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Abstract

While deep learning algorithms demonstrate a great potential in scientific computing, its application to
multi-scale problems remains to be a big challenge. This is manifested by the “frequency principle” that
neural networks tend to learn low frequency components first. Novel architectures such as multi-scale deep
neural network (MscaleDNN) were proposed to alleviate this problem to some extent. In this paper, we con-
struct a subspace decomposition based DNN (dubbed SD2NN) architecture for a class of multi-scale problems
by combining traditional numerical analysis ideas and MscaleDNN algorithms. The proposed architecture
includes one low frequency normal DNN submodule, and one (or a few) high frequency MscaleDNN submod-
ule(s), which are designed to capture the smooth part and the oscillatory part of the multi-scale solutions,
respectively. In addition, a novel trigonometric activation function is incorporated in the SD2NN model. We
demonstrate the performance of the SD2NN architecture through several benchmark multi-scale problems
in regular or irregular geometric domains. Numerical results show that the SD2NN model is superior to
existing models such as MscaleDNN.
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1. Introduction

Machine learning algorithms, especially deep neural networks (DNNs), have not only achieved great
success in traditional artificial intelligence tasks such as image recognition, natural language processing,
and recommendation systems [1, 2], but also attracted more and more attention in the field of scientific
computation including the numerical solution of ordinary/partial differential equations, integral-differential
equations and dynamical systems [3–8], with the fast development of novel computing devices, as well as
the rapidly increasing volume and complexity of data. In this paper, we will introduce a new DNN-based
algorithm to solve the following multi-scale equation,

{
Lu(x) = f(x), x ∈ Ω,
Bu(x) = g(x), x ∈ ∂Ω,

(1.1)

where Ω is a bounded subset of R
d with piecewise Lipschitz boundary which satisfies the interior cone

condition. L is a linear or non-linear elliptic type differential operator on Ω which contains possibly non-
separable multiple scales, and B is a boundary operator on ∂Ω. We assume that L is uniformly strongly
elliptic such that

∫

Ω
v′Lv ≥ c‖v‖V for some admissible space V , with a constant c > 0.
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The multi-scale equation (1.1) has many physical and engineering applications, such as heat conduction
in composite materials, reservoir modeling in porous media, convection dominated flows and the Poisson-
Boltzmann model for dielectric systems [9–12], There has been amount of work concerning the design of
multi-scale numerical methods to achieve the optimal balance of accuracy and complexity, such as homog-
enization [13, 14], heterogeneous multi-scale methods (HMM) [15, 16], multi-scale network approximations
[17], multi-scale finite element methods (MsFEM)[18], variational multi-scale methods (VMS) [19, 20], flux
norm homogenization [21, 22], rough polyharmonic splines (RPS) [23, 24], generalized multi-scale finite el-
ement methods (GMsFEM) [25, 26], localized orthogonal decomposition (LOD) [27, 28], etc. A common
theme of the multi-scale methods is to construct coarse approximation spaces with optimal error control
through the identification of low dimensional structures in the high dimensional multi-scale solution space.
The solution space can be decomposed into a direct sum of a coarse space (with “smooth” components)
and (possibly a few) fine spaces (with “oscillatory” components), which is a natural extension of the Fourier
decomposition. The idea of subspace decomposition has been widely used in numerical analysis and multi-
scale modeling [19, 27, 29, 30], furthermore, it has surprisingly deep connections with Bayesian inference,
kernel learning and probabilistic numerics [31–34].

Comparing with conventional numerical algorithms, DNN approximation can overcome the curse of
dimensionality, therefore it is ideal for high dimensional PDEs. On the other hand, it can be used as a
meshless method which is suitable for PDEs in complex domains. Various DNN based algorithms have been
proposed in [4, 6, 35, 36] to solve PDEs. Despite the above mentioned progress, the frequency principle
(F-Principle) [37–40] shows that general DNN-based algorithms often encounter a “curse of high-frequency”
as they are inefficient to learn high-frequency information of multiscale functions. A series of subsequent
theoretical investigations further confirm such empirical observation [38, 41–47]. The study of the F-Principle
has also been utilized to understand various phenomena emerging in applications of deep learning [48–52].
Inspired by the F-Principle, a series of algorithms are developed to solve multi-scale PDEs and to overcome
the high-frequency curse of general DNNs [53–58]. For example, in MscaleDNN, high frequency components
are shifted into low frequency ones by radial scaling such that they can be learnt more efficiently. In addition,
some smooth and localized activation functions were proposed for MscaleDNN algorithm [56, 57].

In this paper, motivated by the subspace decomposition technique in numerical analysis, and the
MscaleDNN framework [56, 57], we propose a subspace-decomposition based DNN (called SD2NN) architec-
ture to solve the multi-scale equation (1.1). The SD2NN framework consists of two parts: one low-frequency
or normal DNN submodule and one (or a few) MscaleDNN submodule(s), to capture the low-frequency and
high-frequency components of the multi-scale solution, respectively. We enforce the orthogonality between
subspaces in the SD2NN architecture to enforce the stability of the decomposition, by adding a penalty term
to the loss function. Such a framework enables simultaneous fast learning of both the smooth part and the
oscillatory part of multiscale functions/solutions, thus avoids the curse of frequency. We also improve the
activation function by adding a relaxation factor and using trigonometric functions [53, 59], which will be
elaborated in the later sections.

The paper is organized as follows. In Section 2, we briefly introduce the subspace decomposition based
DNN framework to approximate multi-scale functions. In Section 3, we use the SD2NN framework to
solve multi-scale problems in the variational formulation, and discuss various options to choose activation
functions. Benchmark numerical experiments are carried out in Section 4 to evaluate the performance of
SD2NN. We conclude the paper in Section 5.

