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Abstract
Cortical networks are complex systems of a great many interconnected neurons that 
operate from collective dynamical states. To understand how cortical neural networks 
function, it is important to identify their common dynamical operating states from the 
probabilistic viewpoint. Probabilistic characteristics of these operating states often 
underlie network functions. Here, using multi-electrode data from three separate 
experiments, we identify and characterize a cortical operating state (the “probabil-
ity polling” or “p-polling” state), common across mouse and monkey with different 
behaviors. If the interaction among neurons is weak, the p-polling state provides a 
quantitative understanding of how the high dimensional probability distribution of 
firing patterns can be obtained by the low-order maximum entropy formulation, ef-
fectively utilizing a low dimensional stimulus-coding structure. These results show 
evidence for generality of the p-polling state and in certain situations its advantage 
of providing a mathematical validation for the low-order maximum entropy principle 
as a coding strategy.
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1  |   INTRODUCTION

Recent technological advances are providing massive and intri-
cate datasets of brain activity, from the scale of a single neuron 
to that of the whole brain (Nguyen et al., 2016). In neuroscience, 
a well-known framework to formalize what it means to under-
stand the brain is David Marr's three-level understanding of a 
complex system (Marr, 1982): (a) What is the goal of the com-
putation? (b) What representations of the input and output and 
what algorithms are employed to carry out this computation? (c) 
How can the representations and algorithms be realized phys-
ically or bio-physically. In this work, we identify a commonly 
occurring operating state, and take steps toward understanding 
how neural networks, in this operating state, represent infor-
mation and realize computation, that is, Marr's second level. 
For the microprocessor, the fundamental computational rule in 
different-level computations is similar, for example, summation 
or subtraction through arithmetic logic units. Neural networks 
share similar network motifs (Alon, 2007), and individual neu-
rons in neural networks can be characterized by similar dy-
namics (Gerstner & Kistler, 2002), e.g., the Hodgkin-Huxley 
(HH) type dynamics (Hodgkin & Huxley, 1952). Therefore, it 
is natural and important to explore whether, in brain networks, 
there exists a cortical dynamical state, common across different 
species, brain areas, and behavioral tasks, which can be char-
acterized quantitatively and which can underlie basic neural 
computations and general population coding schemes of neural 
networks.

Both theoretical and experimental evidence indicate that 
populations of neurons perform computations probabilistically. 
An important example is the “Bayesian coding hypothesis”: that 
the brain represents sensory information through probability 
distributions (Knill & Pouget, 2004). Probabilistic dependen-
cies among neurons in the population—where neurons often 
cooperate to perform functions—underlie how information is 
encoded by probability distributions of a neural network's states. 
For example, Pearson correlation is a widely used quantity to 
characterize probabilistic dependency. Theoretical studies have 
shown that different Pearson correlation structures in neural 
dynamics can result in very different coding schemes (Abbott 
& Dayan, 1999; Averbeck, Latham, & Pouget, 2006; Moreno-
Bote et al., 2014). In this work, we characterize the dependence 
between neurons probabilistically. Consider any two neurons in 
a network, denoted by i and j, respectively. Their dependence 
is characterized by the difference of the probability of neuron i 
firing under two different conditions—one with all other neu-
rons silent, and the other with only neuron j firing spikes. Using 
a probability increment to characterize the dependence between 
neurons, we have quantitatively identified a stochastic operating 
state of the network, [referred to herein as the “probability poll-
ing” (p-polling) state]. This state defines a basic computational 
rule of neural networks on the probabilistic level. By analyz-
ing in vivo multi-electrode data from three separate published 

experiments (Coen-Cagli, Kohn, & Schwartz, 2015; Kohn & 
Coen-Cagli, 2015; Kohn & Smith, 2016; Liu et al., 2014; see 
Section 2), we show that the p-polling state is a commonly oc-
curring cortical operating state for mouse and monkey with per-
forming different functions.

In the probabilistic view point, the statistical distribution of 
neural firing patterns (NFPs) encodes the information of exter-
nal stimuli. When the cortical network is in the p-polling state 
and the probability increment δ is small, we have theoretically 
established (Xu, Bi, Zhou, & Cai, 2017) that the distribution 
of NFPs can be represented by a low-order maximum entropy 
principle (MEP) distribution. Here, for in vivo p-polling cor-
tical operating points, second-order MEP distributions of 
NFPs, with constraints of mean firing for each neuron and sec-
ond-order correlations of firing between each pair of neurons, 
accurately represent the observed distributions of NFPs, while 
first-order MEP distributions are not accurate. This good per-
formance of second-order MEP distributions is consistent with 
other findings (Schneidman, Berry, Segev, & Bialek,  2006; 
Shlens et al., 2006; Tang et al., 2008; Xu et al., 2017). In ad-
dition to characterizing distributions, using the second-order 
MEP analysis of 78 neurons on CA1 in mice as they run along 
a virtual linear track (Meshulam, Gauthier, Brody, Tank, & 
Bialek, 2017), one study found that place cells and non-place 
cells are coupled together, that is, they are not distinct sub-net-
works, but a single network that can encode more than just 
place information (Meshulam et  al.,  2017). In the p-polling 
state, one can show that interaction strengths in the MEP model 
form a hierarchy in the power of probability increment. When 
the neural network is in the p-polling state and the probabil-
ity increment δ is small, the neural coding scheme can be well 
described by the MEP framework. However, when the proba-
bility increment δ is not small, the system might still be in the 
p-polling state. In such a case, the MEP framework cannot well 
characterize the neural activity. Note that when the system is in 
the p-polling state, many constraints are imposed to the high-di-
mensional probability distribution of neural firing patterns (due 
to the linear superposition rule among conditional probability 
increments as discussed below), that is, the p-polling state may 
greatly reduce the degree of freedoms in NFPs and constrain 
the corresponding probability distribution to a low-dimensional 
manifold. However, the computation of this manifold is beyond 
the MEP framework and requires future investigation by tak-
ing advantage of certain prior knowledge or further dynamical 
properties.

