.elsevier.com/locate/combustflame
http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2022.112319&domain=pdf
mailto:zhangth@sustech.edu.cn
mailto:xuzhiqin@sjtu.edu.cn
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DF method. Blasco et al. [4] pointed out that it is necessary to 

valuate the continuous evolution performance of an ANN in a ho- 

ogeneous mixture before applying it to a flow system. Therefore, 

hey investigated both the single and evolutionary prediction er- 

or of the ANN in a zero-dimensional system. Later they proposed 

 self-organizing map (SOM) approach to partition the thermo- 

hemical space into several subdomains where a group of ANNs 

an target each subdomain respectively [5] . The combination of the 

OM and PDF-ANN achieved much higher accuracy in the temporal 

volution of a partially stirred reactor (PaSR). Chen et al. [6] em- 

hasized the difficulty of sampling the entire chemical kinetics 

pace and explored an innovative sampling strategy by the in situ 

daptive tabulation (ISAT). It was shown that the ANN-ISAT could 

andle similar conditions under which the ISAT was built. Kempf 

t al. [7] trained ANNs to tabulate steady flamelets and tested 

hem in piloted flame. A similar effort was made by Ihme et al. 

8] to explore optimal ANN structures. To extend the ANN train- 

ng data from steady-state solutions to unsteady simulations, Sen 

nd Menon [9] sampled data from direct numerical simulations 

DNS) of laminar flame vortex interactions (FVI). They then formed 

 LEM-LES-ANN scheme without reducing the ANN input size using 

 progress variable or mixture fraction. They extended the sam- 

ling method to stand-alone LEM simulations and demonstrated 

ts stronger generalization ability in a range of configurations [10] . 

hatzopoulos and Rigopoulos [11] suggested a tabulation method 

ith Rate-Controlled Constrained Equilibrium (RCCE) and ANN for 

lleviating the pressure to parametrize higher-dimensional chem- 

cal space. They tested ANNs coupled with the RANS-PDF simu- 

ation for the DLR jet flames. Franke et al. [12] further included 

amelets of a broader range of strain rates in ANN training set 

o simulate Sydney flame L, which features local extinctions and 

e-ignitions. Wan et al. [13] proposed an end-to-end deep neu- 

al network (DNN) in a non-premixed oxy-flame DNS trained on 

tochastic micro-mixing data. The end-to-end DNN could directly 

redict burning rates without a PDF model and achieved satis- 

actory accuracy in the flame statistics. Ding et al. [14] examined 

n innovative hybrid sampling strategy to train the ANN, includ- 

ng both flamelet and random data, aiming for a stronger gen- 

ralization. Their ANN was tested on flamelets, one-dimensional 

remixed flame, and Sandia flame series. Chi et al. [15] put for- 

ard an on-the-fly training scheme to accelerate DNS, and the 

NN does not require preliminary knowledge and can learn in an 

n situ manner. More recently, Nakazawa [16] proposed a species- 

ndependent DNN structure so that the trained models are not lim- 

ted to a single configuration. Another typical data-driven method 

s principal component analysis (PCA), which can find the low di- 

ensional subspace of the reacting system to reduce variable num- 

ers in the simulation, including the PC-score approach [17,18] and 

PCA approach [19] . The PCA can further improve computation ef- 

ciency by adaptive chemical kinetics in different thermochemical 

omains [20] . 

It is readily seen that the generalization, accuracy, and effi- 

iency of ANN/DNN models are at the core of previous studies. An 

deal ANN/DNN model should be able to handle a wide range of 

emperature, pressure, and equivalence ratio conditions in various 

ow and flame configurations with or without turbulence. How- 

ver, there are still major barriers to developing such a model. 

he first one is the generalization ability, which heavily relies on 

raining data selection. In past works, sampling was performed on 

andom data [2–5] , ISAT [6] , flamelet [7,8,11,12] , DNS [9,16] , stand-

lone LEM simulation [10] , stochastic micro-mixing [13] , randomly 

erturbed flamelet data [14] and on-the-fly simulation [15] . The 

eural networks aforementioned were validated through various 

hallenging cases and demonstrated good agreement. It is never- 

heless still unclear whether they can be applied to a wider range 

f conditions. If a given configuration needs fine-tuning of a spe- 
2 
ific ANN, the usefulness of such methods in combustion research 

ill be very limited. 

Therefore, thorough validations are required to demonstrate the 

pplicability of ANN/DNN for realistic problems. On the one hand, 

n accurate single-step prediction may not reflect the model’s ro- 

ustness in a temporal evolution and against flow perturbations. 

n the other hand, turbulent combustion cases are expensive and 

ifficult to analyze. The combined effort is thus necessary to pro- 

ide a convincing validation but is so far scarce. 

