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ABSTRACT

The embedding space of language models is widely believed to capture the semantic relationships;
for instance, embeddings of digits often exhibit an ordered structure that corresponds to their natural
sequence. However, the mechanisms driving the formation of such structures remain poorly under-
stood. In this work, we interpret the embedding structures via the data distribution. We propose a
set of probability signatures that reflect the semantic relationships among tokens. Through experi-
ments on the composite addition tasks using the linear model and feedforward network, combined
with theoretical analysis of gradient flow dynamics, we reveal that these probability signatures sig-
nificantly influence the embedding structures. We further generalize our analysis to large language
models (LLMs) by training the Qwen2.5 architecture on the subsets of the Pile corpus. Our results
show that the probability signatures are faithfully aligned with the embedding structures, particularly
in capturing strong pairwise similarities among embeddings. Our work uncovers the mechanism of
how data distribution guides the formation of embedding structures, establishing a novel understand-
ing of the relationship between embedding organization and semantic patterns.

1 Introduction

In recent years, deep neural network-based large language models (LLMs) have demonstrated remarkable perfor-
mance (Comanici et al., 2025; OpenAI et al., 2024; DeepSeek-AI et al., 2025). The development of these models has
largely followed what Richard Sutton termed “the bitter lesson”–that the most effective approach to improving AI per-
formance has historically been to leverage greater computational resources, larger models, and more data, rather than
incorporating human knowledge or specialized architectures (Sutton, 2019). This trend has been formalized through
scaling laws, which quantify the relationship between model performance and factors such as model size, dataset size,
and computational budget through power law relationships (Kaplan et al., 2020). While these scaling laws provide
valuable quantitative predictions for model performance, they also reveal a concerning limitation: the power law rela-
tionship suggests that achieving further significant improvements may require prohibitively large increases in model
and data size, making continued scaling increasingly impractical and resource-intensive.

One promising approach to address these limitations is to develop a deeper understanding of the underlying mech-
anisms that drive transformer models’ success in natural language processing (NLP). The No Free Lunch theorem
establishes that no single algorithm can perform optimally across all problem domains, highlighting the fundamen-
tal importance of understanding both the characteristics of the data and the properties of the algorithms that process
it (Wolpert & Macready, 1997). Recent research has made significant progress in uncovering key properties of deep
learning models, including the edge of stability phenomenon (Wu et al., 2018; Cohen et al., 2021), frequency prin-
ciple (Xu et al., 2020, 2025a), attention patterns (Elhage et al., 2021; Olsson et al., 2022; Bhojanapalli et al., 2020),
parameter distribution properties (Kovaleva et al., 2021; Dar et al., 2023), condensation phenomenon (Luo et al.,
2021; Xu et al., 2025b), and embedding structure (Cai et al., 2021). There has also been some investigation into
data characteristics—such as the power-law decay of correlations between elements (like pixels) as a function of
their distance (Ruderman, 1994). However, there is a significant gap in understanding how these two fundamental
aspects—algorithmic properties and data characteristics—interact to produce the remarkable performance.
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The embedding space, which acts as the encoder of the language tokens, therefore provides an ideal entry point
for investigating how algorithmic properties and data characteristics interact. Ideally, the structure of embeddings
should reflect the semantic relationships among tokens. A concrete example involves digits such as 0, 1, 2, . . . , which
possess a natural ordering. Their embedding vectors accordingly display an ordered structure consistent with this
numerical sequence, reflecting basic reasoning capabilities in mathematical tasks (Mikolov et al., 2013b; Ethayarajh
et al., 2019; Zhang et al., 2024; Yao et al., 2025). However, the cause of the consistency between embedding structures
and semantic structures is still an open question, and the driving factors of the embedding structure are still not well
characterized.

In this work, we identify a set of probability signatures that encode the semantic information in the data into the
structure of the embedding space of language models. Such probability signatures are constructed based on label
distribution, input distribution, input/output co-occurrence distribution, etc, that systematically capture inherent token-
level relationships and reflect semantic structures. This result is achieved via utilizing an embedding-based model
with gradient flow analysis of embedding vectors and unembedding vectors for well-designed variable-controlled
experiments. We further extend our findings to LLMs with realistic corpora, such as the Qwen2.5 architecture (Team,
2024) and subsets of the Pile dataset (Gao et al., 2020; Biderman et al., 2022). The analysis approach with the
controlled experiments offers a promising methodology to uncover more and more probability signatures that can
bridge the data semantics and embedding structure in language models.

2 Related Work

Parameter analysis in LLMs Investigating the underlying parameter properties in LLMs is crucial for understand-
ing the foundation of models. Some works focus on the specific modules in models. Elhage et al. (2021); Olsson et al.
(2022) uncover mechanisms such as induction heads from the attention module. Bhojanapalli et al. (2020) reveals the
rank-collapse phenomenon of the attention matrix. Geva et al. (2021, 2022); Dai et al. (2022) investigates the char-
acteristics and functions of the FFN in LLMs. Additionally, analysis of a single neuron has been widely employed in
mechanism interpretation, particularly in circuits analysis Hanna et al. (2023); Wang et al. (2023); Hanna et al. (2024);
Wang et al. (2025), sparse autoencoders (SAE) Huben et al. (2024); Bricken et al. (2023), transcoders Dunefsky et al.
(2024), and cross-layer transcoders (CLT) Ameisen et al. (2025). There are also some studies investigating the global
properties of all parameters. Dar et al. (2023); Katz et al. (2024) introduce a framework for interpreting all parameters
of Transformer models by projecting them into the embedding space. Kovaleva et al. (2021); Yu et al. (2025) provide
an analysis of the parameter distribution, demonstrating the significance of these outliers. In this work, we will focus
on the embedding space, explaining the formation of its structure from both experimental and theoretical perspectives.