2  |   MATERIALS AND METHODS

2.1  |  MEP analysis

We recapitulate the MEP analysis as follows and more de-
tails can be found in references (Schneidman et  al.,  2006; 
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Shlens et  al.,  2006; Tang et  al.,  2008). In a sampling time 
bin, a neuron has two states, that is, firing and silence. For 
a network of n neurons, these measurements will be repre-
sented by a binary vector V(t)= (�1, �2,…, �n)∈{0, 1}n, 
where �i =�i(t)=0, 1 represents the ith neuron being silent, 
or firing a spike within the time bin labeled by t, respectively. 
For a fixed sampling time bin, we partition the recording 
time by the bin size and record the state of neurons at every 
sampling time bin. Here, we use a time bin of 20 ms, which 
is widely used in experimental measurements (Schneidman 
et al., 2006; Tang et al., 2008). For any possible firing pat-
tern V, we count the occurring frequency of V in all sampled 
bins. Then, the observed distribution of neural firing patterns, 
P(V), is the frequency distribution of all possible states. To 
obtain correlations up to the mth order, it is required to cal-
culate all possible 

⟨
�i1

,…, �iM

⟩
, where 1≤ i1≤…≤ iM ≤n, 

1≤M≤m, and ⟨⋅⟩E is defined by ⟨g(l)⟩E =
∑NL

l=1
g(l)∕NL for 

any function g(l), and NL is the total number of sampling time 
bins in the recording. The mth order MEP analysis is to find 
the desired probability distribution Pm(V) for n neurons by 
maximizing the entropy S≡−

∑
VPm(V)log Pm(V), subject to 

the constraints of correlations up to the mth order (m≤n). By 
using the method of Lagrange multipliers, the distribution is 
of the form

where Ji1…ik
 is the kth order interaction (1≤ k≤m), and the 

“partition function” Z is the normalization factor. Equation (1) 
is referred to as the mth order MEP distribution. For Pm with 
m < n, we use the same iterative scaling algorithm as in Tang 
et al. (2008) to numerically solve the above optimization prob-
lem to obtain the interaction parameters and the corresponding 
distribution (see Section 2.2 below for details).

Note that Pn, which will be referred to as the full-or-
der MEP distribution, is identical to the observed distribu-
tion P(V) (Amari,  2001; Xu, Zhou, & Cai,  2019). Then, 
by using P(V), we can solve analytically for interactions 
of Pn. For illustration, considering a network of size n  =  2 
and substituting 22 states of V= (�1, �2) and P(V) into 
Equation  (1) with m  =  n, we have P[V= (0, 0)]=1∕Z,  
P[V= (1, 0)]= exp(J1)∕Z, P[V= (0, 1)]= exp(J2)∕Z, and 
P[V= (1, 1)]= exp(J1 +J2 +J12)∕Z. The left side of above 
equations can be measured from experimental data. By taking 
the logarithm of both sides of above equations, we can have linear 
equations for log Z, J1, J2, J12, e.g., logP[V= (0, 0)]+ logZ=0 
and logP[V= (1, 0)]+ logZ= J1. Four unknowns, i.e., log 
Z, J1, J2, J12, in the above linear equations can then be found by 
solving this linear system. Similarly, for any n, substituting 2n 
states of V= (�1, �2,…, �n) and the observed probability distri-
bution P(V) into the nth order MEP analysis [Equation (1) with 
m = n], then taking the logarithm of both sides of Equation (1), 

we obtain a system of 2n linear equations with total number of 
2n unknowns (2n−1 interactions and one normalization factor),

By solving the system of linear equations [Equation (2)], 
we can obtain the 2n − 1 interactions J’s for the nth order 
MEP analysis. For example, n = 3, we can obtain

Note that J12 can be interpreted as the increment of the 
first-order interaction J1 = log(P100∕P000) induced by the 
second neuron's firing, where P�1�2�3

 represents the network 
state with �i being the state of the ith neuron. Namely, we first 
switch the state of the second neuron in J1 from silence to fir-
ing, to produce log(P110∕P010), which is denoted as J1. Then, 
the second-order interaction is J12 = J1 −J1. This recursive 
structure can be extended to the case of higher-orders, that 
is, the (k + 1)th order interaction J123…(k+1) can be obtained 
as follows (Xu et al., 2017): First, we switch the state of the 
(k + 1)th neuron in J123…k from silence to firing to obtain a 
new term J1. Then, we subtract J123…k from the new term 
to obtain J123…(k+1), that is, J123…(k+1) = J1 −J123…k. In the 
p-polling state, the recursive relation implies that the interac-
tion strengths form a hierarchy in the power of probability in-
crement (Xu et al., 2017). For illustration, in a homogeneous 
network, that is, the probability increment �i =� for 1≤ i≤n,  
where �i is defined in Equation (5); then, J123…k ∼O(�k−1).