With the above objectives, in this work, we propose a multi- 

cale sampling method with the preprocessing method of the Box- 

ox transformation to collect multi-scale combustion data. The 

ampling method is applied to study a wide thermochemical phase 

pace with no explicit constraints on equivalence ratio, flow field, 

r turbulence. Common techniques such as Monte Carlo sampling, 

anifold sampling, and cycle-GAN method [21] , are compared with 

he multi-scale sampling with or without preprocessing. A three- 

idden-layer DNN is off-line trained based on the multi-scale sam- 

ling data. The error evaluations of the DNN are performed by 

ingle-step prediction, continuous evolution prediction, and evo- 

ution with perturbation prediction. The model is then imple- 

ented into CFD codes and tested for a broad range of config- 

rations: (1) zero-dimensional homogeneous ignition simulations 

ith ignition delay time comparison; (2) one-dimensional tran- 

ient premixed flame with laminar flame speed comparison; (3) 

wo-dimensional laminar jet flame with triple-flame structure; (4) 

hree-dimensional turbulent lifted jet flame. 

The paper is constructed as follows: first, the sampling method- 

logy and preprocessing are proposed and compared with other 

ampling methods. Second, deep neural network structures are in- 

estigated to guarantee sufficient efficiency and robustness. Third, 

ystematic validations are performed. Finally, the conclusions are 

rawn. 

. Methodology 

.1. Multi-scale combustion data 

Generally speaking, there are two types of multi-scales in com- 

ustion chemical kinetics: the multi-scale concentration and reac- 

ion rate distributions of different species and species at different 

eaction stages. In other words, the data in different dimensions 

n thermochemical phase space have divergent orders of magni- 

ude and characteristic time scales during the chemistry system 

volution. The inherent multi-scale features lead to non-linear and 

tiff combustion chemistry. Meanwhile, it is a major challenge for 

ata-driven methods to capture the fundamental physics from the 

ulti-scale dataset instead of fitting data by brutal force. 

The multi-scale phenomena have been widely discussed in the 

ombustion area. However, it is still vital to understand the multi- 

cale features of combustion from the perspective of data. A typical 

xample of the difficulty associated with the multi-scale mass frac- 

ion is plasma-assisted combustion [22] . In contrast to fuels and 

xidizers, OH concentration and its temporal change are small. The 

eep neural network tends to focus on major changes such as fuel 

nd oxidizer while ignoring small OH radical changes. But adding 

H radicals with a mass fraction of 10 −5 in the preheat zone can 

ramatically accelerate the combustion process [23] . It is far more 

ffective than adding more fuel or oxidizer, even if their mass frac- 

ions are several orders of magnitude larger than the radicals. The 

mall concentration change of OH results in a huge difference in 

hemical kinetics, implying that a large weight for OH concentra- 

ion should be learned in a deep neural network. The large change 

f the output induced by a small change of the input is also termed 

igh frequency. The frequency principle has shown that deep neu- 

al network is difficult to learn high-frequency information [24,25] . 
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Fig. 1. log (x ) and BCT with λ = 0 . 1 . 
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f 2 
n addition, simply increasing the weight of OH cannot solve the 

roblem. Since OH radical concentration is much higher in the 

urned zone than in the premixed zone, adding OH radical can 

ardly change the burned gas chemical states. In other words, OH 

hould have a small weight for deep neural network prediction in 

he burned gas. The multi-scale distributions of different species 

nd species at different times require the deep neural network to 

istill the raw data and capture the underlying physics. 

In physics, small quantities are as important as other quanti- 

ies, but data science needs explicit preprocessing of the raw data 

o address this issue. The result of a lack of preprocessing is that 

ifferent neural networks can only deal with chemical kinetics in 

ifferent phase space subdomains. Additionally, it is more difficult 

or the neural networks without preprocessing to capture inter- 

ediate species. In the current work, the Box-Cox transformation 

s adopted to overcome the difficulty of the multiple magnitude 

cales. It is elaborated in Section 2.2 . 

.2. Box-Cox transformation 

The Box-Cox transformation (BCT), which was originally pro- 

osed by Box and Cox (1964) [26] , is defined as 

(x ) = 

{ 

x λ − 1 

λ
λ � = 0 

log x, λ = 0 

(1) 

here x is the variable and λ is a hyper-parameter. 

Compared with the log transformation, BCT not only has the 

dvantage of representing multi-scale data by O(1) quantity, but 

lso avoids the singularity of the log transformation when the 

ata is approaching zero. For the mass fraction of the chemical 

pecies within [0,1], the BCT maps [0,1] to [ −1 /λ, 0] . Meanwhile,

CT maps the low-order quantity 10 −k (k ≥ 2) to ∼ O(1) with ap- 

ropriate λ. In this work, we use λ = 0 . 1 . As an example, we show

og-transformation and BCT with λ = 0 . 1 in Fig 1 . Note that in the

urrent work, we adopt BCT only for species mass fractions since 

ass fractions have typical multi-scale distributions. Other physi- 

al quantities such as temperature and pressure do not need BCT 

o pre-preprocess. After BCT of the mass fractions, we use the Z- 

core Normalization for all dimensions of the training data, includ- 

ng temperature, pressure, and mass fractions, which is a widely- 

sed normalization method in the machine learning area. 