Embedding structure and representation learning Since the introduction of static word embeddings by Mikolov
et al. (2013a); Pennington et al. (2014) and the adoption of contextualized embeddings (Devlin et al., 2019; Peters
et al., 2018), significant attention has been devoted to analyzing embedding properties. Gao et al. (2019); Ethayarajh
(2019); Timkey & van Schijndel (2021) explore the anisotropy of embedding space, while Cai et al. (2021) show that
embeddings exhibit isotropy within clusters. Liu et al. (2022) offers insights into grokking by emphasizing the role
of well-organized embedding structures. Zhang et al. (2024) establishes a connection between embedding structure
and model generalization, and Yao et al. (2025) provides an analysis of this relationship. In contrast to prior work,
our study focuses on the connection between embedding structure and data properties, offering a novel insight for
understanding how embeddings are organized.

3 Embedding-based Model

We first explain the basic notation of embedding space. Given a vocabulary V ⊂ N+ with size dvob. We denote a
trainable matrix WE ∈ Rd×dvob as the embedding matrix for V , where d is the hidden dimension. For any x ∈ V ,
we denote ex ∈ Rdvob as its one-hot vector and WE

x := WEex as the embedding vector of x, which is intuitively
the x-th column of WE . For a sequence X = [x1, x2, · · · , xL] ⊂ V , we define its one-hot representation as eX :=
[ex1 , ex2 , · · · , exL

] ∈ Rdvob×L and WE
X :=

[
WE

x1
,WE

x2
, · · · ,WE

xL

]
∈ Rd×L as the embedding sequence of X .

Similarly, WU ∈ Rdvob×d represents the unembedding matrix and WU
ν := WU,Teν (the ν-th row of WU ) means

the unembedding vector for any ν ∈ V .

We denote the models functioning on the embedding of the input sequence as embedding-based models. We provide
the following formulation:
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Definition 1. Given a vocabulary V ⊂ N+ with size dvob and a sequence X ∈ VL with length L. An embedding-based
model F taking X as input could be formulated as

F (X) = WUG
(
WE

X

)
,

where G means the mapping in the hidden space.

Embedding-based models have been widely applied in various domains, particularly in NLP. Investigating the charac-
teristics of the embedding space via the gradient flow dynamics is essential for understanding the embedding structures.
Given a dataset

{(
Xi, yi

)}N
i=1

, we utilize cross-entropy as the loss function:

ℓi = − log Softmax
(
F
(
Xi
))

yi = − log
expF

(
Xi
)
yi∑dvob

j=1 expF (Xi)j
.

Denote that pi = Softmax
(
F
(
Xi
))

. Let ⊙ represent the Hadamard (element-wise) product and T mean the trans-
pose, we obtain the following results.

Proposition 1. Given an embedding-based model F with an embedding matrix WE . For any token x ∈ V , the
gradient flow of WE

x (the x-th column of WE) can be formulated as:

dWE
x

dt
=
∑
ν∈V

rx,ν
Nx,ν

(
WU,Teν

)
⊙

Nx,ν∑
i=1

G(1)
(
WE

Xi
(x,ν)

)
− rinx

N in
x

N in
x∑

i=1

G(1)
(
WE

Xi
x

)
⊙
(
WU,Tpi

x

)
,

where N in
x , Nx,ν denotes the count of sequences containing x and the count of sequences containing x with label ν,

rinx =
N in

x

N , rx,ν =
Ns,ν

N , G(1) represents the derivative of G with respect to WE
x . Xi

x is the i-th sequence containing
x and Xi

(x,ν) denotes the i-th sequence containing x with label ν. pi
x means the output probability of the model over

Xi
x.

Proposition 2. Given an embedding-based model F with an unembedding matrix WU . For any token ν ∈ V , the
gradient flow of WU

ν (the ν-th row of WU ) can be written as

dWU
ν

dt
=

routν

Nout
ν

Nout
ν∑

i=1

[
G
(
WE

Xi
(·,ν)

)]T
− 1

N

N∑
i=1

pi,ν
[
G
(
WE

Xi

)]T
,

where Nout
ν denotes the count of sequences with label ν and routνj

=
Nout

ν

N . Xi
(·,ν) means the i-th sample which takes

ν as the label. pi,ν means the ν-th element of pi.

In this work, we employ three embedding-based architectures:

• Linear model. Flin (X) = WU
∑

x∈X WE
x .

• Feedforward network. Fffn (X) = WUσ
(∑

x∈X WE
x

)
, where σ denotes the element-wise nonlinear acti-

vation.

• Transformer-based architecture. We employ the Qwen2.5 architecture in Section 6 and the Llama 2 architec-
ture (Touvron et al., 2023) in Appendix C.4.

4 Probability Signature

In the field of deep learning, the data characteristics play a critically important role in both the training dynamics and
the final performance of the model. Given a training dataset

{(
Xi, yi

)}N
i=1

sampled from distribution π, we define
the following probability signatures:

ϕy
x =

∑
ν∈V

Pπ (y = ν | x ∈ X) eν , ϕX
x =

∑
x′∈V

Pπ (x
′ ∈ X | x ∈ X) ex′ ,

ϕX|y
x =

∑
ν∈V

eν

(∑
x′∈V

P (x′ ∈ X | x ∈ X, y = ν) ex′

)T

, φX
ν =

∑
x∈V

Pπ (x ∈ X | y = ν) ex.

3
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ϕy
x denotes the distribution of the label given that the input sequence X contains element x. It captures the association

between a specific input element x and its label. ϕX
x represents the probability that, given X contains x, it also

contains another input element x′. It characterizes the co-occurrence relationship between different elements. ϕ
X|y
x

indicates the probability that, when X contains x and the label is fixed, the sequence additionally includes x′. It
further delineates the relationship among different elements in the sequence under a specified label condition. φX

ν
denotes the probability distribution of the element x contained in X conditional with the label being ν. It reflects the
dependency between input elements and the label from a reverse perspective.

5 Addition Task

The addition task has become an important benchmark for studying the characteristics of language models. Many
studies have found that the digits’ embeddings exhibit an ordered structure consistent with the natural sequence of
numbers (Zhang et al., 2024; Yao et al., 2025). To demonstrate the significant influence of probability signatures on
the model’s embedding space, we design three types of composite addition tasks to perform variable-controlled exper-
iments. Assuming all tokens belong to positive integers, and we denote an anchor set by A, whose elements represent
different addition operations, i.e., anchor α1 means addition with α1. Given a input sequence X = [z, α1, α2], which
means the composite function (α1, α2) on the key z, we define the following tasks:

• Addition task. fadd (X) = z+α1+α2, α1, α2 ∈ A. For each anchor pair (α1, α2), z is sampled from the
same set Z with Z ∩ A = ∅. In fadd, ϕy

α are distinct with varying anchor α while ϕX
α are identical across

anchors.