2.2  |  The iterative scaling algorithm

We use the same numerical algorithm as in Tang et  al. 
(2008) to estimate the interactions of the MEP distribu-
tion in Equation  (1) when m  <  n. For illustration, we 
show the process for Ji for the second-order MEP analy-
sis, P2(V). The value of Ji is adjusted by an iterative proce-
dure: Jnew

i
= Jold

i
+�sign(⟨�i⟩E)log(⟨�i⟩E∕⟨�i⟩2), where 

⟨�i⟩2≡
∑2n

l=1
�i(Vl)P2(Vl), the constant α is used to maintain 

the stability of the iteration. We use α = .75 as in Tang et al. 
(2008). Adjustments are performed for each ensemble until the 
difference of the expected and the predicted values (means and 
pairwise correlations) are smaller than the tolerance 10−11.

2.3  |  Overview of experimental settings

Multi-electrode recording data from three separate experi-
ments used in this work are summarized as follows. We se-
lect neurons with firing rates larger than 6 Hz to perform our 

(1)P
m

(V)=
1

Z
exp

(
m∑

k=1

n∑

i
1
≤…≤ik

J
i
1
…ik

�
i
1
… �

ik

)

(2)
m∑

k=1

n∑

i1≤…≤ik

Ji1…ik
�i1

… �ik
= log P(V)+ log Z,

J12 = log
P(�1 =1|�2 =1, �3 =0)

P(�1 =0|�2 =1, �3 =0)
− log

P(�1 =1|�2 =0, �3 =0)

P(�1 =0|�2 =0, �3 =0)
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data analysis. To show that the NFP distributions are stable 
throughout the recording, for illustrations, we split the re-
cording of the four selected neurons in Figure 1a,d,g,j into 

two parts. The NFP distributions obtained from each part are 
consistent with the distribution obtained from the total re-
cording (Figure S1).

F I G U R E  1   Linearity indexes of four-neuron sub-networks. The analysis of four datasets (see the main text) is displayed. (a, d, g, j): Raster 
plot with every short bar indicates that the neuron with certain index fires at certain time. For figures (a, d, g, j), we select four neurons in each 
of them which are denoted by red color. The linearity indexes RB are computed from these selected four neurons correspondingly and results are 
illustrated in figures (b, e, h, k). Note that, according to the definition of RB, subsets can have different sizes, we here choose N(B) = 2 and N(B) = 3 
to compute RB for each neuron and display them in blue bar and yellow bar, respectively. (c, f, i, l): Each dot indicates a total mean (see Section 
2 for details) of one recording for N(B) = 2 (upper panel) and N(B) = 3 (lower panel), respectively. The red dashed line is y = 1 and the abscissa 
indicates the recording index for each dataset (see the main text) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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2.4  |  Olfactory delayed non-match to 
sample task

The first experiment provides data for the first dataset. The 
data analyzed here were collected from a published study 
(Liu et al., 2014) and the details can be found therein. Head-
fixed mice were trained to perform an olfactory delayed non-
match to sample task. For each trial, an olfactory stimulus 
(ethyl acetate, EA, or 2-pentanone, 2P) was presented as the 
sample, followed by a delay period (5 s) and then a testing 
olfactory stimulus, either matched or non-matched to the 
sample. Water-restricted mice were rewarded with water if 
they licked within a response time window in the non-match 
but not match trials. The mouse performed tasks continu-
ously with a 10  s rest between consecutive trials. The ex-
periment is designed to separate the working memory period 
from the decision-making period. Here, we only focus on 
the data structure in this experiment, which was single-unit 
activity of medial prefrontal cortex (mPFC) measured with 
custom-made tetrodes. For each mouse in each recording, 
the spike trains of a group of neurons were simultaneously 
recorded from the mPFC of the mouse for 203 consecutive 
trials (3,756 s duration length in total). There are 47 record-
ings of 8 mice in total.

2.5  |  Spontaneous firing in V1 in 
anesthetized macaque monkeys (pvc-11)

The second experiment provides data for the second dataset. 
The data were downloaded from the CRCNS website crcns.
org (pvc-11; Kohn & Smith,  2016). The data used in this 
work is spontaneous V1 activity for anesthetized macaque 
monkeys. Sufentanil (4  –  18  microg  kg−1  hr−1) was used 
for anesthesia. The data were recorded by the Laboratory of 
Adam Kohn at the Albert Einstein College of Medicine and 
J. Anthony Movshon's laboratory at New York University. 
The spontaneous datasets that comprise spiking activity from 
~70 to 100 neurons are recorded using "Utah" arrays placed 
in visual cortex of four adult Macaca fascicularis monkeys (a 
total number of six arrays). Recordings were obtained while 
a uniform gray screen was shown to the animals. Four re-
cordings were obtained from V1 in four monkeys with the 
time duration of 1,234 s, 903 s, 1,874 s, 1,841 s, respectively 
(Kohn & Smith, 2016).