.3. Deep neural network 

We use x (t) = { T (t ) , P (t ) , F(Y i (t )) i =1 , ··· ,n } to denote the tem-

erature, pressure, and mass fraction of each species at evolu- 

ion time t . The DNN takes input x to produce an output u θ(x ) ,
3 
hich aims to predict the change u 

∗(t) := x (t + �t) − x (t) . Note

hat only mass fractions are obtained from DNN prediction. The 

emperature and density are calculated according to enthalpy and 

ass conservation. More specifically, the density and enthalpy in 

ach grid are updated by calculating interface fluxes. After the DNN 

redicts the local mass fraction changes, the temperature is calcu- 

ated through implicit iterations given the enthalpy, density, and 

pdated mass fractions. The training dataset D = { x i , u 

∗
i 
} N 

i =1 
is Z- 

core normalized (subtracted by mean and divided by standard de- 

iation) for both input and output, where N is the sample size. 

We use the following L -layer neural network to learn dataset D , 

 θ( x ) = W 

[ L −1] σ ◦ ( W 

[ L −2] σ ◦ ( · · · ( 
W 

[1] σ ◦ ( W 

[0] x + b 

[0] ) + b 

[1] ) · · · ) 
+ b 

[ L −2] ) + b 

[ L −1] 
, 

here W 

[ l] ∈ R 

m l+1 ×m l , b [ l] = R 

m l+1 , m 0 = m L = n + 2 , “◦” means

ntry-wise operation, σ is Gaussian Error Linear Unit (GELU) [27] . 

e denote the set of parameters by θ. The loss function is mean 

bsolute error ( L 1 loss) and is defined as 

oss = 

1 

N 

1 

n + 2 

N ∑ 

i =1 

‖ 

u 

∗
i − u θ( x i ) ‖ L 1 

(2) 

.4. Failure of vanilla sampling methods 

.4.1. Manifold sampling with and without BCT and its limitation 

Given initial condition space of temperature T , pressure P 

nd equivalence ratio �, ensembles of the thermochemical states 

uring the chemical system evolution form a smooth manifold 

28] . It is worth noticing that the manifold sampling borrows 

he concept of the intrinsic manifold but does not reduce the 

imension of the chemical kinetics. The sampling is conducted 

uring the transient combustion simulations to collect thermo- 

hemical states. Similar to previous works [29] , for hydrogen/air 

ixture, 50 0 0 initial conditions are randomly sampled from T ∈ 

 

10 0 0 K, 150 0 K ] , � ∈ [ 0 . 5 , 3 ] and P ∈ [ 0 . 5 at m, 1 . 5 at m ] . The chem- 

stry mechanism contains eight species and 16 reversible reactions 

30] . Each case is simulated in Cantera with a constant time step 

ize 10 −8 s until the mixture reaches chemical equilibrium. The 

hermochemical state x (t) pairs with its temporal changes u 

∗(t) = 

 (t + �t) − x (t) , �t = 10 −6 s to form a data point. It is worth notic- 

ng that not all thermochemical states are included in the dataset 

ue to the extremely large number of data points. Instead, the 

hermochemical states with higher temporal changing rates are 

ore likely to be selected. In total, 1,70 0,0 0 0 samples are obtained

rom the 50 0 0 ignition cases for the training and testing. Un- 

ess otherwise specified, we use D m 

to represent manifold dataset 

here the subscript m denotes manifold . 

Figure 2 shows the collected data by manifold sampling. The x- 

xis is the value of the thermochemical state, and the y-axis is its 

emporal gradient. The phase diagram shows the multi-scale fea- 

ures in combustion. It is seen that there exist several orders of 

agnitude differences for values and their temporal gradients in 

ifferent thermochemical dimensions. In addition, the peaks of the 

emporal gradients are around T = 1500 K, while the temporal gra- 

ients are close to zero at the initialization and burned stages. 

To further explore the current DNN’s applicability, the DNN pre- 

iction test on a perturbed dataset is performed. Here, we perturb 

he samples as follows. For each state vector in D m 

, we randomly 

dd or subtract α% of the species mass fraction, that is, 

ˆ 
 i = Y i × (1 ± α%) , 

here Y i denotes mass fraction of species except N 2 . The mass 

raction of N is determined by other species concentrations since 
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Fig. 2. Phase diagram of the manifold dataset, T 0 ∈ [ 10 0 0 K, 150 0 K ] , � ∈ [ 0 . 5 , 3 ] and P ∈ [ 0 . 5 at m, 1 . 5 at m ] . Each sub-figure illustrates the temporal change rate (ordinate) 

against the value (abscissa) for temperature, pressure and the concentrations of species, respectively. Color indicates temperature. 
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heir summation is unity. The labels are generated by Cantera. As 

s shown in Fig. 3 , the performance of DNN are excellent on pre-

icting manifold data in b and c, but completely fails on perturbed 

amples in d. Since the perturbations can be quite common when 

he DNN is coupled with the flow field, the poor performance on 

he perturbed dataset indicates that a wide range of sampling is 

ecessary for training a robust DNN. 