• Addition task with the same value domain. f̃add (X) = z+α1+α2, α1, α2 ∈ A. For anchor pair (α1, α2),
z ∈ Z(α1,α2) = Y − α1 − α2 where Y denotes the label domain, which is identical for all anchor pairs. In
f̃add, ϕX

α are distinct with varying anchor α while ϕy
α are identical for all α ∈ A.

• Module addition. fmod (X) = minZ + (z + α1 + α2 mod | Z |) , α1, α2 ∈ A and z ∈ Z . Both ϕX
α

and ϕy
α are identical with different anchors, while ϕ

X|y
α are distinct.

In this work, we set A = {11, 12, · · · , 20} and Y = Z = {101, 102, · · · , 140}. Figure 1 A displays the probability
signature, which is distinct across the α in each task, revealing that the difference among α lies in the global horizontal
shift. The detailed formulations are provided in Appendix B.1.

Figure 1: A: Probability signature which is distinct with varying α in each task (fadd → ϕy
α, f̃add → ϕX

α , fmod →
ϕ

X|y
α ), α = 11 (red) and 20 (blue). In ϕ

X|y
α , it’s displayed with y = 160. B: Training accuracy of the Flin and Fffn

on the three addition tasks.

For notation convenience, we denote that WE
A =

[
WE

α

]
α∈A ,ϕA = [ϕα]α∈A for ϕα = ϕy

α,ϕ
X
α ,ϕ

X|y
α ,

and cos
(
WE

A
)

:=
[
cos
(
WE

α ,WE
α′

)]
α,α′∈A , cos (ϕA) := [cos (ϕα,ϕα′)]α,α′∈A. Similarly, cos

(
WU

V
)

:=[
cos
(
WU

ν ,WU
ν′

)]
ν,ν′∈V and cos

(
φX

V
)
:= [cos (φν ,φν′)]ν,ν′∈V .

5.1 Results

We train these addition tasks using the Flin and Fffn with d = 200. Inspired by the work of Luo et al. (2021); Xu
et al. (2025b), we initialize the model parameters by Wi,j ∼ N

(
0, d−0.8

)
, indicating a small initialization scale. The

4



A PREPRINT

complete training configurations are provided in Appendix A. Figure 1 B shows the training accuracy of Flin and Fffn

on the three addition tasks. The results reveal that both fadd and f̃add are learned well by the linear model, whereas
fmod requires the nonlinear model to achieve an effective fit.

5.2 Embedding Matrix

In the addition tasks, the anchors exhibit a strict ordering due to the numerical sequence. This provides an ideal setting
for the embedding space to develop a corresponding ordered relationship. To formally quantify the formation of the
ordered structure, we define the following metric:

Rorder

(
WE

A
)
= Corr

(
cos
(
WE

A
)
, {| α− α′ |}α,α′∈A

)
.

Rorder

(
WE

A
)

reflects the relationship between embedding similarity and anchor difference. A strong negative
Rorder

(
WE

A
)

(approximately −1) indicates that the similarity decreases systematically with increasing anchor dif-
ference, confirming the presence of a hierarchical organization in the anchor embeddings. Figure 2 A represents the
distribution of cos

(
WE

A
)

for the three tasks with Flin and Fffn, respectively, and Figure 2 B depicts the corresponding
evolution of Rorder

(
WE

A
)
. In the case of fadd, anchor embeddings quickly form an ordered structure, where the

cosine similarity gets smaller as the anchor distance gets larger. For the task f̃add, the anchor embeddings also develop
a similar hierarchical structure. However, its construction requires more steps, indicating that the driving factors of the
structure in fadd and f̃add are different. In fmod, although the linear model fails to learn it effectively, the anchor em-
beddings still undergo noticeable changes from the initial stage. Specifically, all embedding vectors become aligned
in nearly the same direction. Furthermore, the anchor embeddings of fmod in Fffn construct an ordered structure with
more steps, suggesting that the activation provides another factor in deriving such an embedding structure.

Figure 2: A: The heatmap of cos
(
WE

A
)

in Flin (left) and Fffn (right) during the training process. Each row corresponds
to fadd, f̃add, and fmod, respectively. B: Dynamics of Rorder

(
WE

A
)

in Flin (left) and Fffn (right). Line colors represent
task types.

We derive the reasons for the embedding structure in each task from the gradient flow. With Proposition 1, we obtain
the following approximation:
Corollary 1 (Embedding of Linear Model). Let N → ∞, π denotes the data distribution over the training set. The
gradient flow of WE

α in Flin can be approximated by

dWE
α

dt
= WU,T rinx

(
ϕy

α − 1

dvob
WUWEϕX

α + η

)
, (1)

where η denotes the data-independent and higher-order terms.

5
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Remark 1. Deep learning methods fundamentally comprise three essential components: the model, the data, and the
optimization algorithm. Corollary 1 clearly illustrates how these three elements are coupled (model: Flin; data: prob-
ability signatures; optimization algorithm: the gradient flow) and influence the embedding space, providing crucial
insights for understanding and investigating their joint impact on the performance of deep learning approaches.

Corollary 1 indicates that the dynamics of WE
α in Flin are primarily impacted by the probability signatures ϕy

α and
ϕX

α , demonstrating the connection between data distribution and the embedding space. As we mentioned, the ϕy
α is

distinct for different α, while the ϕX
α is identical for all α in fadd; the opposite holds for f̃add. Figure 3 A depicts

cos (ϕy
A) (left) and cos

(
ϕX

A
)

(middle column) in fadd (top) and f̃add (middle row), revealing that ϕy
α and ϕX

α are
significant for the formation of the hierarchy embedding structure in fadd and f̃add, respectively. Furthermore, (1)
indicates that ϕy

α acts as a leading term and the effect of ϕX
α is weaker in the early training process since it times a

small magnitude term 1
dvob

WUWE . This results in the formation speed of the structure in f̃add being slower than
fadd, which is consistent with the phenomenon in Figure 2.