2.6  |  V1 in anesthetized macaque monkeys 
under images (pvc-8)

The third experiment provides data for both the third and 
fourth datasets. The data were collected in the Laboratory 
of Adam Kohn at the Albert Einstein College of Medicine 

and downloaded from the CRCNS web site (Kohn & Coen-
Cagli, 2015). These data consist of multi-electrode recordings 
from V1 in anesthetized macaque monkeys, while natural im-
ages and gratings were flashed on the screen. Natural images 
were presented at two sizes, 3–6.7 degrees and windowed 
to 1 degree, to quantify surround modulation. Stimuli were 
presented monocularly in a circular aperture surrounded by a 
gray field of average luminance. Recordings were performed 
using the “Utah” electrode array. Experimental procedures 
and stimuli are fully described in Coen-Cagli et  al. (2015). 
Data from ten recordings are included. The data were recorded 
from three animals (recording 01 from animal 1; recording 
02–07 from animal 2; recording 08–10 from animal 3).

Each image stimulus (number of 956 in total) was pre-
sented in pseudo-random order for 100  ms, followed by a 
200 ms uniform gray screen. Each stimulus was presented 20 
times. We separate each recording into two parts, and treat 
the data recorded during uniform gray screen stimulus as one 
recording of the third dataset, and the data recorded during 
the image stimuli as one recording of the fourth dataset. The 
measured distributions of neural firing patterns of the third 
dataset are very different from those of the fourth dataset, as 
shown in Figure S2, justifying the network residing in two 
distinct operating points. The recording time of each record-
ing is 3,824 s and 1,912 s for the third and the fourth dataset, 
respectively. Except for the first recording, since there are 
many neurons firing larger than 6  Hz, we randomly select 
1,000 four-neuron sub-networks in each recording for the 
MEP analysis.

2.7  |  Remarks on analysis details

We use the same bin size of 20 ms as used in experimen-
tal studies (Schneidman et  al.,  2006; Tang et  al.,  2008) to 
analyze the NFP data; however, the conclusions are still 
valid for reasonable choices of other bin sizes, for example, 
10 and 40 ms (data not shown). The time scale of the auto-
correlation for the spike trains of datasets used in this work 
is smaller than 20 ms. For example, the auto-correlation of a 
neuron in Figure 1a decays to 0.01 when the time lag is more 
than 10 ms.

The existence of the p-polling state is neither dependent 
on the threshold choice of firing rate (e.g., 6 Hz) that is cho-
sen to insure sufficient number of spikes for estimating dis-
tributions, nor dependent on the MEP analysis that is used for 
estimating the probability distribution of NFPs.

2.8  |  Synchronization index

We use the following synchronization index (SI) to charac-
terize the synchronization of a network of n neurons. The 
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number of firing neurons in the ith bin is denoted by ni and 
the total number of the bins which have at least one neuron 
firing is denoted by L. The SI is defined as
=1nL∑i=1Lni,

which measures the mean fraction of active neurons in the bins 
which have at least one neuron firing. When SI = 1, the network 
is in a fully synchronized state.

2.9  |  The p-polling state

To define the p-polling state, we start with the definition of proba-
bility increment which characterizes the probabilistic dependence 
between neurons. The state of a network of n neurons is de-
noted by a binary vector V(t)= (�1, �2,…, �n)∈{0, 1}n where 
�i =�i(t)=0, 1 represents the ith neuron being silent, or firing 
a spike within a time bin labeled by t, respectively. Without loss 
of generality, we randomly select a neuron from the network and 
label it as the “first neuron” and consider the conditional probabil-
ity of this first neuron firing while other neurons are silent, i.e.,

where S={2, 3,…, n}. Then, we consider probabilistically the 
influence of the other neurons on the firing of the first neuron—
the probability increment of the first neuron firing induced by 
the ith neuron firing, that is,

An operating state of the network is defined as p-polling 
state if, for any neuron selected as the “first neuron,” and for 
any subset B⊆S of firing neurons, the probability increment 
of the first neuron firing induced by neurons in B firing is 
equal to the linear sum of the probability increments induced 
by each individual neuron in the subset B firing, that is,

The p-polling state indicates a linear computational rule of 
the firing dependence among neurons. Thus, we introduce a lin-
earity index RB to estimate how close a neural operating state is 
to a p-polling state. This linearity index RB is defined by

A probability increment δ is used to characterize probabi-
listically the dependence of a pair of neurons. The p-polling 

state is characterized by a linear superposition among δ’s of 
different pairs of neurons and does not rely on the strength 
of δ of any pair of neurons. The p-polling state is different 
from the weakly correlated state as follows. The correlation 
is a linear measure and is restricted to the second-order sta-
tistics of signals, while the probability characterization is 
a model-free nonlinear measure and is related not only to 
low-order statistics (e.g., mean and covariance), but also 
high-order statistics. The weak correlation focuses on the 
magnitude of second-order linear statistics, while the p-poll-
ing state focuses on the linear superposition relation among 
conditional probability increments. They characterize the 
dynamics from different perspectives. Our previous works 
establish quantitative relationships underlying the proba-
bility distributions, moments, and effective interactions in 
the MEP analysis (Xu, Crodelle, Zhou, & Cai,  2019). On 
the one hand, if the strengths of all the δ’s among neurons 
are small in the p-polling state, the correlations among neu-
rons are indeed small. However, if the strengths of all the 
δ’s among neurons are not all small but still satisfy the lin-
ear superposition, then the p-polling state is not the weakly 
correlated state (Xu et al., 2017; Xu, Crodelle, et al., 2019). 
On the other hand, if the network is in the weakly correlated 
state, it only constrains the magnitude of the second-order 
statistics. However, the p-polling state is defined as the linear 
superposition among multi-variable conditional probability 
increments. Therefore, the weakly correlated state is not nec-
essarily the p-polling state. In Section 4, we use two ideal-
ized examples to illustrate the difference between the weakly 
correlated state and the p-polling state.