.4.2. Monte Carlo method and the challenge from small-scale radical 

istribution 

It is natural to utilize Monte Carlo (MC) method to gener- 

te a wide range of random samples. In this study, the range 

f working conditions are set as follows: T ∈ [80 0 K, 310 0 K] ,

 ∈ [0 . 5 at m, 2 at m ] , Y (N 2 ) ∈ [0 . 6 , 0 . 8] and Y (∗) ∈ [0 , 1] where the

arker ∗ denotes the rest species except N 2 . Each dimension, in- 

luding temperature, pressure, and mass fractions, is sampled ran- 

omly with uniform probability in the given range. The species 

ass fractions are normalized to guarantee summation equal unity. 

he current MC sampling collects 6,0 0 0,0 0 0 samples and cov- 

rs the manifold discussed in the last section. Figure 4 shows a 

roader distribution of the Monte Carlo sampled phase space com- 

ared with the manifold sampling results. The stochastic colors de- 

ermined by the data point temperature also indicate the random- 

ess of the sampled data. However, the DNN trained by this larger 

ataset fails to fit D m 

, which is the data on the manifold. 

To uncover the reason why the Monte Carlo method failed to 

ample desired data, a data distribution similar to the manifold 

ataset D m 

is reproduced by cycle-GAN, a type of generative ad- 

ersarial network specializing in capturing data distribution pat- 

erns. That is to say, cycle-GAN is a middle-way choice balanc- 

ng the Monte Carlo sampling and the manifold sampling. On the 
4 
ne hand, cycle-GAN data distribution is expected to be close to 

he manifold sampling. On the other hand, it is important for 

ycle-GAN to have randomness to some extent. This constrained 

andomness provides a good comparison with the Monte Carlo 

ethod to analyze data sampling strategy and quality. The tem- 

erature and the pressure are sampled in the same way as the 

onte-Carlo method while the mass fractions of all species are 

ampled through a cycle-GAN. The cycle-GAN is trained to build 

p the mapping between a simple distribution, for example, nor- 

al Gaussian distribution, and the target distribution. In the cur- 

ent work, the cycle-GAN consists of two GANs. Each GAN con- 

ists of two components, a generative network, and a discrimina- 

ive network. For the first GAN, the generative network’s input is 

he data sampled from a seven-dimensional normal Gaussian dis- 

ribution. The output is a seven-dimensional vector that represents 

ass fractions. The generative network is fully-connected with hid- 

en layer sizes of 20 0-80 0-10 0 0-80 0-40 0-20 0. The data generated

y the GAN network is labeled as 0 while the data sampled from 

he manifold is labeled as 1. Data sampled from the generative net- 

ork and manifold method is used to train the discriminative net- 

ork, which is a fully-connected network with hidden layer sizes 

f 20 0-60 0-20 0. The discriminative network aims to classify the 

anifold data and the generated data, while the generative net- 

ork is trained to generate more challenging data for the discrim- 

native network to classify, in other words, to increase the error of 

he discriminative network so that the discriminative network be- 

omes more accurate. The second GAN maps the data generated by 

he first GAN back to the normal Gaussian distribution in a simi- 

ar way. These two GANs are trained iteratively until the gener- 

ted data distribution of the first GAN is indistinguishable from 

he manifold data so that the generative network can produce a 
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Fig. 3. Prediction of O production rate by Cantera (abscissa) and DNN (ordinate) trained by manifold sampling on (a) manifold samples without BCT; (b) manifold samples 

with BCT; (c) continuous evolution on the manifold; (d) perturbed samples with perturbation coefficient α= 5. The color of each dot indicates the temperature of the sample. 

Fig. 4. Phase diagram of dataset of MC sampling method, T ∈ [80 0 K, 310 0 K] , P ∈ [0 . 5 at m, 2 at m ] , Y (N 2 ) ∈ [0 . 6 , 0 . 8] and Y (∗) ∈ [0 , 1] , ∗ denotes the rest species except N 2 . 

Each sub-figure illustrates the temporal change rate (ordinate) against the value (abscissa) for temperature, pressure and the concentrations of species, respectively. Color 

indicates temperature. 

5
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Fig. 5. The distributions of radicals (a) H and (b) O by manifold sampling and cycle-GAN sampling are compared, respectively. The subset shows that the distribution of D GAN 

does not cover small scales data in the manifold. 

Fig. 6. Prediction of O mass fraction by Cantera (abscissa) and DNN (ordinate) trained by GAN/MC sampling method on small-scale manifold data in (a,c), on large-scale 

manifold data in (b,d). 
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ataset with a similar distribution pattern as the manifold sam- 

ling. In the end, a dataset D GAN is generated by the cycle-GAN 

ith 6,0 0 0,0 0 0 samples. 

Figure 5 shows the distribution comparison of H and O mass 

ractions between the manifold data (green) and the cycle-GAN 

ata (orange). Two distributions are similar in general. It turns out 

hat the major difference between the manifold data and cycle- 

AN data is the small-scale radical distribution. On the one hand, 

ycle-GAN data distribution is consistent with the manifold data 

n large scales, i.e., the mass fraction above 10 −5 . However, two 

ampling methods generate distinct data distributions when rad- 

cal mass fraction below 10 −7 . We then decompose the mani- 

old dataset D m 

into two parts, i.e., D m 

= D s ∪ D c , where ‘s’ means

small’ and D s contains samples of which at least one radical mass 

raction is smaller than 10 −5 , and ‘c’ means ‘complementary’ and 

 c contains the rest of D s data. In other words, D m 

represents the 

ata range that the three sampling methods (manifold sampling, 

onte Carlo sampling, and cycle-GAN sampling) cover in common, 
6 
hile D s is mainly captured by the manifold sampling. Using D s 

nd D c to evaluate DNNs trained on the Monte Carlo and cycle- 

AN data, it can depict how sampled data distribution impact DNN 

raining and predicting, especially the role of D s . Figure 6 shows 

hat the DNN trained by D GAN or D MC performs well on D c but fails

n D s . It is clear the Monte Carlo and cycle-GAN methods are ef- 

ective in sampling data in D c . However, the main drawback is the 

ack of data points in D s . As a result, the DNNs’ divergent perfor-

ances on D s and D c are within expectation since the DNN cannot 

redict well where the training data is not enough. The divergent 

erformance of the two datasets indicates the importance of con- 

idering multi-scale features for a generic sampling method. 