Figure 3: A: Cosine similarity among different anchor α of ϕy
α,ϕ

X
α ,ϕ

X|y
α (see (4)) in each task. B: The PCA

projection of the key factors (fadd → ϕy
α, f̃add → ϕX

α , fmod → ϕ
X|y
α ) and the embedding vectors in different tasks

(Fffn, 120 epoch).

In task fmod, ϕy
α and ϕX

α are both identical across different anchors α. Figure 3 A (bottom) indicates that cos (ϕy
A) and

cos
(
ϕX

A
)

are 1 for all anchor pairs, which leads these embedding vectors to converge to almost the same direction,
consistent with the observation in Flin. To identify the key factors that contribute to the formation of the ordered
embedding structure for fmod in Fffn, we perform a similar analysis of its gradient flow and obtain the following
result.

Corollary 2 (Embedding of FFN). Let N → ∞, π denotes the data distribution over the training set. The gradient
flow of WE

α in Fffn could be approximated by

dWE
α

dt
= T ·

(
ϕX|y

α

)T
+ ηϕy

α
+

1

dvob
ηϕX

α
+ η̃, (2)

where T ∈ Rd×dvob×dvob , T:,:,ν = rα,νdiag
(
WU

ν

)
WE for ν ∈ V and 0 otherwise. ηϕy

α
and ηϕX

α
denotes the term

related with ϕy
α and ϕX

α , respectively. η̃ represents the higher-order term.

6
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Corollary 2 indicates that the ordered embedding structure of fmod primarily relies on probability signature ϕ
X|y
α .

Figure 3 A (right) depicts the cos
(
ϕ

X|y
A

)
in tasks, which reveals that ϕX|y

α in fmod constructs an ordered structure,
resulting in the ordered embedding structure in Fffn. Furthermore, Figure 3 C shows the PCA projection on probability
signatures and the embedding space in Fffn, revealing a high consistency. This comparison demonstrates the impact
of the probability signatures in shaping the embedding space.

5.3 Unembedding Matrix

The i-th row of the unembedding matrix can also be viewed as the feature for the i-th token. As shown in Figure 4
A, a similar ordered structure emerges among the unembedding vectors with the label index in Flin across all tasks.
Specifically, WU

ν in fmod constructs a ring where the similarity between small ν and large ν′ is also large since
Zmax + 1 = Zmin in fmod.

Figure 4: A: The heatmap of the cos
(
WU

V
)

with label index in Flin during the training process. B: The heatmap of
cos
(
φX

V
)

across different tasks. C: PCA projection of φX
V and WU

V (epoch 120).

Similarly, we identify the driving factors of this specific structure by examining the gradient flow of WU . Since this
phenomenon occurs in both Flin and Fffn, it suffices to analyze the linear model. Based on Proposition 2, we derive
the following result:

Corollary 3 (Unembedding of Linear Model). Let N → ∞, π denotes the data distribution over the training set. The
gradient flow of WU

ν in Flin could be approximated by

dWU
ν

dt
= Lroutν

(
WEφX

ν

)T
+ η, (3)

where η denotes the output term.

Corollary 3 illustrates that φX
ν plays a significant role in shaping the unembedding matrix. Figure 4 B depicts the

distribution of cos
(
φX

V
)
, which is aligned with the distribution of the cos

(
WU

V
)

in Figure 4 A. Furthermore, Figure 4
C compares the PCA projection of φX

V and WU
V in all tasks, revealing a high consistency and validating our analysis.

6 Language Model

We have demonstrated the influence of data distribution on the embedding space in the addition tasks. In this section,
we explore how to extend this analysis to real-world language models. Most contemporary language models are built
upon the Transformer decoder architecture. Assuming the input sequence is denoted as X with length L, we define a

7
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Figure 5: A: Heatmap of the cosine similarity of WE ,WU ,ϕnext and φpre. B: Rcos

(
WE ,ϕnext

)
(top) and

Rcos

(
WU ,φpre

)
(bottom) with different datasets. C: Relation between Corr

(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and the average value of cos
(
WE

s ,WE
)
. Each point denotes a token s. D: Distribution of pcos(ϕnext), conditioned on

intervals 0 ∼ 10%, 40 ∼ 50% and 90 ∼ 100% of the pcos(WE). E: Average value of pcos(ϕnext) within each interval
of pcos(WE).

language model Flan as:

Flan (X) = WU
(
WE

X + F̃ (X)
)

Given the training corpus
{
Xi
}N
i=1

, we define the following probability signatures for any s ∈ V:

ϕnext
s =

∑
s′∈V

Pπ

(
∪L−1
t=1 {Xt+1 = s′ | Xt = s}

)
es′ ,

φpre
s =

∑
s′∈V

Pπ

(
∪L−1
t=1 {Xt = s′ | Xt+1 = s}

)
es′ ,

(4)

and ϕnext = [ϕnext
s ]s∈V ,φpre = [ϕpre

s ]s∈V . We derive the following result:
Corollary 4. Let N → ∞, π denotes the token distribution in the training dataset. The gradient flow of the embedding
vector WE

s of token s could be fomulated as

dWE
s

dt
=rins WU,Tϕnext

s + ηE .

Furthermore, the gradient flow of the unembedding vector WU
s could be approximated as

dWU
s

dt
= routs

(
WEφpre

s

)T
+ ηU .

The ηE and ηU denote the output probability and the higher-order term.