Considering that δi is often small in asynchronous net-
works, it is usually difficult to accurately measure δi for a 
full large network. Alternatively, one may consider measured 
sub-networks Sm of m neurons—those m neurons in the cor-
tical network whose response properties can be measured by 
a multi-electrode experiment. If RB is unity for any subset 
B⊆Sm and for any neuron selected as the first neuron, the 
neural sub-network's operating point is likely to be the p-poll-
ing state. Note that for the trivial case where δi = 0 for any i, 
a network consists of neurons firing independently with one 
another. However, the p-polling state as discussed below does 
not belong to such a special case.

2.10  |  Total mean of a recording

For a recording of a network, the linearity index can be 
computed for sub-networks with different combinations of 
neurons and for different subsets within a sub-network. For 
large networks in practice, one is forced to validate the p-
polling state in sub-networks since the verification of large 
network size encounters the issue of under sampling. To il-
lustrate whether a network is in a p-polling state, we define 

(3)SI=
1

nL

L∑

i=1

ni,

(4)p=P(�1 =1|�i =0,∀i∈S),

(5)�i =P(�1 =1|�i =1, �k =0,∀k∈S�{i})−p.

P(�1 =1|�i =1,∀i∈B;�k =0,∀k∈S�B)−p=
∑

i∈B

�i.

(6)RB =
P(�1 =1��i =1,∀i∈B;�k =0,∀k∈S�B)

p+
∑

i∈B�i

.
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a total mean of linearity index for a recording. An exam-
ple of a total mean of a recording is computed as follows: 
Consider M four-neuron sub-networks which are selected 
from the recording. Define the subsets with size N(B) for 
the jth neuron as all the possible combinations of N(B) neu-
rons (the jth neuron is excluded) in the considered network. 
For each neuron in a four-neuron sub-network, there are 
three subsets with size N(B)  =  2 selected from the other 
three neurons in the four-neuron sub-network. For exam-
ple, for neuron 2, subsets include {1, 3}, {1, 4}, {3, 4}. 
There are twelve subsets in total for this four-neuron sub-
network (denoted by the index i). We compute the mean 
of all twelve RB’s, denoted by �2,i for the ith selected four-
neuron sub-network. For the recording with M selected 
four-neuron sub-networks, the total mean is defined as the 
mean of {�2,i}

M
i=1

. The total mean for N(B) = 3 is defined 
similarly.

3  |   RESULTS

3.1  |  Examinations in physiological 
experiments

We examine the cortical operating points in three physiologi-
cal in vivo experiments (Coen-Cagli et  al.,  2015; Kohn & 
Coen-Cagli, 2015; Kohn & Smith, 2016; Liu et al., 2014; see 
Section 2 for details).

In the first experiment, data were recorded from the medial 
prefrontal cortex when mice were performing an olfactory 
delayed non-match to sample task (Liu et al., 2014; dataset 
one). In the second experiment, data were recorded from 
the primary visual cortex (V1) when four anesthetized adult 
macaca fascicularis monkeys viewed a uniform gray screen 
(Kohn & Smith, 2016; dataset two). In the third experiment, 
data were recorded from the primary visual cortex when 
anesthetized macaque monkeys received each image stimu-
lus presented in pseudo-random order for 100 ms (data of all 
image stimuli are collected for dataset three), followed by a 
200 ms uniform gray screen (data of all gray screen stimuli 
are collected for dataset four; Coen-Cagli et al., 2015; Kohn 
& Coen-Cagli, 2015). The four datasets are analyzed in four 
rows in Figure 1, respectively. In addition to two distinct ani-
mal models (mouse and monkey), these experimental settings 
include several representative (a) brain states (anesthetized 
spontaneous state, performing tasks of working memory, and 
visual information processing); (b) brain areas (mPFC and 
V1); (c) brain functions (working memory and visual infor-
mation processing). Thus, these experimental settings repre-
sent some degree of generality for investing the commonality 
of the p-polling state.

The neural populations recorded in above experiments 
are in asynchronous state. For illustration, we show the 

raster plot of all neurons in one selected recording for each 
dataset, as shown in Figure 1a,d,g,j). The synchronization 
indexes are 0.16, 0.22, 0.22, and 0.26 for Figure 1a,d,g,j, 
respectively. We randomly select four neurons (marked 
by red color in Figure  1a,d,g,j) as examples to show that 
the linearity indexes are close to unity. We examine RB for 
the subsets with size N(B)  =  2 and N(B)  =  3, as shown 
in Figure 1b,e,h,k. For each neuron, we compute the mean 
value and standard deviation of RB with size N(B) = 2 and 
size N(B)  =  3. The mean values of RB of all subsets are 
very close to unity, which indicates that these four-neuron 
sub-networks in each recording are operating in a state 
very close to the p-polling state. To be more convincing, 
we would next examine the p-polling state in massive ran-
domly selected sub-networks.