.5. Multi-scale sampling method 

Figure 7 summaries three sampling methods mentioned above. 

he sampling methods are characterized by their dependence and 

ccuracy on D m 

. The DNN trained on D m 

has the highest accuracy 
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Fig. 7. A comparison of different sampling methods. D m is the dataset by the man- 

ifold sampling. 
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nd a strong dependence on the manifold data. The main drawback 

s the limited applicability of the DNN away from the manifold. 

ing et al. [14] proposed a sampling method combining manifold 

ata (flamelet data in their case) and random data. Nonetheless, it 

emains unclear to what extent the random data improves DNN’s 

erformance in a general scenario, such as homogeneous autoigni- 

ion. Besides, the manifold sampling requires additional computa- 

ion costs to resolve priori flame structures or autoignition evolu- 

ions. The Monte Carlo sampling and cycle-GAN sampling cannot 

redict accurately on D s . However, their failure enlightens a new 

ampling method capturing different scales of random data. 

This work proposes a multi-scale sampling method target- 

ng comprehensive coverage of multi-scale combustion data. 

emperature and pressures are randomly sampled in a wide 
ig. 8. Phase diagram of dataset of the multi-scale sampling method T ∈ [80 0 K, 310 0 K] ,

hange rate (ordinate) against the value (abscissa) for temperature, pressure and the conc

7 
ange: T ∈ [80 0 K, 310 0 K] , P ∈ [0 . 5 at m, 2 at m ] . The species are clas-

ified into two groups: major species and others. Here only 

 2 , fuel, and oxidizer are considered as major species and 

hey are sampled randomly under log-scale in the following 

ange: Y (N 2 ) ∈ [0 . 2 , 0 . 9] , Y (H 2 ) ∈ [10 −5 , 1] , Y (O 2 ) ∈ [10 −5 , 1] . Other

pecies are sampled randomly from [10 −k i , 1] , k i = 1 , . . . , 25 under

og-scale. Note that the selection of major species is not based 

n the classical Major-minor species model. Instead, it chooses 

he species with relatively high concentrations throughout tem- 

oral evolutions. For example, H 2 O is the major product but is 

ot considered a major species in the current model, because 

ts mass fraction starts from zero and crosses over several mag- 

itudes. From the data point of view, H 2 O is more similar to 

adicals. 180,0 0 0 samples are generated for each k i and a to- 

al 4,50 0,0 0 0 sample dataset is obtained. An important observa- 

ion is that the DNN trained on the current 4,50 0,0 0 0 sample 

ataset can predict high-reaction-rate states well, but its perfor- 

ance is relatively worse on the thermochemical states from the 

urned gas. As a result, an additional dataset is added where 

 ∈ [180 0 K, 310 0 K] , P ∈ [0 . 5 at m, 2 at m ] , Y (N 2 ) ∈ [0 . 2 , 0 . 9] , and other

pecies Y (∗) ∈ [10 −4 , 1] . 40 0,0 0 0 initial states are generated ran-

omly in temperature, pressure, and log-scale species dimensions. 

or each initial state x , two temporally consecutive states are col- 

ected: u 

∗(t) = x (t + �t) − x (t) and u 

∗(t + �t) = x (t + 2 ∗ �t) −
 (t + �t) . Finally, a complete dataset consisting of 5,30 0,0 0 0 sam-

les is generated. The corresponding phase diagram is shown in 

ig. 8 . The current dataset’s range is the widest compared with 

anifold sampled data and Monte Carlo sampled data regard- 

ng the range of values or temporal gradients in each dimension. 

igure 9 shows that the DNN trained on the current multi-scale 

ataset is accurate on both manifold data in Fig. 9 a and perturbed 
 P ∈ [0 . 5 at m, 2 at m ] , and Y (N 2 ) ∈ [0 . 2 , 0 . 9] . Each sub-figure illustrates the temporal 

entrations of species, respectively. Color indicates temperature. 
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Fig. 9. Prediction of O by Cantera (abscissa) and DNN (ordinate) trained by multi-scale sampling method on manifold samples (a) and perturbed samples (b) with α= 5. The 

color of each dot indicates the temperature of the sample. 
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ata in Fig. 9 b. The results imply that the current sampling method 

elps achieve a smaller dataset on which a more accurate and 

eneric DNN can be trained. There is no doubt that the multi-scale 

ampling method can be much more automatic and less ad hoc. 

evertheless, the main focus of such a sampling method will al- 

ays be addressing the multi-scale data properly. 