2. Formulation of the Subspace Decomposition based DNN

2.1. Multi-scale DNN (MscaleDNN)

We briefly review the formulation of MscaleDNN introduced in [56, 57], for convenience of readers. A
deep neural network defines a function mapping: x ∈ R

d → yθ(x) ∈ R, where d is the dimension of input. In
particular, the DNN function is a nested composition of linear functions and nonlinear activation functions,
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which is of the form
{

y
[0]
θ

= x

y
[ℓ]
θ

= σ ◦ (W [ℓ]y
[ℓ−1]
θ

+ b[ℓ]), for ℓ = 1, 2, 3, · · · · · · , L
(2.1)

where W [ℓ] ∈ R
mℓ+1×mℓ , b[ℓ] ∈ R

mℓ+1 are the weight matrix and bias vector of the ℓ-th hidden layer,
respectively, m0 = d and mL+1 is the dimension of the output, “◦” stands for the elementary-wise operation.
σ(·) is an element-wise activation function. We also denote the output of DNNs by y(x; θ) with θ standing
for the parameter set

(
W [1], · · ·W [L], b[1], · · · b[L]

)
.

A normal DNN is usually inadequate to solve multi-scale PDEs as it tends to stagnate on low frequency
components. The MscaleDNN architecture was proposed [56, 57] based on the frequency principle to alleviate
this problem. It is illustrated in Figure 1 and described in the following: We first divide the neurons in the
first hidden-layer into Q parts, and construct the following vector

Λ = (

N1

︷ ︸︸ ︷
a1, · · · , a1,

N2

︷ ︸︸ ︷
a2, · · · , a2, · · · ,

NQ

︷ ︸︸ ︷
aQ, · · · , aQ)

T (2.2)

where {aq}
Q
q=1 are positive scale-factors (usually in ascending order), and {Nq}

Q
q=1 are the number of the

duplicated q-th scale-factor. The input data x is scaled by Λ such that x̃ = Λ⊙ (W 1x+ b1), then x̃ is fed
into the subsequent module of MscaleDNN, here and hereinafter ⊙ stands for the element-wise product.

x
input

a
Q
x

· · ·

· · ·
a2
x

a 1
x

DNN

y(x; θ)

Figure 1: A schematic diagram for MScaleDNN with Ni = 1, i = 1, · · · , Q.

From the viewpoint of function approximation, the first layer of the MscaleDNN model can be regarded
as a series of basis functions with various scales and the output of MscaleDNN is the (nonlinear) combination
of those basis functions [53, 56, 57].

We use the residual neural network (ResNet) [60] to overcome the vanishing gradient phenomenon in
backpropagation by introducing skip connections between nonadjacent layers. For example, the ResNet unit
with one-step connection produces a filtered version y[ℓ+1](x; θ) for the input y[ℓ](x; θ) is as follows

y[ℓ+1](x; θ) = y[ℓ](x; θ) + σ ◦

(

W [ℓ+1]y[ℓ](x; θ) + b[ℓ+1]

)

.

ResNet can accelerate the training process and improve the performance of DNNs. For scientific computation
tasks, it can help improve the capability of DNNs to approximate high-order derivatives and solutions of
PDEs [61, 62].
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2.2. Subspace decomposition

It is natural to decompose multi-scale solutions into smooth components and oscillatory components. For
example, in periodic homogenization with L = −∇·a(x/ǫ)∇, the solution uǫ of Luǫ = f can be approximated
by u0+ǫu1, such that u0 is the solution of the homogenized equation L0u0 = f , where L0 = −∇·A∇ with A
being the homogenized coefficient. u0 is much smoother than uǫ, and u1 = ǫ

∑d
i=1 χi(x/ǫ)

∂u0

∂xi
characterizes

the oscillations. χi is the so-called corrector of the homogenization problem or solution of the cell problem
[14, 63], such that

{
−∇y · a(y)(∇yξi(y) + ei) = 0,

ξi periodic in Y.
(2.3)

where y = x/ǫ, and Y is the unit periodic cell.
In many numerical homogenization type multi-scale methods such as VMS, RPS and LOD methods [19,

20, 23, 24, 27, 28, 64], a coarse solution is computed in a low dimensional approximation space Vc with quasi-
optimal approximation, stability and localization properties. The bases in Vc contain fine scale information,
and they can be pre-computed in localized subdomains in parallel. For some multi-scale problems, numerical
homogenization methods can be proved to achieve guaranteed quantitative error estimate with respect to
coarse resolutions. Furthermore, multi-scale methods can be considered as two level numerical methods,
and can be generalized as multilevel subspace decomposition to construct multigrid type preconditioners for
the efficient resolution of fine scale problem, see [30, 65].

3. SD2NN model to multi-scale problems and the options for activation function

3.1. Unified SD2NN architecture to solve multi-scale problems

We introduce subspace-decomposed DNN (called SD2NN) architecture in the following. For simplicity,
we employ the deep Ritz method [61] for the solution of multi-scale PDEs (1.1). Other architectures such
as PINN [66], deep Galerkin [35] etc. can be adapted.

Continuous variational formulation. The solution of (1.1) can be obtained by minimizing the following
Dirichlet energy

J (v) =
1

2

∫

Ω

v′Lvdx−

∫

Ω

fvdx, (3.1)

where v = v(x) ∈ V is a trial function, where V is the admissible function space for v. We are looking for
the solution

u = argmin
v∈V

J (v).