For a large network, it often requires an unrealistically 
long recording in order to compute the linearity index. An 
alternative way is to examine the linearity index for sufficient 
number of randomly selected sub-networks. We then exam-
ine RB for four-neuron sub-networks with firing rates larger 
than 6 Hz in all recordings. Note that 6 Hz is an empirical 
threshold to insure sufficient number of spikes to estimate 
the NFP distribution; it is not a threshold for the existence of 
the p-polling state. For illustration, we present total means 
(see Section 2 for details) of each recording respectively for 
N(B) = 2 and N(B) = 3. Each total mean is close to one indi-
cated by one dot in Figure 1c,f,i,l, which are indexed by their 
recording indexes (abscissa). Most mean values of RB con-
sisting in the total means for the subsets with size N(B) = 2 
and N(B) = 3 are also very close to unity. For illustration, 
for the recording in Figure 1a, we present the mean RB of all 
randomly selected four-neuron sub-networks for N(B) = 2, 3 
in Figure  S3. The linearity indexes are also close to unity 
for sub-networks of six and ten neurons (see an example 
in Figure S4), that is, the p-polling state is also verified for 
sub-networks of six and ten neurons.

We have also probed into the p-polling state in differ-
ent behavior states of one animal. For the first dataset, 
we have examined the operating state when the mouse is 
in the delay period and in the resting period, respectively. 
In both periods, neural networks are also close to be in the 
p-polling state, as shown in the analysis of one recording 
of Mouse Three in Figure S5. We also shuffle data in four 
datasets (see an example in Figure S5) to confirm that the 
state of neuron-independence is a trivial case of the p-poll-
ing state. For the trivial case, all the probability increments 
are zero, and the conditional probability reduces to the un-
conditional probability. The experiments we study in this 
work have probability increments that are not zero, which 
can be seen in Figure 2c,f,i,l discussed in the next section. 
Their linearity indexes close to unity shows that the net-
works are operating in a p-polling state. Note that, the lin-
earity indexes can deviate significantly from unity as the 
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neural system displays more synchrony as discussed in our 
previous works (Xu et al., 2017), which indicates the break-
down of the p-polling state. Taken together, these datasets 

provide evidence that the p-polling state is a common corti-
cal dynamical state—across different species and different 
behaviors.

FIGURE 2   MEP analysis. Selected sub-networks in four datasets are the same as sub-networks marked by red color in Figure 1a,d,g,j, respectively. 
(a, d, g, j): The probability of occurrence of each firing pattern (denoted by one dot) predicted from the MEP analysis, P2 (red) and P1 (blue), is plotted 
against the measured probability. (b, e, h, k): Each bar is the mean of absolute values of interaction strengths of the order indicated by the abscissa. 
The standard deviation is also indicated by the error bar around the mean. (c, f, i, l): For each neuron, the blue bar is the probability of the neuron firing 
conditioned on other three neurons being silent (see Equation 4). Each bar with non-blue color is the probability increment of the neuron, whose index is 
indicated by the abscissa, firing induced by one of other neurons (see Equation 5) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.2  |  The second-order MEP analysis

The p-polling state, a common cortical dynamical state exam-
ined above, provides an efficient way to study the neural cod-
ing embedded in statistical distributions of NFPs. For example, 
statistical distributions of NFPs are found to be used to per-
form awake replay of remote experiences in rat hippocampus 
(Karlsson & Frank, 2009). However, the degree of freedom in 
distributions of NFPs, 2n, grows exponentially with the neuron 
number n. Next, we would show for the four in vivo datasets, 
that these networks operating in the p-polling state with small 
magnitude of probability increments simplify the description 
of the NFP distribution by low-order MEP analysis with con-
straints of low-order correlations (see Section 2).

First, we show the high accuracy of the second-order MEP 
analysis for the NFP of the four experimental datasets. As 
shown in Figure  2a,d,g,j, for the four-neuron sub-networks 
(those marked by red color in Figure 1a,d,g,j), the second-or-
der MEP distributions, P2 (red), are in excellent agreement 
with the observed distributions; however, the first-order MEP 
distributions, P1 (blue), have significant deviations from 
the observed distributions. The results of the MEP analy-
sis for all analyzed four-neuron sub-networks selected from 
Figure 1a,d,g,j are similar (shown in Figure S6). Note that 
these results on the accuracy of low-order MEP analysis are 
consistent with previous experimental results on neural net-
work systems (Schneidman et al., 2006; Shlens et al., 2006; 
Tang et al., 2008).

Since the NFP distribution of n neurons is the same as the 
distribution of its corresponding full-order (nth-order) MEP 
distribution (Xu, Crodelle, et al., 2019), which is constrained 
by all-order correlations. The good performance of the sec-
ond-order MEP analysis leads us to the question of whether 
high-order interactions in the full-order MEP analysis are 
small compared with lower-order ones. Thus, in these ex-
periments, we then examine the interaction strengths of dif-
ferent orders in the full-order MEP analysis. The interaction 
strengths of different orders can be derived from the observed 
distribution (see Section 2). As shown in Figure  2b,e,h,k, 
for illustration, we only show results of those sub-networks 
marked by red color in Figure  1a,d,g,j. The bars are the 
means of absolute interaction strengths of different orders. 
It can be seen clearly that the means of higher-order absolute 
interaction strengths are much smaller than those of the first 
and second orders.