. Results and discussion 

In this section, a pre-trained DNN is validated by various bench- 

ark tests. It is worth noticing that all the tests are performed 

sing the same DNN. In the first subsection, the zero-dimensional 

utoignitions and one-dimensional transient premixed flames are 

imulated. These simulations can provide a detailed and quantita- 

ive comparison of ignition delay time and laminar flame speed 

etween DNN and traditional methods, two of the most impor- 

ant quantities in combustion. A two-dimensional jet flame with 

 triple-flame structure is simulated in the second subsection us- 

ng DNN and implicit Euler as ODE integrator. Since the triple- 

ame structure consists of a diffusion flame and premixed lean and 

ich flames, it is a good scenario to demonstrate the DNN perfor- 

ance across a wide range of local flow and thermochemical con- 

itions. The third subsection further validates the DNN in turbulent 

ow scenarios, where a highly turbulent lifted flame experiment 

31] is simulated using the same DNN model deployed for the pre- 

ious lower-dimensional and laminar cases. This test case serves as 

trong support for the generality and robustness of the proposed 

ulti-scale sampling method-based DNN in complex flow configu- 

ations. 

.1. Zero- and one-dimensional tests 

Figure 10 compares zero-dimensional constant-pressure au- 

oignition results by CVODE and DNN. Figure 10 a shows the 

onstant-pressure autoignition results by DNN and Cantera at T = 

300 K, P = 1 atm, φ = 0 . 9 . The evolution of temperature, pres-

ure, and mass fractions reveals the satisfying accuracy of the DNN 

rediction. Based on the evolution results, the time interval for the 

ixture to reach the maximum heat release point is defined as the 

gnition delay time. Figure 10 b shows a detailed comparison of ig- 

ition delay time predicted by DNN and Cantera at P = 1 atm. The 

nitial temperature ranges from 1100 K to 2500 K, and the equiv- 

lence ratio is 0.5 to 2.0. The overall agreement demonstrates the 

tability and robustness of the DNN in different initial conditions. 

Fig. 11 compares the transient laminar flame propagation re- 

ults by ASURF [32,33] with VODE or DNN as the ODE integrator. 

ince the training dataset of the DNN does not cover the initial 

onditions below 800 K, where the stiffness of the chemical sys- 

em is not a major issue, the DNN will only predict the grid with a
8 
emperature higher than 800 K, the rest of the grids using VODE. 

or the simulation setup, the initial condition is uniform except 

or a high-temperature kernel on the left boundary to mimic the 

park ignition. Figure 11 a shows the temporal evolution of temper- 

ture distribution for a flame with initial condition � = 1 . 0 , T =
50 K, P = 1 atm at t = 0 , 100 , 200 , 300 , 400 μs . The blue solid

ine is the VODE result and the orange dotted line is the DNN re- 

ult. The comparison reveals the satisfying accuracy achieved by 

NN in the whole propagation process, including the ignition and 

table propagation stages. Figure 11 b shows a more detailed com- 

arison of species mass fractions to depict the flame structure at 

 = 300 μs with the initial condition at � = 1 . 0 , T = 650 K, P = 1

tm. The level of accuracy agrees with Fig. 11 a that DNN predicts 

ell for all species. Figure 11 c shows the temporal evolutions of 

ame front location and propagation speed at T = 650 K, P = 1 

tm, φ = 1 . 1 using DNN or VODE as the integrator. Two ODE in-

egrators’ results agree well except for a small domain when the 

ame is near the outlet. Figure 11 d shows the statistical perfor- 

ance of the DNN prediction coupled with a CFD solver. The DNN 

rediction is reasonably accurate: averaged laminar flame speed 

rror is 6.9%, and the maximum error is around 20%. There are sev- 

ral possible reasons behind the error. The main reason might be 

he DNN prediction error accumulation. Since the DNN needs to 

rovide predictions continuously, some small errors might trans- 

ort to the neighboring grid and accumulate during the temporal 

volution. The accumulation of prediction errors can lead to sen- 

ible errors in laminar flame speed. Figure 11 e compares the CPU 

ime cost on the ODE integration between the VODE method and 

he DNN. The efficiency improvement is above 70%. Considering 

he relatively small size of the hydrogen/air mechanism, the cur- 

ent acceleration indicates a promising future of the DNN method 

or more complex fuels with stronger chemical stiffness. 

.2. Multi-dimensional lifted jet flame simulations 

In order to demonstrate the capabilities of the DNN model un- 

er complex flow conditions, 2D laminar and 3D turbulent non- 

remixed lifted jet flames are simulated. It is worth recalling that 

he DNN was trained a priori without knowing any specific flow 

nformation. Hence, the robustness of the proposed multi-scale 

ampling method can be properly assessed using these higher- 

imensional test cases. A finite volume in-house code with third- 

rder accuracy for both space and time is used to solve the Navier- 

tokes equations with detailed chemical kinetics and mixture- 

veraged transport (see detailed description and validation in Sup- 

lementary Material). 