Suppose that the solution u has the following coarse/fine decomposition, u = uc+uf , in which uc contains
the coarse shape and uf contains the fine details of the multi-scale solution u, respectively. Formally, (3.1)
can be rewritten as

J (vc, vf ) =
1

2

∫

Ω

(vc + vf )
′L(vc + vf )dx−

∫

Ω

f(vc + vf )dx. (3.2)

To ensure the well-posedness of the variational problem with respect to vc and vf , we need to define the
respective subspaces Vc and Vf , in where vc and vf ”live”, which will be specified in the particular examples.
The coarse part vc can be represented by a low-frequency or a normal DNN y1(·, θ1), and the fine-part (or
high-frequency part) uf can be represented by a multi-scale DNN y2(·, θ2). Here, θ1 ∈ Θ1 and θ2 ∈ Θ2

denote the parameters of the underlying DNNs. In this case, we have

Vc =

{

y1(x; θ1)

∣
∣
∣
∣
y1(x; θ1) = g,x ∈ ∂Ω; θ1 ∈ Θ1

}

,

Vf =

{

y2(x; θ2)

∣
∣
∣
∣
y2(x; θ2) = 0,x ∈ ∂Ω; θ2 ∈ Θ2

}

.
(3.3)
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Remark. Here we present the SD2NN model as a two level model, and it can be easily generalized to
a multilevel model by adding more MscaleDNN submodules with appropriate frequency factors. We will
illustrate this point through Example 2 in the numerics section.

We further introduce a hyper-parameter α > 0 to control the contribution of fine-part, i.e., y(x; θ1, θ2) =
y1(x; θ1) + αy2(x; θ2). Let

Jα

(

y1(x; θ1), y2(x; θ2)

)

=
1

2

∫

Ω

(

y1(x; θ1) + αy2(x; θ2)

)′

L

(

y1(x; θ1) + αy2(x; θ2)

)

dx

−

∫

Ω

f

(

y1(x; θ1) + αy2(x; θ2)

)

dx,

(3.4)

we then obtain the following variational problem

uc, uf = argmin
y1(x,θ1)∈Vc,y2(x,θ2)∈Vf

Jα

(

y1(x; θ1), y2(x; θ2)

)

Discrete Variational Formulation. The integral in (3.4) can be discretized by Monte Carlo method [67],
namely, we define

LJα
(SI ; θ1, θ2) =

1

nin

nin∑

i=1

[

1

2

(

y1(x
i
I ; θ1)+αy2(x

i
I ; θ2)

)′

L

(

y1(x
i
I ; θ1)+αy2(x

i
I ; θ2)

)

−f

(

y1(x
i
I ; θ1)+αy2(x

i
I ; θ2)

)]

,

here and hereinafter SI stands for the sampling points with uniform distribution in Ω, and

θ∗
1 , θ

∗
2 = argmin

θ1∈Θ1,θ2∈Θ2

LJα
(SI ; θ1, θ2),

such that uc = y1(x; θ
∗
1), uf = αy2(x; θ

∗
2).

Orthogonality constraints. In order to separate the coarse-part and fine-part of solution, we add the L2

orthogonality constraint
∫

Ω y1(x; θ) · αy2(x; θ)dx = 0 as a penalty term to the loss function, namely, let

Lorth(SI ; θ1, θ2) =

∣
∣
∣
∣

1

nin

nin∑

i=1

y1(x
i
I ; θ1) · αy2(x

i
I ; θ2)

∣
∣
∣
∣

2

,xi
I ∈ SI . (3.5)

Boundary condition. Boundary conditions are important constraints for numerical solution of PDEs. Ac-
cording to the definition of coarse and fine spaces (3.3), we have the following penalties for the coarse part
y1
(
x; θ1

)
and the fine-part y2

(
x; θ2

)
,

Lbdc(SB; θ1) =
1

nbd

nbd∑

j=1

[

By1
(
x
j
B; θ1

)
− g(xj

B)

]2

for x
j
B ∈ SB, (3.6)

and

Lbdf(SB; θ2) =
1

nbd

nbd∑

=1

[

Bαy2
(
x
j
B; θ2

)
− 0

]2

for x
j
B ∈ SB. (3.7)

For comparison, we also introduce the penalty for the ”unified” boundary condition of y
(
x; θ1, θ2

)
=

y1(x; θ1) + αy2(x; θ2), i.e.,

Lbdu(SB ; θ1) =
1

nbd

nbd∑

j=1

[

By
(
x
j
B; θ1, θ2

)
− g(xj

B)

]2

for x
j
B ∈ SB, (3.8)
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with SB standing for the collection of sampling points with uniform distribution on ∂Ω.
We conclude with the following loss function:

Lα(SI , SB; θ1, θ2) = LJα
(SI ; θ1, θ2)

︸ ︷︷ ︸

loss in

+ γ

(

Lbdc(SB; θ1) + Lbdf (SB; θ2)

)

︸ ︷︷ ︸

loss bd

+ βLorth(SI ; θ1, θ2)
︸ ︷︷ ︸

loss orth

(3.9)

with SI = {xi
I}

nit

i=1 and SB = {xj
B}

nbd

j=1 being the sets of uniformly distributed sample points on Ω and ∂Ω,
respectively. The first term loss in minimizes the residual of the PDE, the second term loss bd enforces the
given boundary condition, and the third term loss dot imposes the orthogonality constraint. In addition,
we introduce two penalty parameter γ and β to control the contribution of loss bd and loss orth for loss
function, in which γ is increasing gradually during the training process [68] and β is a fixed constant.

Our goal is to find two sets of parameter θ1, θ2 which minimize the loss function Lα(SI , SB; θ1, θ2), i.e.,

θ∗
1 , θ

∗
2 = argminLα(SI , SB; θ1, θ2) =⇒ uc(x), uf (x) = y1(x; θ

∗
1), αy2(x; θ

∗
2).

If Lα(SI , SB; θ1, θ2) is small enough, then y(x; θ1, θ2) will be very close to the solution of (1.1). The
parameter θ1 and θ2 can be computed by stochastic gradient descent method with a pre-defined learning
rate schedule. We use the Xavier initialization for the weights and biases [69, 70]. In other word, the weights

and biases are sampled from normal distribution D = N
(

0, 2
min+mout

)

, where min and mout are the input

and output dimensions of the corresponding layer, respectively.