8
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Corollary 4 suggests that given any token s, the distributions of its next token and previous token significantly impact
its embedding. We trained a group of Qwen2.5 models on different subsets of the Pile. Figure 5 A shows these simi-
larity matrices for the dataset Pile-dm-mathematics, where the tokens displayed are those that occur most frequently
in the corpus. We define the following correlation coefficient Rcos

(
WE ,ϕnext

)
:= Corr

(
cos
(
WE

)
, cos (ϕnext)

)
,

and similarly Rcos

(
WU ,φpre

)
. Figure 5 B depicts both metrics across all subsets, suggesting that probability sig-

natures significantly impact the structure of the embedding space and reflect the relationships among embeddings.
Furthermore, we find that the probability signatures reflect the strong connections of embeddings more faithfully.
As shown in Figure 5 C, the correlation between Corr

(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and cos
(
WE

s ,WE
)

is
plotted against for all tokens s, demonstrating stronger consistency in high-similarity regions. We define pcos(WE) and
pcos(ϕnext) as the percentile matrix of each elements in cos

(
WE

)
and cos (ϕnext), respectively. Figure 5 D displays

the distribution of pcos(ϕnext), conditioned on different intervals of the pcos(WE), and Figure 5 E shows the average
value of pcos(ϕnext) within each interval of pcos(WE). It can be observed that the alignment is significantly stronger in
the regions with large embedding similarity. In Appendix C, we provide a detailed method explanation, a specific case
of the token group with large similarity, and an analysis with the Llama-2 architecture to validate the generalization of
our analysis.

Since general-purpose pretrained base models are trained on broad corpora, we attempt to directly estimate their
embedding structure with a subset of general text. We combine all datasets employed in Figure 5 and define ϕ̃ =

ϕnext + φpre (Since the tied embedding, the detail is provided in Appendix C.1). We compare the cos
(
ϕ̃
)

with

cos
(
WE

)
of Qwen2.5-3B-base. As shown in Figure 6 A, the structure of ϕ̃ could capture the main properties of the

pre-trained model’s embedding structure, particularly the presence of sub-blocks with high similarity. Furthermore,
we examine the instance for the digits ranging from 0 to 9. Figure 6 B illustrates the cos

(
WE

)
and cos

(
ϕ̃
)

of such
digits, both revealing an ordered organization that aligns with their numerical sequence. It should be noted that this
estimation may not generalize across all open-source base models, as it is sensitive to both the initialization of the
pre-trained model and the true training dataset.

Figure 6: Cosine similarity of WE of the Qwen2.5-3B-base and ϕ̃, respectively, with the frequently-appearing tokens
(A) and the digits from 0 to 9 (B).

7 Conclusion

In this work, we investigate the formation of embedding structures in language models. By interpreting the relationship
between embedding organization and semantic structure through the lens of data distribution, we propose the proba-
bility signatures and design the addition tasks to conduct variable-controlled experiments. Our findings demonstrate
that probability signatures play a crucial role in shaping the embedding structure and reflecting underlying semantic
relationships. An extended analysis of LLMs further confirms our analysis. This study establishes a bridge between
data semantics and embedding space, offering new insights into the understanding of the joint impact of model, data
and optimization method. For future work, we plan to extend our theoretical analysis into a comprehensive frame-
work. Besides, we aim to incorporate the self-attention mechanism into our analysis of the LLMs, which is essential
for capturing more subtle and complex relationships among embeddings that remain beyond the reach of our current
methods.
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A Experimental Setups

Addition tasks For each type of addition task, we trained a linear model Flin and a Feedforward network Fffn. The
hidden size d = 200, and we employed the ReLU as the activation function. Each dataset contains 50000 data pairs.
The training is conducted for 1000 epochs with a batch size of 100. The AdamW optimizer is employed with an initial
learning rate of 10−5.

Language Models In the analysis of the LLMs, we employ the Qwen2.5 architecture with 12 layers and 12 attention
heads in each layer. We set up that the hidden size is 512, and the intermediate size in FFN is 1024. The dimension
of the key vectors and value vectors in each head is 64. Similarly, we initialize the parameter by Wi,j ∼ N

(
0, d−1

in

)
where din means the input dimension of W . We select five subsets of Pile, including Pile-arxiv, Pile-dm-mathematics,
Pile-cc, Pile-pubmed-central, and Pile-wikipedia-en. The length of each sequence is 2048. The training is conducted
for 1 epoch in each experiment, with the AdamW optimizer and a cosine learning rate schedule utilized. The initial
learning rate is 10−4.

B Addition Task

B.1 Probability Signatures in Addition Tasks

We provide a formulation of the following probability in the three addition tasks. We denote U (A) and U (Z) as
the discrete uniform distribution over A and Z , respectively. A and Z are the random variables following U (A) and
U (Z). For the task fadd, we have that

Pπ (y = ν | α ∈ X) = Pπ (A+ Z = ν − α) , Pπ (z ∈ X | α ∈ X) =
1

|Z|
,

Pπ (z ∈ X | α ∈ X, y = ν) = Pπ (A = ν − α− z) =
1

|A|
δν−α−z∈A,

Pπ (α
′ ∈ X | α ∈ X, y = ν) = Pπ (Z = ν − α− α′) =

1

|Z|
δν−α−α′∈Z ,

Pπ (z ∈ X | y = ν) = Pπ (A+A = ν − z) , Pπ (α ∈ X | y = ν) = Pπ (A+ Z = ν − α) ,

where α, α′ ∈ A, z ∈ Z .It’s noted that besides the co-occurrence probability Pπ (z ∈ X | α ∈ X), the value of other
ones is dependent on α or ν. Figure 7 (left) displays the distribution of these probabilities, which intuitively reveals
the cause of the hierarchy structure in the similarity matrix. Similarly, for f̃add, denote Y ∼ U (Y) and we have

Pπ (y = ν | α ∈ X) =
1

|Y|
, Pπ (z ∈ X | α ∈ X) = Pπ (Y −A = z + α) ,

Pπ (z ∈ X | α ∈ X, y = ν) = Pπ (A = ν − α− z) =
1

|A|
δν−α−z∈A,

Pπ (α
′ ∈ X | α ∈ X, y = ν) =

1

|Z|
,

Pπ (z ∈ X | y = ν) = Pπ (A+A = ν − z) , Pπ (α ∈ X | y = ν) = Pπ (A+ Z = ν − α) .