In our theoretical work (Xu et al., 2017), we proposed a 
mechanism to explain the situations where high-order inter-
actions are small. There is a recursive relation in the full-or-
der MEP analysis, namely, the (k  +  1)th order interaction 
J123…(k+1) is the increment of the kth order interaction J123…k 
induced by the (k + 1)th neuron firing (see Section 2). This 
recursive relation can be analyzed theoretically in the p-poll-
ing state. For illustration, in a homogeneous network, that 

is, the probability increment satisfies �i =� for 2≤ i≤n, the 
interaction strengths form a hierarchy in the power of prob-
ability increment �, that is, J123…k ∼O(kk−1). Importantly, in 
asynchronous neural networks, �i (2≤ i≤n) is usually small 
when compared to p, the neuron's firing probability condi-
tioned on the silence of all other neurons. This fact has been 
confirmed computationally for HH neural networks in a wide 
range of dynamical regimes (Xu et al., 2017), and it is also 
verified for the four in vivo cortical sub-networks shown in 
Figure  2c,f,i,l. Therefore, high-order interactions are much 
smaller compared with lower-order ones when the network 
is under the p-polling state. As discussed previously, if the 
system is in a p-polling state, only when the strengths of all 
the probability increments �’s are small, can the second-or-
der MEP analysis be applied. Therefore, the MEP framework 
might be regarded as a special case of the coding strategy in 
the p-polling state.

4  |   DISCUSSION

We discuss the relationship of p-polling state to other studies, 
and also some of its limitations.

4.1  |  Balanced states in networks

In cortical regions (Haider, Duque, Hasenstaub, & 
McCormick,  2006), neurons are often found to operate in 
a “balanced state,” in which the excitatory and inhibitory 
synaptic inputs into each neuron are dynamically balanced 
on average (Shadlen & Newsome,  1994; Van Vreeswijk 
& Sompolinsky,  1996). These balanced-state networks 
can display various firing patterns (Boerlin, Machens, 
& Denève,  2013; Denève & Machens,  2016; Moreno-
Bote, 2014; Renart et al., 2010;), and often possess asynchro-
nous states with low firing rates. As we have computed in 
neural network simulations (see an example in Figure S7), 
the linearity indexes of balanced states are near unity—show-
ing that the p-polling state holds well in balanced states. 
Since the p-polling state might be more general operating 
points than balanced states, the theoretical studies of coding 
schemes in balanced-state networks can be extended to the 
p-polling state.

4.2  |  Weak correlations

Weak correlation between neural spike trains is widely ob-
served in experiment (Cohen & Kohn,  2011); although 
weak, these correlations can significantly impact the collec-
tive behavior (Schneidman et  al.,  2006). Pairwise correla-
tions are not always detrimental for the neural coding since 
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decorrelation in such case does not imply an increase in in-
formation (Moreno-Bote et al., 2014). However, differential 
correlations, which are proportional to the product of the de-
rivatives of the tuning curves, can limit substantially the sig-
nal capacity of neural populations (Moreno-Bote et al., 2014; 
Nogueira et al., 2019). Studies of coding schemes are often 
based upon the correlation structure of the network (Abbott 
& Dayan, 1999; Kanitscheider, Coen-Cagli, & Pouget, 2015; 
Quiroga & Panzeri, 2009) or inverse population covariability 
(Nogueira et  al.,  2019). Thus, a deeper and more quantita-
tive understanding of the structure of correlations may help to 
discover new coding principles. The analysis framework of 
the p-polling state provides one reason that weak correlations 
among neurons are often observed (Cohen & Kohn, 2011). 
To illustrate this, we consider an example of a homogeneous 
network of n neurons (Xu et al., 2017), operating in a p-poll-
ing state. In this setting, correlations between neurons can be 
expressed in terms of p and δ; then, the correlation among 
neurons {i1, i2,…, ik}, i.e., Ci1,i2,…, ik

, forms a hierarchy in 
the power (Xu et  al.,  2017) of δ, i.e., Ci1,i2,…, ik

=O(�k−1)

. Therefore, the p-polling state shows a quantitative under-
standing of why weak correlation is common.

The p-polling state can be different from the weakly 
correlated state. For example, consider an idealized homo-
geneous network of three neurons, which might be realized 
within a large network, that is,

where p�1�2�3
 is the probability of the state (�1, �2, �3), �i is the 

state of the ith neuron. Assume that p, the probability of each 
neuron firing conditioned on that other two neurons are silent, 
is 0.1, that is,

and assume that δ, the probability increment of one neuron, is 
0.44, that is,

Due to the normalization of all probabilities, we have

If the network is in the p-polling state, we further have

The above equations can be analytically solved since the 
number of constraints is the same as that of unknown vari-
ables. The Pearson correlation coefficient in such case can 
be obtained as .786. Compared with often observed magni-
tude of the correlation coefficient (Cohen & Kohn,  2011) 
around .1, correlation of .786 in this idealized example is far 
from being weakly correlated. On the other hand, we assume 
p = .3, �=. 01, and replace the last equation by

which means the p-polling state does not hold. All the linearity 
indexes for subsets with size 2 is 1.72. In this case, the Pearson 
correlation coefficient can also be obtained as .10, that is, the 
network is weakly correlated but not in the p-polling state. 
These examples indicate that the p-polling state can be different 
from a weakly correlated state.