3.2. Options for activation function

The choice of activation functions is crucial for the performance of DNN based algorithms. Two localized
activation functions, namely, sReLU(x) = ReLU(x) ∗ReLU(1−x) and s2ReLU(x) = sin(2πx) ∗ReLU(x) ∗
ReLU(1− x) were proposed for MscaleDNN in [56, 57]. Heuristic analysis and numerical results show that
the latter one is smoother and more robust. However, these two activation functions are supported in range
[0, 1], therefore the output will become zero if the input is outside the interval [0, 1]. This will affect the
performance of MscaleDNN in the training process.

In this work, we propose the following soften Fourier mapping (SFM ) activation function inspired by
the trigonometric activation function proposed in [53, 54, 59], namely,

σ(z) = s×

[
cos(z)
sin(z)

]

,

where the relaxation parameter s ∈ (0, 1] is used to control the range of output. Empirically, we find that
s = 0.5 is a good choice, see Fig. 2. With the SFM activation function, the MscaleDNN can be regard
as a pipeline of Fourier-like transform. The first hidden layer of the MscaleDNN architecture mimic the
Fourier expansion, and the remaining structure learns the approximate Fourier coefficients, which are often
relatively less oscillate with respect to the input. In this sense, the learning can be effectively accelerated.

The above mentioned activation functions are illustrated in Fig. 3.
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Figure 2: sReLU and s2ReLU functions (left), SFM functions with s = 0.5 (right).

We conclude the section with the schematic of the SD2NN architecture in Figure 3. The output of
SD2NN is obtained by a linear layer with no activation function.

xI

xB

x

∫

∫

...

∫

∫

∫

∫

...

∫

∫

Low-freqency or normal NN

∫

∫

...

∫

∫

y1(x; θ1) ∇y1(x; θ1)

f(x) LJα

(

y1(x; θ1), y2(x; θ2)

)

|y1(x;θ1)− g(x)|2

s · sin(W
[1]
1 x̃)

s · cos(W
[1]
1 x̃)

...

s · sin(W
[1]
Q x̃)

s · cos(W
[1]
Q x̃)

x̃ =
a
1x

x̃
=

a
Q
x

∫

∫

...

∫

∫

High-freqency NN

∫

∫

...

∫

∫

y2(x; θ2) ∇y2(x; θ2)

|αy2(x;θ2)− 0|2

loss

θ∗
1 , θ

∗
2

m
in
im

ize

α2
∣

∣y1(x;θ1) · y2(x;θ2)
∣

∣

2

Figure 3: Schematic of SD2NN for solving multi-scale problems

4. Numerical experiments

In this section, we test the performance of SD2NN method for multi-scale problems with highly oscillatory
coefficients and Poisson-Boltzmann equation in perforated domains. We demonstrate that the SD2NN
method can efficiently and simultaneously solve the coarse part and the fine part of the multi-scale solution.
We also investigated the effects of different activation functions (for example, SFM and s2ReLU). We show
that SD2NN has better performance compared with existing methods such as MscaleDNN in [53, 57].

4.1. Model and training setup

4.1.1. Model setup

The details of all the models in the numerical experiments are elaborated in the following.
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• SD2NN1 : We use a normal fully-connected DNN as the coarse submodule and a high-frequency
MscaleDNN as the fine submodule. The first layer of the fine submodule has scaling factors Λ =
(21, 22, 23, · · · , 120) with Q = 100, as in (2.2). The activation function for each hidden layer in the
normal DNN is chosen as tanh(x), the activation functions for the first hidden layer and the subsequent
layers of MscaleDNN are chosen as SFM with s = 0.5 and s2ReLU, respectively.

• SD2NN2 : We use a low-frequencyMscaleDNN as the coarse submodule and a high-frequency MscaleDNN
as the fine submodule. The first layers of coarse submodule and fine submodule have scaling factors
Λc = (0.5, 1, 1.5, 2, · · · , 19.5, 20) with Q = 40, and Λf = (21, 22, 23, · · · , 120) with Q = 100, respec-
tively. The activation function for their first hidden layers are all chosen as SFM with s = 1.0 and
s = 0.5(denoted as SFM(1.0) and SFM(0.5)), but the activation functions for their subsequent layers
are chosen as tanh(x) and s2ReLU, respectively.

• SD2NN3 : The activation functions and scaling factors are same as SD2NN2. But we take away the
orthogonality penalty term (3.9) from the loss function, and the boundary condition is the unified one
in (3.8).

• Mscale: A MscaleDNN model [57] with s2ReLU activation function for all layers. The neurons of the
first layer are divided into Q = 120 groups with scaling factors Λ = (1, 2, 3, · · · , 119, 120) in (2.2).

• WWP : A MscaleDNN model [53] with hybrid activation function including SFM with s = 1.0 (denoted
as SFM(1.0)) and tanh(x). The scaling factors of the first layer are divided as four subgroups. Each
subgroup has 30 samples from Gaussian distribution N (0; τ2i ) with τ1 = 1, τ1 = 20, τ1 = 50 and
τ4 = 100. This model is proposed by Wang, Wang, and Perdikaris in [53], and we denote it as WWP.

Table 1: Comparisons for the above models

Model Submodules Activation Scale factor Boundary Orthogonality

SD2NN1
Normal tanh —– individual boundary

Yes
MscaleDNN SFM(0.5)+s2ReLU (21, 22, 23, · · · , 120) (3.6) and (3.7)

SD2NN2
MscaleDNN SFM(1.0)+tanh (0.5, 1, 1.5, 2, · · · , 19.5, 20) individual boundary

Yes
MscaleDNN SFM(0.5)+s2ReLU (21, 22, 23, · · · , 120) (3.6) and (3.7)

SD2NN3
MscaleDNN SFM(1.0)+tanh (0.5, 1, 1.5, 2, · · · , 19.5, 20)

unified boundary (3.8) No
MscaleDNN SFM(0.5)+s2ReLU (21, 22, 23, · · · , 120)

Mscale —– s2ReLU (1, 2, 3, · · · , 119, 120) unified boundary (3.8) —–

WWP —– SFM(1.0)+tanh
Λ = [Λ1; Λ2; Λ3; Λ4] with
Λi ∼ N (0, τi), τ1 = 1,

τ2 = 20, τ3 = 50, τ4 = 100
unified boundary (3.8) —–

4.1.2. Training setup

We use the relative square error to evaluate the accuracy of different models:

REL =
N ′

∑

i=1

|ũ(xi)− u∗(xi)|2

|u∗(xi)|2

where ũ(xi) and u∗(xi) are the approximate DNN solution and the exact solution, respectively, {xi}N
′

i=1 are
testing points, and N ′ is the number of testing points.