For fmod, we have

Pπ (y = ν | α ∈ X) =
1

|Z|
, Pπ (z ∈ X | α ∈ X) =

1

|Z|
,

Pπ (z ∈ X | α ∈ X, y = ν) =
1

|A|
δν−minZ−(α−z mod|Z|)∈(A mod|Z|),

Pπ (α
′ ∈ X | α ∈ X, y = ν) =

1

|Z|
,

Pπ (z ∈ X | y = ν) = Pπ ((A+A mod|Z|) = ν −minZ − (z mod|Z|)) ,
Pπ (α ∈ X | y = ν) = Pπ ((A+ Z mod|Z|) = ν −minZ − (α mod|Z|)) .

Figure 7 depicts all these probability distributions.
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Figure 7: Probability signatures in each task under distinct α and ν. In the distribution of ϕX|y
α , y = 150 is displayed

in fadd and y = 120 in f̃add and fmod, since 150 and 120 are the average label value in each task.
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B.2 Embedding matrix in Linear Model

Figure 8 depicts the PCA projection of the anchor embeddings in Flin, revealing that fadd and f̃add both establish an
ordered structure while the anchor embeddings in fmod are chaotic.

Figure 8: PCA projection of WE
A in Flin (epoch 120).

B.3 Umembedding matrix in Feedforward Network

Figure 9 displays the structure of the unembedding matrix in Fffn with the three types of addition tasks. The distribu-
tion of cos

(
WU

ν

)
(A) and the PCA projection (B) jointly reveal that the unembedding vectors of those label tokens

establish a hierarchy structure, which is consistent with their natural sequence.

Figure 9: A: The heatmap of the cos
(
WU

V
)

with label index in Fffn during the training process. B: PCA projection of
WU

V in Fffn (epoch 120).
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C Language Models

C.1 Technical Details

Remark about Figure 5 C In each subset Di, i = 1, 2, · · ·M , we define the set Si =
{
sij
}Ci

j=1
as the set of the Ci

tokens which appear most frequently in Di. Based on the dataset Di, and denote WEi as the embedding matrix of the
model corresponding to dataset Di, we compute that

cosDi

(
WE

sij
,WE

)
=
[
cos
(
WEi

sij
,WEi

s′

)]
s′∈Si

∈ RCi ,

and
cosDi

(
ϕnext

sij
,ϕnext

)
=
[
cos
(
ϕnext

sij
,ϕnext

s′

)]
s′∈Si

∈ RCi .

for any token sij ∈ Si. Then we define the correlation coefficient

RDi

(
sij
)
= Corr

(
cosDi

(
WE

sij
,WE

)
, cosDi

(
ϕnext

sij
,ϕnext

))
and the average embedding similarity as

MeanWE ,Di

(
sij
)
=

1

Ci
cosDi

(
WE

sij
,WE

)
· 1.

Then we concatenate the metrics with all token sij ∈ Si, j = 1, 2, · · · , Ci and all datasets Si, i = 1, 2, · · · ,M , i.e.

Corr
(
cos
(
WE

s ,WE
)
, cos

(
ϕnext

s ,ϕnext
))

=
[
RDi

(
sij
)]i=1,2,··· ,M

j=1,2,··· ,Ci
∈ R

∑M
i=1 Ci ,

Mean
(
cos
(
WE

s ,WE
))

=
[
MeanWE ,Di

(
sij
)]i=1,2,··· ,M

j=1,2,··· ,Ci
∈ R

∑M
i=1 Ci .

Figure 5 displays the relation between Corr
(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and Mean
(
cos
(
WE

s ,WE
))

, re-
vealing a positive correlation. In our work, M = 5, and we set up Ci = 10000 for each dataset.

Remark about Figure 5 D & E In each subset Di, i = 1, 2, · · ·M , we define the set Si =
{
sij
}Ci

j=1
as the set of the

Ci tokens which appear most frequently in Di. We compute that

cosDi

(
WE

)
=
[
cos
(
WEi

s ,WEi

s′

)]
s,s′∈Si

∈ RCi×Ci

and

cosDi

(
ϕnext

)
=
[
cos
(
ϕnext

s ,ϕnext
s′
)]

s,s′∈Si
∈ RCi×Ci .

Then translate the similarity matrix into a percentile formulation, i.e.

pcosDi
(WE) = Percentile

(
cosDi

(
WE

))
, pcosDi

(ϕnext) = Percentile
(
cosDi

(
ϕnext

))
and pcos(WE) =

[
pcosDi

(WE)

]
i=1,2,··· ,M

, pcos(ϕnext) =
[
pcosDi

(ϕnext)

]
i=1,2,··· ,M

. Figure 5 D and E reveal the

distribution and average value of pcos(ϕnext), where k × 10% ≤ pcos(WE) < (k + 1)× 10%, k = 0, 1, 2, · · · , 9.

Tied Embedding In the Qwen2.5-3B-base model, the embedding matrix and unembedding matrix are the same one,
which aims for computational source saving. Under this condition, we have that

dWE
s

dt
= rins WU,Tϕnext

s + routs WEφpre
s + η

= WE
(
rins ϕnext

s + routs φpre
s

)
+ η.

Since the next-token-prediction, each token will be an input and an output, except the last token in a sequence, resulting
in rins ≈ routs . Denote rs = rins and ϕ̃s = ϕnext

s +φpre
s , then we have

dWE
s

dt
= rsW

Eϕ̃s + η.
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C.2 Complete results

Figure 10 represents the cosine similarity distribution of WE ,ϕnext,WU and φpre in the other 4 subsets of Pile we
selected, exhibiting an analogous phenomenon with the observation in Figure 5. The distribution representations ϕnext

and φpre could effectively capture the high similarity among embedding vectors and unembedding vectors. Figure 11
displays the completed result of Figure 5 D.

Figure 10: Cosine similarity distribution of WE ,ϕnext,WU ,φpre in each experiment with distinct dataset. The
tokens displayed are those with the most appearances in the dataset.