4.3  |  Limitations

There are several limitations to this work. First, in physi-
ological animal experiments, the length of recording time 
is always limited. This practical limitation on the length 
of the time series data places significant restrictions on 
the data analysis of the linear computational rule in the p-
polling state of a large network and temporal correlations 
in population responses. For example, the mean linearity 
indexes for N(B)  =  2 of sub-networks with 4, 6, and 10 
neurons (Figures S3 and S4) are 1.00, 1.00, and 1.01, re-
spectively, while their standard deviations are 0.04, 0.06, 
and 0.10, respectively. Note, the standard deviation in-
creases with the sub-network size. For the large sub-net-
work size, the estimation of the probability distribution 
function may suffer from the curse of dimensionality—
making it difficult to estimate accurately the probability 
distribution function and thus lead to high fluctuations of 
the calculated linearity index. However, neural networks 
have many features, such as sparse connections and sparse 
firings, which make it also promising to develop methods 
to study the p-polling state in large networks. Second, it is 
still unclear how the p-polling state emerges from neural 
dynamics. The p-polling state is a common cortical oper-
ating point, but the cortex does not always operate in the 
p-polling state. For example, synchrony certainly prevents 
its emergence, as synchrony is far from p-polling state, 
as has been shown in computational HH model networks 
(Xu et  al.,  2017). Cortical networks normally operate in 
asynchronous states (Renart et  al.,  2010; Van Vreeswijk 
& Sompolinsky,  1996), such as the balance state, where 
the p-polling state holds well. For experimental data meas-
ured by calcium imaging from hippocampal neurons and 
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glial cells from E18 rat embryos in vitro (Lau & Bi, 2005), 
we have seen an indication that synchrony is far from 
the p-polling state; however, those data are too short to 
be conclusive and cortical networks normally operate in 
asynchronous states (Renart et  al.,  2010; Van Vreeswijk 
& Sompolinsky,  1996); It is expected that synchrony of 
the whole network may occur in abnormal situations 
such as epilepsy (Traub & Wong,  1982) and Alzheimer 
(Kuchibhotla, Lattarulo, Hyman, & Bacskai, 2009)—states 
which are far from p-polling.

There is a direct connection between the degree of syn-
chrony and the probability increment δ, as δ is related to 
a commonly used “synchrony index” between a pair of 
neurons (e.g., neuron 1 and 2) (Shlens et  al.,  2006); that 
is, Isyn = log2[P(�1 =1, �2 =1)∕(P(�1 =1)P(�2 =1))]

. By implementing p and �2 into this formula, 
Isyn = log2[(p+�2)∕(p+P(�2 =1)�2)]. When (a) 
�2 =0, Isyn =0, that is, totally independent; (b) 𝛿2>0, Isyn >0

, that is, tending to synchrony; (c) 𝛿2<0, Isyn <0, that is, 
tending to antisynchrony.

In any case, as the linearity index moves away from unity, 
it is necessary to further investigate the structure of the oper-
ating states which is beyond the p-pooling state.

5  |   CONCLUSION

In this work, by calculating the linearity indexes directly 
from multi-electrode recording data measured in several 
distinct experiments on mouse and monkey, we have shown 
that the p-polling state is a rather common operating point 
of the cortical network, across different species and in dif-
ferent behavioral states. The mathematical characterization 
of the p-polling state is consistent with the theoretical as-
sumption in the previous study on HH model simulations 
(Xu et al., 2017). As a step toward the Marr's second-level 
understanding, the commonality of the p-polling state in-
dicates that although animals perform different tasks, in 
different behavioral states, they use similar representations 
and algorithms; that is, a linear computation rule of the de-
pendence among neurons on the probability level defined 
by the p-polling state.

We then show that under the p-polling cortical operat-
ing state with small magnitude of probability increments, 
the second-order MEP distribution provides an efficient 
representation of the observed neural firing patterns. The 
NFP distribution is important for understanding neural sys-
tems. For example, the NFP distribution has been utilized 
both to study neural decoding (Karlsson & Frank,  2009) 
and the interaction between neurons of different types 
(Meshulam et al., 2017). Our theoretical work shows that 
in the p-polling state, a second-order MEP analysis per-
formed with a short time recording produces a much more 

accurate probability distribution than the probability dis-
tribution directly constructed from the short time record-
ing (Xu, Crodelle, et al., 2019). In addition, our theoretical 
work (Xu, Zhou, et al., 2019) indicates that sparsity of con-
nections can lead to sparse high-order interactions in the 
representation of the distribution, and thus the accumula-
tion of high-order interaction effects is small and the accu-
racy of low-order MEP distributions can be guaranteed in 
larger networks compared with that discussed in previous 
works (Ganmor, Segev, & Schneidman,  2011; Meshulam 
et  al.,  2017). Thus, for sparsely connected networks, the 
p-polling state provides a common operating point from 
which the NFP distribution can be sparsely represented, 
providing a natural sparse-coding network perspective to 
study information processing.

In summary, we have shown a p-polling state that is de-
fined by an underlying linearity structure. When the sec-
ond-order MEP framework cannot be applied, the linearity of 
the p-polling state, which constrains the probability distribu-
tion to a low-dimensional manifold, may provide a new per-
spective to the understanding of the coding scheme of neural 
network dynamics.
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