In our numerical experiments, all training and testing data are sampled uniformly in Ω (or ∂Ω), and
all networks are trained by Adam optimizer. The initial learning rate is set as 2 × 10−4 with a decay rate
5 × 10−5 for each training epoch. For visualization of the training process, we test our model every 1000
epochs in the training process. The penalty parameter β for the orthogonality constraint (3.5) is set as 20,
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γ for the boundary constraint (3.6) and (3.7) is set as

γ =







γ0, if iepoch < 0.1Tmax

10γ0, if 0.1Tmax <= iepoch < 0.2Tmax

50γ0, if 0.2Tmax <= iepoch < 0.25Tmax

100γ0, if 0.25Tmax <= iepoch < 0.5Tmax

200γ0, if 0.5Tmax <= iepoch < 0.75Tmax

500γ0, otherwise

(4.1)

where γ0 = 100 in all our tests and Tmax represents the total epoch number. We implement our code in
TensorFlow (version 1.14.0) on a work station (256-GB RAM, single NVIDIA GeForce GTX 2080Ti 12-GB).

4.2. Numerical examples and results

In this section, we test the SD2NN models for multi-scale diffusion and Poisson-Boltzmann equations.

Example 1 (1D multi-scale elliptic problem). We use this problem to benchmark our models. Let us
consider the following multi-scale elliptic equation in domain Ω = [a, b]d







−div

(

A(x)|∇u(x)|p−2∇u(x)

)

= f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(4.2)

which has the following Dirichlet energy

J (v) =
1

p

∫

Ω

A|∇v|pdx−

∫

Ω

fvdx. (4.3)

Linear Case:
We first consider the linear case p = 2 with Ω = [0, 1] and boundary condition u(0) = u(1) = 0,

A(x) =
(

2 + cos
(

2π
x

ǫ

))−1

(4.4)

with a small parameter ǫ > 0 such that ǫ−1 ∈ N
+, the unique solution is given by

u(x) = x− x2 + ǫ

(
1

4π
sin

(

2π
x

ǫ

)

−
1

2π
x sin

(

2π
x

ǫ

)

−
ǫ

4π2
cos

(

2π
x

ǫ

)

+
ǫ

4π2

)

. (4.5)

for f(x) = 1.

We use MscaleDNNs and SD2NNs with aforementioned setups to solve (4.2) when ǫ = 0.1 and ǫ = 0.01,
respectively. For comparison, a normal DNN model with tanh activation function (denoted by DNN) is also
employed to solve this multi-scale problem. In SD2NN models, the balance parameter α for fine-part is set
as 0.01. The number of parameters are comparable for different models (see Table 4 in Appendix A). At
each training step, we randomly sample 3000 interior points and 500 boundary points to evaluate the loss
function. All models are trained for 60000 epochs. In the testing step, we uniformly sample 1000 points in
[0, 1]. We show the testing results for ǫ = 0.1 and ǫ = 0.01 in Figures 4 and 5, respectively.

Table 2: The relative error of different models for Example 1when α = 0.01.

DNN Mscale WWP SD2NN1 SD2NN2 SD2NN3
ǫ = 0.1 2.40e-2 3.42e-6 3.84e-6 1.36e-5 6.22e-7 7.81e-7
ǫ = 0.01 2.05e-2 6.95e-3 1.94e-2 2.80e-4 7.69e-7 3.30e-5
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Figure 4: Testing results with ǫ = 0.1 for Example 1.

0 0.2 0.4 0.6 0.8 1
x

-10

-5

0

5
×10-3

DNN Mscale WWP

SD2NN1 SD2NN2 SD2NN3

(a) difference of exact and DNN solu-
tions

0 10 20 30 40 50 60
epoch/1000

10-2

100

102

DNN Mscale WWP

(b) relative error of DNN, Mscale and
WWP

0 10 20 30 40 50 60
epoch/1000

10-6

10-4

10-2

100

WWP SD2NN1

SD2NN2 SD2NN3

(c) relative error of WWP and SD2NNs

0 0.2 0.4 0.6 0.8 1
x

-0.01

0

0.01

0.02

0.03

SD2NN1 SD2NN2 SD2NN3

(d) difference of coarse solutions

0 0.2 0.4 0.6 0.8 1
x

-0.03

-0.02

-0.01

0

0.01

SD2NN1 SD2NN2 SD2NN3

(e) difference of fine solutions

Figure 5: Testing results when ǫ = 0.01 for Example 1.

From Figures 4(a) and 5(a), we observe that all three SD2NN models capture the exact solutions with
ǫ = 0.1 and ǫ = 0.01 pretty well. By comparison, the performances of Mscale and WWP are okay for the
case ǫ = 0.1, but deteriorate for the more oscillatory case ǫ = 0.01. The normal DNN model fails in both
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cases. Figures 4(b), 4(c), 5(b) and 5(c) and the relative errors in Table 2 further demonstrate that SD2NN2
is the best method. For the ǫ = 0.01 case, the error of SD2NN2 is smaller than other methods by at least
two orders of magnitude.

We choose the coarse part of the exact solution u(x) as uc(x) := x − x2, and the fine part uf (x) as
the remainder. Though it is not unique to choose the fine (and coarse) parts, they are “equivalent” if the
difference is smooth. We draw the differences of coarse solutions of SD2NN1, SD2NN2 and SD2NN3 with
uc(x) in Figures 4(d) and 5(d), and the differences of fine solutions with uf (x) in Figures 4(e) and 5(e). The
differences are smooth, which shows that SD2NN models can capture the correct coarse and fine components
of the solution.