Figure 11: Distribution of pcos(ϕnext), conditioned on intervals 0 ∼ 10%, 10 ∼ 20%, · · · , 90 ∼ 100% of the pcos(WE).
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C.3 Case Analysis

We provide a detailed case to explain the group of tokens exhibiting high embedding similarities. In experiments on the
Pile-dm-mathematics dataset, tokens such as “/a”, “/b”, “/c”, and “/d” often serve as denominators in mathematical
expressions. Figure 12 shows the cosine similarities of both their embedding vectors and distribution representations,
which are notably high for all tokens except “/e”, which does not appear in the dataset. These tokens share highly
similar semantics and also exhibit very similar next-token distributions, most frequently followed by “*” or “)”. This
similarity in next-token distribution leads to strong similarities in their embedding vectors. This example vividly
illustrates how data distribution shapes semantic structure within the embedding space, particularly in the case of
tokens with high semantic affinity.

Figure 12: A case analysis of the token group “/a”, “/b”, “/c”, etc. The first row depicts the cosine similarity of
their embeddings (left) and distribution representations (right). The second row exhibits the contexts containing these
tokens, which are highlighted by different colors.
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C.4 Results of LLama 2

To assess the generalizability of our analysis in Section 6 across different model architectures and tokenizers, we
replicate the experiment using the Llama 2 architecture. We employ the same dataset from Pile, and the training con-
figurations are the same as the experiments of Qwen2.5. As shown in Figure 13, the probability signatures effectively
capture structural relationships in the embedding space, especially in regions exhibiting high embedding similarity.
These results align closely with those in Figure 5, indicating that our analytical approach is robust to variations in
model architecture.

Figure 13: Results with Llama-2 architecture. A: Heatmap of the cosine similarity of WE ,WU ,ϕnext and
φpre. B: Rcos

(
WE ,ϕnext

)
(top) and Rcos

(
WU ,φpre

)
(bottom) with different datasets. C: Relation between

Corr
(
cos
(
WE

s ,WE
)
, cos (ϕnext

s ,ϕnext)
)

and the average value of cos
(
WE

s ,WE
)
. Each point denotes a token

s. D: Distribution of pcos(ϕnext), conditioned on intervals 0 ∼ 10%, 40 ∼ 50% and 90 ∼ 100% of the pcos(WE). E:
Average value of pcos(ϕnext) within each interval of pcos(WE).
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D Theoretical Details

D.1 Proof of Proposition 1

Lemma 1. Given a model F and data pair (X, y) ∈ N+,L × N+, ℓ = − log Softmax (F (X))y , we have that

∂ℓ

∂F (X)
= p− ey, (5)

where p = softmax (X) .

Proof. It’s noted ℓ = −F (X)y + log
∑dvob

j=1 expF (X)j , then we have

∂ℓ

∂F (X)i
= −δi=y +

expF (X)i∑dvob

j=1 expF (X)j
= pi − δi=y,

where δi=y = 1 if i = y else 0. This indicates that ∂ℓ
∂F (X) = p− ey .

With Lemma 1, we could obtain the derivative of ℓ with respect to WE
x for any x ∈ V as follows:

∂ℓi

∂WE
x

=
∂F
(
Xi
)

∂WE
x

∂ℓi

∂F (Xi)

=
(
WU,T

(
pi − eyi

))
⊙G(1)

(
WE

Xi

)
.

Then the gradient flow of vWE
x could be obtained by

dWE
x

dt
=− 1

N

N∑
i=1

∂ℓi

∂WE
x

=
1

N

N∑
i=1

(
WU,T

(
pi − eyi

))
⊙G(1)

(
WE

Xi

)
,

Since diag
(
G(1)

(
WE

Xi

))
= 0 if x /∈ Xi, we have that

dWE
x

dt
=

1

N

N in
x∑

i=1

(
WU,T

(
eyi

x
− pi

x

))
⊙G(1)

(
WE

Xi
x

)

=
rinx
N in

x

N in
x∑

i=1

(
WU,T

(
eyi

x
− pi

x

))
⊙G(1)

(
WE

Xi
x

)
.

Since that yix takes value ν ∈ V , we can rewrite this formation as

dWE
x

dt
=
∑
ν∈V

rx,ν
Nx,ν

(
WU,Teν

)
⊙

Nx,ν∑
i=1

G(1)
(
WE

Xi
(x,ν)

)
− rinx

N in
x

N in
x∑

i=1

G(1)
(
WE

Xi
x

)
⊙
(
WU,Tpi

x

)
.

D.2 Proof of Proposition 2

Similar with the analysis of WE
x , we derive the gradient flow of WU

ν as follows:

dWU
ν

dt
=− 1

N

N∑
i=1

∂ℓi

∂WU
ν

=
1

N

N∑
i=1

(
eyi,ν − pi,ν

) [
G
(
WE

Xi

)]T
.

Since eyi,ν = 1 if yi = ν else 0, we have that

dWU
ν

dt
=

routν

Nout
ν

Nout
ν∑

i=1

[
G
(
WE

Xi
(·,ν)

)]T
− 1

N

N∑
i=1

pi,ν
[
G
(
WE

Xi

)]T
.
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D.3 Proof of Corollary 1

With proposition 1, we have that

dWE
α

dt
= WU,T

∑
ν∈V

rα,νeν − rinα
N in

α

N in
x∑

i=1

pi
α


= WU,T rinα

∑
ν∈V

rα,ν
rinα

eν − 1

N in
α

N in
x∑

i=1

pi
α

 .

Utilizing that softmax (f) = 1
dvob

1+ 1
dvob

f +O
(
d−2
vobf

)
, we obtain that

dWE
α

dt
= WU,T rinα

∑
ν∈V

rα,ν
rinα

eν − 1

N in
α

N in
α∑

i=1

(
1

dvob
1− 1

dvob
WU

(
WE

zi +WE
αi

+WE
α

)
+O

(
d−2
vobW

UWE
α

))
= WU,T rinα

∑
ν∈V

rα,ν
rinα

eν − 1

dvob
1+

1

dvob
WU

 1

N in
α

N in
α∑

i=1

(
WE

zi +WE
αi

)
+WE

α

+O
(
d−2
vobW

UWE
α

)
= WU,T rinα

∑
ν∈V

rα,ν
rinα

eν − 1

dvob
1+

1

dvob
WU

 ∑
x∈(Z∩A)

N in
α,x

N in
α

WE
x +WE

α

+O
(
d−2
vobW

UWE
α

) .