Figure 12 compares the 2D laminar planar jet flame simulation 

esults obtained using DNN and implicit Euler as integrators. The 

omputational setup is schematically shown in Fig. 12 a. It con- 
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Fig. 10. Zero-dimensional constant-pressure autoignition results comparison between Cantera and DNN. (a). autoignition at φ = 1 . 0 , T = 1300 K, P = 1 atm; (b). Ignition 

delay time comparison at P = 1 atm. 
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ists of a 3 × 5 cm domain with a H 2 jet surrounded by an air

o-flow at an initial pressure of 1 atm and temperature of 300 K. 

he jet diameter is 8 mm. The inlet mixture is 75% H 2 and 25% N 2 

y volume with a velocity of 5 m/s and the air coflow velocity is 

 m/s. An initial high-temperature region at T = 1400 K is set at 

he center of the domain to initiate the flame. Figure 12 b shows 
9 
he evolution of the heat release rate (HRR) contours for two in- 

tants. It can be seen that two flame branches form on each side 

f the jet soon after the ignition at 0.5 ms, and the reaction zone 

s almost identical for the DNN and Euler cases. Later at 6 ms, the 

ell-known triple flame structure [34] is formed and the two cases 

till show overall very good agreement despite some slight differ- 
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Fig. 11. One-dimensional transient premixed flame propagation comparison using ASURF with VODE or DNN as the ODE solver. (a). Flame temperature distribution com- 

parison at t = 0 , 100 , 200 , 300 , 400 μs , φ = 1 . 0 , T = 650 K, P = 1 atm; (b). Species mass fraction comparison at t = 300 μs , φ = 1 . 0 , T = 650 K, P = 1 atm; (c). Flame 

trajectory and flame speed S b at φ = 1 . 1 , T = 650 K, P = 1 atm; (d). Laminar flame speed comparison between ASURF-VODE, ASURF-DNN, and Cantera for initial 

conditions T ∈ [30 0 K, 80 0 K] , φ ∈ [0 . 5 , 2 . 0] , P = 1 atm ; (e). CPU time cost comparison of the ODE integration between ASURF-VODE and ASURF-DNN for initial conditions 

T = 650 , 700 , 750 K, φ = 1 , P = 1 atm . . 
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nce in the HRR magnitude along the tail of the middle diffusion 

ranch. Furthermore, the trajectories of the triple point from igni- 

ion to stabilization given by the DNN and Euler solvers are pre- 

ented in Fig. 12 c showing a reasonably good agreement. This sug- 

ests that the DNN is able to capture the transient evolution of the 
10 
riple flame: the distinct characteristics of the diffusion flame, lean 

nd rich premixed flames are intrinsically predicted by the trained 

odel. 

Figure 13 depicts the distributions of H and OH radical mass 

ractions at the stabilization height for t = 10 ms for the DNN case. 
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Fig. 12. Two-dimensional jet flame simulation results using DNN and implicit Euler 

solver. (a) computational setup; (b) heat release rate contours at t = 0 . 5 and 6.0 ms; 

(c) temporal evolution of the triple point. 
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Fig. 13. DNN prediction for H and OH radials of 2D laminar triple flame. 

Fig. 14. Radial profiles of species mass fractions at the maximum heat release point 

2D laminar triple flame obtained using DNN (dashed) and Euler (solid) solvers. . 

h

c

l

p

p

n

t is shown that all three reaction branches of the triple flame are 

ell captured using the H atom, whereas the diffusion branch is 

istinctly represented by the OH radicals. In order to make a quan- 

itative comparison, radial profiles of species mass fractions are 

lotted in Fig. 14 for two time instants at t = 1 and 6 ms. The ax-

al position of the maximum heat release rate point is chosen for 

hese plots. At both times, the results given by the Euler and DNN 

olvers show very good agreement for all major and minor species. 

hese results further confirm that the fine interaction between the 

etailed chemical kinetics and the jet flow is correctly handled by 

he DNN model. 

So far the DNN model has shown good performance for pre- 

icting chemical kinetics near the main reaction manifold with lit- 

le or moderate flow field perturbations in homogeneous mixtures, 

D and 2D laminar flames. Next, we further test the DNN in a 3D 
11 
ighly turbulent case with strong variations in the local thermo- 

hemical states. The experiment of Cheng et al. [31] for hydrogen 

ifted flame stabilized in quiescent air at room temperature and 

ressure is simulated. The round jet diameter was D = 2 mm and 

ure H 2 fuel was injected at 680 m/s with a corresponding Mach 

umber of 0.58 and Reynolds number of 13,600. The computa- 
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Fig. 15. Three-dimensional turbulent lifted flame simulation using DNN chemistry 

solver. (a) volume-rendered HRR (yellow) and stoichiometric mixture fraction iso- 

surface colored by temperature (blue); (b) instantaneous x − r slice contours for 

mixture fraction (left), temperature (middle) and HRR (right); (c) comparison of the 

final lift-off height between the simulation and experiment. 
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ional setup (mesh resolution, domain size, etc.) from a previous 

NS [35] is adopted here and the grid size is 800 × 500 × 500 in

he streamwise and cross-stream directions. It is worth remarking 

hat the time-step size of 20 ns used in the simulation with DNN 

s an order of magnitude larger than that required for the implicit 

DE solver since the chemistry stiffness is already treated in the 

NN. Note that the unit cost for a single-step DNN prediction is 

bout 2 times higher. This is because each prediction essentially 

erforms a multiplication between two large dense matrices. Over- 

ll, there is still a considerable reduction in the computational cost 
12 
y a factor of 2 to 3 by using the DNN. The further speedup can be

chieved by involving dynamic load balancing and potentially GPU 

rchitectures [36,37] , as accelerating matrix operation is straight- 

orward compared to logical iterations in conventional approaches. 

his will be explored in our future works. 