Influence of hyper-parameter α: we study the influence of α for SD2NN model. In the test, we set
α = 0.05, ǫ = 0.01, keep all other parameters fixed, then train all models for 60000 epochs. Based on the
results in Figure 6, we observe that SD2NN2 is more stable and accurate compared to all other models.
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Figure 6: Testing results when ǫ = 0.01 for Example 1.

Influence of relaxation-parameter s: we study the influence of relaxation-parameter s for activation
function SFM in SD2NN model, especially for SD2NN2. Here, we list the setup of SD2NN2 in Table 1, as
well as two alternative setups:

• SD2NN2 : SFM(1.0)+tanh for coarse submodule and SFM(0.5)+S2ReLU for fine submodule;

• SD2NN2 (a): SFM(0.5)+tanh for coarse submodule and SFM(0.5)+S2ReLU for fine submodule;

• SD2NN2 (b): SFM(1.0)+tanh for coarse submodule and SFM(1.0)+S2ReLU for fine submodule.

we set α = 0.05, ǫ = 0.01, and train both models for 60000 epochs. From the results in Figure 7, it seems
for the fine submodule of SD2NN2, a relaxed parameter s = 0.5 offers better performance.

Nonlinear Case:
We further consider the nonlinear case with p = 8 for (4.2) with Ω = [0, 1] and A(x) =

(
2 + cos

(
2π x

ǫ

))−1
.

By choosing appropriate f(x), the (unique) solution is given by

u(x) = x− x2 + ǫ

(
1

4π
sin

(

2π
x

ǫ

)

−
1

2π
x sin

(

2π
x

ǫ

)

−
ǫ

4π2
cos

(

2π
x

ǫ

)

+
ǫ

4π2

)

. (4.6)

with uǫ(0) = uǫ(1) = 0.
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Figure 7: Relative error for SD2NN2 when ǫ = 0.01 for Example 1.
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Figure 8: Testing results for ǫ = 0.01 and p = 8.

We employ Mscale, WWP and SD2NN2 models to solve (4.2). Based on the results in Figure 8, the
SD2NN2 model still outperform Mscale, WWP, SD2NN1 and SD2NN3 (fails to converge) for nonlinear
multi-scale problem. In addition, the differences of coarse and fine solutions in Figures 8(c) and 8(d) show
that the submodules of SD2NN2 also can well capture the coarse and fine parts of the multi-scale solution.
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Example 2 (Three-scale problem). We solve the problem (4.2) with the following three-scale coefficient

A(x) =

(

2 + cos

(

2π
x

ǫ1

))(

2 + cos

(

2π
x

ǫ2

))

(4.7)

with two small parameter 1 ≫ ǫ1 ≫ ǫ2 > 0, also for p = 2 and Ω = [0, 1]. We impose the exact solution

u(x) = x− x2 +
ǫ1
4π

sin

(

2π
x

ǫ1

)

+
ǫ2
4π

sin

(

2π
x

ǫ2

)

. (4.8)

with u(0) = u(1) = 0, such that f(x) can be obtained by direct computation.

We employ the aforementioned Mscale, WWP, SD2NN1, SD2NN2 and SD2NN3 to solve (4.2) with (4.7)
with ǫ1 = 0.1 and ǫ2 = 0.01. We use 2 MscaleDNN submodules in the SD2NN models, and the balance
parameters α1 = 0.1 and α2 = 0.01 for the mesoscale submodule and the fine submodule, respectively. Table
5 in Appendix A shows that the number of parameters for different models are comparable. All models are
trained for 60000 epochs. For each training step, we randomly sample 3000 interior points and 500 boundary
points as the training data, and uniformly sample 1000 points in [0,1] as the testing data.
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Figure 9: Numerical results for Example 2
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Table 3: The relative error of different models for Example 2

Mscale WWP SD2NN1 SD2NN2 SD2NN3
2.70e-3 1.53e-3 1.25e-3 6.75e-5 1.55e-4

In Figure 9(a), we draw the difference of the approximate solution and the numerical solution, together
with the relative errors from Table 3, it shows that SD2NN2 is the best method. In Figures 9(b) – 9(d)
we compare the coarse, mesoscale, fine scale parts of the SD2NN2 solution with the exact solution, in the
frequency domain. We demonstrate that three submodules of the SD2NN2 model can correctly capture the
corresponding components of the solution as they are supposed to be.

From now on, we will only consider the Mscale, WWP and SD2NN2 models in the following examples.

Example 3. We consider the following two-dimensional problem (4.2) for p = 2 and Ω = [−1, 1]× [−1, 1].
In this example, we set f = 1 and the multi-scale coefficient

A(x1, x2) = Π6
i=1

(

1 + 0.5 cos
(
2iπ(x1 + x2)

)
)(

1 + 0.5 sin
(
2iπ(x2 − 3x1)

)
)

.

from [71–73]. The reference solution u(x1, x2) can be computed by the finite element method on a square
grid of mesh-size h = 1/129.