Let N → ∞, we have that

dWE
α

dt
=WU,T rinα

(∑
ν∈V

Pπ (y = ν | α ∈ X)eν − 1

dvob
1

+
1

dvob
WU

 ∑
x∈(Z∩A)

Pπ (x ∈ X | α ∈ X)WE
x +WE

α

+O
(
d−2
vobW

UWE
α

)
=WU,T rinα

(
ϕy

α +
1

dvob
WUWEϕX

α

)
+ η,

where η = WU,T rinα

(
1

dvob

(
WUWE

α − 1
)
+O

(
d−2
vobW

UWE
α

))
contains the higher-order term and the data inde-

pendent term.

D.4 Proof of Corollary 2

Proof. Since the small initialization, we assume that the activation function can be approximated by the following
form with the Weierstrass approximation theorem.

σ

(∑
x∈X

WE
x

)
= C0 + C1

(∑
x∈X

WE
x

)
+ C2

(∑
x∈X

WE
x

)⊙2

+ ϵ.

With the loss of the generalization, we assume that C0 = 0, C1 = 1, C2 = 1
2 . Then we have

dWE
α

dt
=
∑
ν∈V

rα,ν
Nα,ν

(
WU,Teν

)
⊙

Nα,ν∑
i=1

1+
∑

x∈Xi
(α,ν)

WE
Xi

(α,ν)


︸ ︷︷ ︸

Jy

− rinα
N in

α

N in
α∑

i=1

1+
∑

x∈Xi
α

WE
Xi

α

⊙
(
WU,Tpi

α

)
︸ ︷︷ ︸

Jp

.
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For the term Jy we have

Jy = WU,T
∑
ν∈V

rα,νeν +
∑
ν∈V

rα,ν
(
WU,Teν

)
⊙

WE
α +

1

2Nα,ν

2Nα,ν∑
i=1

WE
xi
(α,ν)

 .

Let N → ∞, we have that

Jy = WU,T rinα ϕy
α ⊙

(
1+WE

α

)
+
∑
ν∈V

diag
(
WU

ν

)
rα,ν

∑
x′∈V

P (x′ ∈ X | α ∈ X, y = ν)WE
x′

= WU,T rinα ϕy
α ⊙

(
1+WE

α

)
+
∑
ν∈V

diag
(
rα,νW

U
ν

)
WE

(
ϕX|y,T

α

)T
ν

= WU,T rinα ϕy
α ⊙

(
1+WE

α

)
+ T ·

(
ϕX|y

α

)T
,

where T ∈ Rd×dvob×dvob , T:,:,ν = rα,νdiag
(
WU

ν

)
WE for ν ∈ V and 0 otherwise.

Similarly, for the term Jp, we have that

Jp =WU,T rinα

(
1

dvob
1− 1

dvob
WU

((
WE − diag

(
WU,T1

))
ϕX

α +WE
α

)
+ ϵ

)
,

where ϵ = O
(

1
d2
vob

WUWE
α

)
. Then we have that

dWE
α

dt
= T ·

(
ϕX|y

α

)T
+ ηϕy

α
+

1

dvob
ηϕX

α
,

where ηϕy
α
= WU,T rinα ϕy

α ⊙
(
1+WE

α

)
, ηϕX

α
= dvobJ

p.

D.5 Proof of Corollary 3

Proof. With Proposition 2, we have that

dWU
ν

dt
=

routν

Nout
ν

Nout
ν∑

i=1

 ∑
x∈Xi

(·,ν)

WE
x


T

− 1

N

N∑
i=1

pi,ν

(∑
x∈Xi

WE
x

)T

=Lroutν

∑
x∈V

Pπ (x ∈ X | y = ν)WE,T
x − L

∑
x∈V

Eπ [p
ν | x ∈ X]WE,T

x

=Lroutν

(
WEφX

ν

)T − η,

where η = L
(
WEEπ [p | x ∈ X]

)T
.

D.6 Proof of Corollary 4

Proof. The next-token-prediction training loss could be formulated as

ℓi =
1

L

L−1∑
t=1

CrossEntropy
(
Flan (X:t) ;eXt+1

)
.

So we have that

∂ℓi

∂WE
s

=
1

L

L−1∑
t=1

WU,T
(
pi
t − eXi

t+1

)
⊙
(
δXi

t=s1+ F̃ (1)
(
Xi

:t

))
.
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Furthermore, we have that

dWE
s

dt
=

1

NL

N∑
i=1

L−1∑
t=1

WU,T
(
eXi

t+1
− pi

t

)
⊙
(
δXi

t=s1+ F̃ (1)
(
Xi

:t

))
=

1

NL
WU,T

N∑
i=1

L−1∑
t=1

δXi
t=seXi

t+1
+

1

NL
WU,T

N∑
i=1

L−1∑
t=1

eXi
t+1

⊙ F̃ (1)
(
Xi

:t

)
− 1

NL

N∑
i=1

L−1∑
t=1

WU,Tpi
t ⊙
(
δXi

t=s1+ F̃ (1)
(
Xi

:t

))
.

Since the small initialization, assuming that ||W ||∞ = O (d−γ) for any trainable parameter matrix W , we have that
||F̃ (1)

(
Xi

:t

)
||∞ = O

(
d1−2γ

)
in the initial stage. Let N → ∞, we have that

dWE
s

dt
= rins WU,T

(
ϕnext

s − ηE
)
,

where ηE =
∑L−1

t=1 Eπ [p | Xt = s] +O
(
d1−2γϕnext

s

)
. Similarly, we have that

dWU
s

dt
=

1

NL

N∑
i=1

L−1∑
t=1

(
δXi

t+1=s − pi,s
Xi

:t

)(
WE,T

Xi
t

+ F̃
(
Xi

:t

)T)
,

where pi,s
Xi

:t
means the s-th element of the output probability with input sequence Xi

:t. Let N → ∞, we have

dWU
s

dt
= routs

(
WEφpre

s

)T
+ ηU ,

where ηU =
∑L−1

t=1 Eπ

[
ps
X:t

WE,T
Xt

]
+O

(
routs d1−2γ

(
WEφpre

s

)T)
.
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