The simulation was first run on a coarse grid for the initial 

ame kernel development and the solution was then mapped to 

he refined grid for the flame stabilization period. The ignition was 

nitiated by placing a high-temperature sphere with a radius of 

 mm at 7D downstream of the jet exit. Figure 15 a shows 3D ren-

ering of the evolving flame on the refined mesh at about 1.5 ms 

fter ignition. It is seen that while most of the heat release occurs 

ear the stoichiometric isosurface, the finger-like structures indi- 

ating the lean premixed branches are visible in the low-velocity 

egions around the jet. These are unique for lifted flames stabilized 

n quiescent air without any hot coflows, also consistent with the 

ndings from the previous DNS study [35] . The 2D mid-plane con- 

ours of mixture fraction, temperature, and HRR are presented in 

ig. 15 b, exhibiting generally consistent flame behaviors one would 

xpect from such lifted flame configurations. Finally, the flame lift- 

ff height, a quantity measuring the overall complex interaction 

etween the propagating triple flame and turbulent incoming flow, 

s compared between the simulation and experiment in Fig. 15 c to 

ssess the DNN model accuracy quantitatively. The averaged height 

easured was about 7D [31] and the simulated value fluctuates 

etween 6 and 7D, indicating a good agreement with the experi- 

ent. Detailed comparison of the flame statistics is required to fur- 

her validate the proposed method, for which a full DNS run time 

eeds to be performed covering a large number of data snapshots. 

his is beyond the scope of this work and will be conducted in a 

uture study. Nonetheless, this 3D turbulent lifted flame test case 

emonstrates the capabilities of the offline-trained DNN model to 

redict chemical kinetics in DNS of turbulent combustion, show- 

ng very good prediction accuracy with a considerable reduction 

n computational cost. It also suggests that a simple DNN struc- 

ure with an appropriate sampling strategy has great potential for 

ccommodating detailed combustion chemistry in real-world tur- 

ulent flame simulations at moderate costs. 

. Conclusions 

The major advantage of the DNN-based model is no time step 

ize limit for the DNN to predict the chemical kinetics. It can be a 

owerful tool to overcome stiffness problems in combustion ODE 

ntegration. The key question is how to train a DNN to be accurate 

nd generic. 

The present work explores a preprocessing and multi-scale 

ampling method to improve DNN prediction performance for 

ombustion chemical kinetics. The golden rule for the neural net- 

ork is always that data selection determines neural network 

erformance. The results verify that the deep neural networks 

rained on different datasets have divergent prediction abilities, 

ven though they have the same neural network structure. More 

pecifically, the DNN trained on the manifold dataset obtained 

rom a given combustion configuration (i.e., PSR, 1D laminar flame, 

tc.) can accurately predict the evolution of data points, that is, 

hermochemical states on the same manifold. However, the sam- 

ling and prediction are limited to the specific manifold and can 

ardly be applied in a generalized scenario for practical combus- 

or simulation. The Monte Carlo-based dataset is independent of 

ombustion configuration and consists of random data in a wide 

hermochemical phase space. Yet, it cannot predict small-scale 

ata well. The large relative prediction error prevents the corre- 

ponding DNN from being applicable in any continuous evolution 

ases. 
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The multi-scale sampling and the Box-Cox transformation pro- 

osed in this work can overcome the difficulty of collecting multi- 

cale combustion data, leading to a DNN model with accurate and 

obust predictions. The data generation does not rely on the type 

f combustion configuration. A dataset with 5,30 0,0 0 0 samples 

s generated covering a large phase space: T ∈ [ 80 0 K, 310 0 K ] , P ∈ 

 

0 . 5 at m, 2 at m ] , and no limitations on the equivalence ratio. Sub- 

equently, a systematic and comprehensive validation is performed 

sing a broad range of test cases, including autoignition of 0D ho- 

ogeneous mixtures, 1D laminar flame propagation, 2D laminar 

et flame with triple-flame structure, and 3D turbulent lifted flame. 

he quantitative comparison confirms the deep neural network’s 

obustness and reasonable accuracy for predicting the ignition de- 

ay time, laminar flame speed, triple point trajectory, and the flame 

ift-off height. It is remarkable that the same DNN model, without 

ny specific tuning, can correctly represent the chemical kinetics 

nd its interaction with various flow features across such a wide 

ange of configurations. 

The DNN model and the example Fortran and Python codes 

re provided to cross-validate the conclusions. Any improvement 

n the future can be directly compared through routine benchmark 

ases such as ignition delay time and laminar flame speed. Future 

orks are planned towards more complex hydrocarbon fuels and 

ntegrated learning for a combined chemical mechanism reduction 

nd kinetics prediction. 
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