We compute the solution of (4.2) by Mscale, WWP and SD2NN2, respectively. In the SD2NN2 model,
the balance parameter α for fine-submodule is 0.05. The network size and parameter number for different
models are comparable and listed in Table 6 in Appendix A. All models are trained for 100000 epochs. At
each training step, we sample 3000 interior points and 500 boundary points. The testing points are taken
from the finite element grid with h = 1/129.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

1

2

3

4

5
×10-3

(a) point-wise error for Mscale

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

1

2

3

4

5
×10-3

(b) point-wise error for WWP

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

1

2

3

4

5
×10-3

(c) point-wise error for SD2NN2

0 20 40 60 80 100
epoch/1000

10-3

10-2

10-1

100

101

Mscale WWP SD2NN2

(d) relative error for Mscale, WWP
and SD2NN2

(e) SD2NN2 coarse solution (f) SD2NN2 fine solution

Figure 10: Testing results for Example 3

The numerical results in Figures 10(a) – 10(d) show that the SD2NN2 is still the method of choice in
terms of both the point-wise error and the mean square error, and it is much better than Mscale and WWP
models. In addition, the results in Figures 10(e) and 10(f) show that the submodules of SD2NN2 successfully
separate the coarse and fine parts of the solution.
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Example 4. We now consider the following Poisson-Boltzmann equation with Dirichlet boundary condition,

{

−div(A(x)∇u(x)) + κ(x)u(x) = f(x), x ∈ Ω ⊂ R
d,

u(x) = g(x), x ∈ ∂Ω
(4.9)

where Aǫ(x) is the dielectric constant and κ(x) the inverse Debye-Huckel length of an ionic solvent. It is
natural to introduce the energy

J (v) =
1

2

∫

Ω

(

A|∇v|2 + κv2
)

dx−

∫

Ω

fvdx. (4.10)

and the corresponding variational formulation.
We solve the elliptic equation (4.9) in the cube Ω = [0, 1]3 with 8 big holes (blue) and 27 smaller holes

(red), see Figure 11(a). We take κ(x1.x2, x3) = π2,

A(x1, x2, x3) = 0.5

(

2 + cos(10πx1) cos(20πx2) cos(30πx3)

)

, (4.11)

and impose an exact solution

u(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3) + 0.05 sin(10πx1) sin(20πx2) sin(30πx3). (4.12)

The exact solution prescribes the corresponding boundary condition and f(x) in (4.9).

In this example, the network sizes and the number of parameter for Mscale, WWP and SD2NN2 are
listed in Table 7 in Appendix A, their parameters are comparable. In addition, the balance parameter
α = 0.05 for the fine-part of SD2NN2. All models are trained for 100000 epochs. At each training step, the
training data set including 6000 interior points and 1000 boundary points randomly sampled from Ω and
∂Ω. The testing dataset is 1600 random samples in Ω. Testing results are plotted in Fig.11.

From the results in 11(b) – 11(d), the SD2NN2 model still keeps its good performance for the Poisson-
Boltzmann equation in 3D perforated domain.

5. Conclusion

Deep learning algorithms have demonstrated great potential in scientific computing tasks. However, the
efficient solution of multi-scale problems remains to be a big challenge for DNN based numerical methods.
In this paper, we combine subspace decomposition ideas from traditional numerical analysis and multi-
scale deep neural network, and propose the SD2NN method for multi-scale PDEs. This new architecture
consists of one low-frequency or normal DNN submodule and one (or several) high-frequency MscaleDNN
submodule(s). In addition, we incorporate the trigonometric SFM activation function for the SD2NN model.
Computational results show that this new method is feasible and efficient for multi-scale problems in 1d,
2d and 3d, and in both regular or perforated domains. In the future, we plan to apply this method to
multi-scale PDEs with nonlinearity and/or randomness, as well as operator learning for multi-scale PDEs.
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[28] P. Henning, A. Målqvist, D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems,

ESAIM Math. Model. Numer. Anal. 48 (2014) 1331–1349.
[29] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM review 34 (1992) 581–613.
[30] H. Xie, L. Zhang, H. Owhadi, Fast eigenpairs computation with operator adapted wavelets and hierarchical subspace

correction, SIAM Journal on Numerical Analysis 57 (2019) 2519–2550.
[31] H. Owhadi, Bayesian numerical homogenization, Multiscale Model. Simul. 13 (2015) 812–828.
[32] H. Owhadi, Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information

Games, SIAM Rev. 59 (2017) 99–149.
[33] H. Owhadi, C. Scovel, G. R. Yoo, Kernel mode decomposition and programmable/interpretable regression networks, arXiv

preprint arXiv:1907.08592 (2019).
[34] H. Owhadi, G. R. Yoo, Kernel flows: From learning kernels from data into the abyss, Journal of Computational Physics

389 (2019) 22–47.
[35] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, Journal of

Computational Physics 375 (2018) 1339–1364.
[36] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, Journal

of Computational Physics 411 (2020) 109409.
[37] Z.-Q. J. Xu, Y. Zhang, Y. Xiao, Training behavior of deep neural network in frequency domain, International Conference

on Neural Information Processing (2019) 264–274.
[38] Z.-Q. J. Xu, Y. Zhang, T. Luo, Y. Xiao, Z. Ma, Frequency Principle: Fourier Analysis Sheds Light on Deep Neural

Networks, Communications in Computational Physics 28 (2020) 1746–1767.
[39] N. Rahaman, D. Arpit, A. Baratin, F. Draxler, M. Lin, F. A. Hamprecht, Y. Bengio, A. Courville, On the spectral bias

of deep neural networks, International Conference on Machine Learning (2019).
[40] Y. Zhang, T. Luo, Z. Ma, Z.-Q. J. Xu, A linear frequency principle model to understand the absence of overfitting in

neural networks, Chinese Physics Letters 38 (2021) 038701.
[41] T. Luo, Z. Ma, Z.-Q. J. Xu, Y. Zhang, Theory of the Frequency Principle for General Deep Neural Networks, arXiv

preprint arXiv:1906.09235 (2019).
[42] B. Ronen, D. Jacobs, Y. Kasten, S. Kritchman, The convergence rate of neural networks for learned functions of different

frequencies, in: Advances in Neural Information Processing Systems, volume 32, 2019, pp. 4761–4771.
[43] W. E, C. Ma, L. Wu, Machine learning from a continuous viewpoint, arXiv preprint arXiv:1912.12777 (2019).
[44] Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, Q. Gu, Towards understanding the spectral bias of deep learning, arXiv preprint

arXiv:1912.01198 (2019).
[45] G. Yang, H. Salman, A fine-grained spectral perspective on neural networks, arXiv preprint arXiv:1907.10599 (2019).
[46] B. Bordelon, A. Canatar, C. Pehlevan, Spectrum dependent learning curves in kernel regression and wide neural networks,

in: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, PMLR, 2020, pp. 1024–1034.

[47] T. Luo, Z. Ma, Z.-Q. J. Xu, Y. Zhang, On the exact computation of linear frequency principle dynamics and its general-
ization, arXiv preprint arXiv:2010.08153 (2020).

[48] C. Ma, L. Wu, W. E, The slow deterioration of the generalization error of the random feature model, in: Mathematical
and Scientific Machine Learning, PMLR, 2020, pp. 373–389.

[49] R. Sharma, A. Ross, D-netpad: An explainable and interpretable iris presentation attack detector, in: 2020 IEEE
International Joint Conference on Biometrics (IJCB), IEEE, 2020, pp. 1–10.

[50] H. Zhu, Y. Qiao, G. Xu, L. Deng, Y. Yu-Feng, Dspnet: A lightweight dilated convolution neural networks for spectral
deconvolution with self-paced learning, IEEE Transactions on Industrial Informatics (2019).

[51] P. Chakrabarty, S. Maji, The spectral bias of the deep image prior, arXiv preprint arXiv:1912.08905 (2019).
[52] Z.-Q. J. Xu, H. Zhou, Deep frequency principle towards understanding why deeper learning is faster, in: Proceedings of

the AAAI Conference on Artificial Intelligence, volume 35, 2021.
[53] S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of fourier feature networks: From regression to solving multi-

17



scale pdes with physics-informed neural networks, Computer Methods in Applied Mechanics and Engineering 384 (2021)
113938.

[54] W. Cai, X. Li, L. Liu, A phase shift deep neural network for high frequency approximation and wave problems, SIAM
Journal on Scientific Computing 42 (2020) A3285–A3312.

[55] A. D. Jagtap, K. Kawaguchi, G. E. Karniadakis, Adaptive activation functions accelerate convergence in deep and
physics-informed neural networks, Journal of Computational Physics 404 (2020) 109136.

[56] Z. Liu, W. Cai, Z.-Q. J. Xu, Multi-scale deep neural network (mscalednn) for solving poisson-boltzmann equation in
complex domains, Communications in Computational Physics 28 (2020) 1970–2001.

[57] X.-A. Li, Z.-Q. J. Xu, L. Zhang, A multi-scale dnn algorithm for nonlinear elliptic equations with multiple scales,
Communications in Computational Physics 28 (2020) 1886–1906.

[58] B. Wang, W. Zhang, W. Cai, Multi-scale deep neural network (mscalednn) methods for oscillatory stokes flows in complex
domains, Communications in Computational Physics 28 (2020) 2139–2157.

[59] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Bar-
ron, R. Ng, Fourier features let networks learn high frequency functions in low dimensional domains, arXiv preprint
arXiv:2006.10739 (2020).

[60] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[61] W. E, B. Yu, The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems,
Communications in Mathematics and Statistics 6 (2018) 1–12.

[62] Z. Zou, H. Zhang, Y. Guan, J. Zhang, Deep residual neural networks resolve quartet molecular phylogenies., Molecular
Biology and Evolution 37 (2020) 1495–1507.

[63] J. L. Lions, A. Bensoussan, G. Papanicolaou, Asymptotic analysis for periodic structures, volume 5, North Holland,
Amsterdam, 1978.
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Appendix

A.

Table 4: Network sizes and number of parameters for models in Example 1

Network Size Number of Parameters
DNN (250, 100, 80, 80, 60) 44510
Mscale (250, 100, 80, 80, 60) 44510
WWP (125, 100, 80, 80, 60) 44385

SD2NN1
coarse:(100, 80, 60, 60, 40)

44440
fine:(125, 60, 60, 60, 50)

SD2NN2
coarse:(50, 80, 60, 60, 40)

44315
fine:(100, 60, 60, 50, 40)

SD2NN3
coarse:(50, 80, 60, 60, 40)

44315
fine:(100, 60, 60, 50, 40)
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Table 5: Network sizes and number of parameters for models in Example 2

Network Size Para. Scaling factors
Mscale (350, 300, 200, 200, 100) 225450 ——
WWP (175, 300, 200, 200, 100) 225275 ——

SD2NN1
coarse:(100, 80, 60, 60, 40)

207730
——

mesoscale:(125, 80, 60, 60, 40) (30, 31, 32, · · · , 69, 70)
fine:(225, 200, 150, 150, 100) (251, 252, 253, · · · , 360)

SD2NN2
coarse:(50, 80, 60, 60, 40)

207680
(0.5, 1, 1.5, · · · , 24.5, 25)

mesoscale:(125, 80, 60, 60, 40) (30, 31, 32, · · · , 69, 70)
fine:(225, 200, 150, 150, 100) (251, 252, 253, · · · , 360)

SD2NN3
coarse:(50, 80, 60, 60, 40)

207680
(0.5, 1, 1.5, · · · , 24.5, 25)

mesoscale:(125, 80, 60, 60, 40) (30, 31, 32, · · · , 69, 70)
fine:(225, 200, 150, 150, 100) (251, 252, 253, · · · , 360)

Table 6: Network sizes and parameter of models for Example 3

Network Size Para.
Mscale (250, 200, 200, 100, 100, 80) 128330
WWP (125, 200, 200, 100, 100, 80) 128205

SD2NN2
coarse:(50, 100, 80, 80, 80, 60)

127410
fine:(120, 150, 150, 100, 100, 80)

Table 7: Network sizes and parameter of different models for Example 4

Network Size Para.
Mscale (500, 400, 400, 200, 200, 150) 510650
WWP (250, 400, 400, 200, 200, 150) 510400

SD2NN2
coarse:(70, 200, 200, 150, 150, 150)

508870
fine:(250, 300, 290, 200, 200, 150)
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