SUPPLEMENTARY MATERIALS: On the Exact Computation of Linear
Frequency Principle Dynamics and Its Generalization*

Tao Luof, Zheng Ma¥, Zhi-Qin John Xu%, and Yaoyu Zhang;ﬂ
|

SM1. Fourier transform table. We list the results of one-dimensional Fourier transform
in Table SM1 and high-dimensional Fourier transform in Table SM2 used in our proofs.

Table SM1
Fourier transform for 1-dimensional functions used in our proofs.

Function of © Fourier transform with respect to =
g(az) L FG()

o~ Flol(e)e s

a*g() (5:)" Gex Fla)(©)

9" (z) (2mi§)" Flg)(£)
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2" ()"0 (€)

(S(CE _ iUO) e—27rix0§

H(z) (Heaviside) i21r£ + 15(8)

ReLU(z) —grer T 2:9'(6)
tanh(zx) —imcsch(n?€)
Sigmoid(x) —imesch(2m%€) + 36(€)
sech?(z) 2m2¢csch(n€)
xsech?(z) i (1 — m°€ coth(n*€)) csch(m?€)

SM2. Proof.
Lemma. (Lemma 2 in main text) Given any nonzero vector w € R with w = m, we
have
1 T
(SM2.1) ——— 0 () = w(x).
leof|7* \ [Jwl] b
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Table SM2
Fourier transform for d-dimensional functions used in our proofs.

Function of Fourier transform with respect to @
9(a) = Fla)(%)
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Figure SM1. fun (red solid) vs. furp (blue dashed dot) for a 1-d problem. The setting is the same as
the case in Figure 1(a) in main text, except that the label for each data is randomly selected from [0, 1] and the
uniform distribution half width U is randomly selected from [3,6]. Each subfigure is one trial.

Proof. This is proved by changing of variables. In fact, for any ¢ € S(R?), we have

(e () 20 gy = 90000 0
= [ ¢ ol ay
/¢ yw)dy

(0w (), 2(1) 51 (Re), 5(RY) - u
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Lemma. (Lemma 2 in main text) For any unit vector v € Rd, any nonzero vector w € R
with w = 72+, and g € S'(R) with Flg] € C(R), we have, in the sense of distribution,

[lw]]
(SM22)  (2) Faoelo@@)(€) = 6, (€)Flal(€Tw).
(SM23) (b)) FaselgwT 4+ ))(€) = 50(€)Flg] (ﬁujﬁ) STTTET,
(M24) () FaselagluwTz+0)€) = 5-Ve [%(z)ﬂgl (M) "gw} |

Proof. Let ¢ € S(RY) be any test function.
(a) By direct calculation, we have

(b) By part (a), we have in the distributional sense

Faselg(@Tx)](§) = 65 (§) Flg](§Tw).

Note that -
Faselo(@ — 20)](€) = Faselo)(€)e ™m0,
then
Fooselg(T@ +b)](6) = Farelo(w (@ + b))](€)
= 0 (g)f[g](STuAj)e%ribng'
Therefore

Faore[9(07@ + 0)(€) = Farelg(@" w]lm + )] (€)
1
= Twl/ =l ('”"””(n u)

= et (g ) 7 () ™"

=sul©7la (1) e

(c¢) This follows from part (b) and the fact that for any function g(x)

Foeloi(@))(6) = 5 Ve Flal(€)].
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Lemma. (Lemma 3 in main text) The dynamics (4.9) has the following expression in the
frequency domain for all ¢ € S(RY)

(SM2.5) (O F[u], ¢) = —(L[F[uoll, 9),
where L[] is called Linear F-Principle (LFP) operator is given by
LlFlu = [ R(€€)Flu)(€) e
R4

and

(SM2.6) K(&,€) :=EqKy(£,€) = BqFut[Vqo'(x,q)] - Farse [Vqo* (@, q)].
The expectation Eq is taken w.r.t. initial distribution of parameters.

Proof. For any ¢ € S(R?). since dyu is in S’(R?) and locally integrable, we have

(OrF [ul, @) = (Opu, F(¢])
= [ du(zx, 1) / p(&)e T ®E d¢ da
R4 Rd

- / K(z, 2 )u,(z)dz’ | ¢(€)e 2™ d¢ dx
R4 JR4 R4

= — K(x, 2 )u,(z) de'¢p(€)e ™€ d¢ da
R3d

_ / EqVeo™ (@, q) - Voo (@', q)u, (@) da' $(€)e 2% d¢ da
R3d
= —Eq/ Veo* (@', q)u,(x') da’ - V0" (z,q)e 2™ Ep(¢) dé dxe
Rd R2d

= —Eq/ Vo' (@', q)uy(@') da’ - (Fo. [Vqo™ (@, @)](-), &()) -
Rd

Since

an*(w’,q)up(w’)dx':/ fmzﬁgl[vqa*(x’,q)](ﬁ’)fmfﬁg/[up](él) d¢’,
Rd Rd

we have

OFlul,6) =By [ Forse Var @ &) Farm 0)(€) 4€ - (Foon Vo™ (@ @], 60)

= —Eq /R?d Far—e[Vqo* (@, @)|(&) - Fase[Vqo™ (x, q)|(&) Far—er [u)] (&) deg'p(¢) dg

=— | K(£€)Fu,)(€) dg'o(€) dg

R2d
= —{L[Flupll, 9)- u
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Theorem. (Theorem 1 in main text) Suppose that Assumption 1 holds. If o > 1, then the
dynamics (4.9) has the following expression,

(SM2.7) (@ F[ul, ¢) = — (LIF[upll, ¢) + O(0 %),

where ¢ € S(R?) is a test function and the LFP operator is given by

(SM2.8)
aﬂwnzh@wﬂﬂzmwlmmﬁﬂmmﬁﬂ)fmuﬁfﬂﬂfwma

- (Bar [yt () 7l (1] e ).

where I'(+) is the gamma function. The expectations are taken w.r.t. initial parameter dis-
27 d/ d—1 —

tribution. Here r = ||w|| with the probability density p,(r) = @ pw(rel) , el
(1,0,---,0)T.

Proof. For simplicity, we assume that b ~ N (0, Ug), op > 1 in this proof. It is straight-
forward to extend the proof to general distributions for b as long as it is zero-mean and with
variance op > 1.

1. Divide into two parts. Note that

= | lac(wre +b)] | = Vg0 (. q).

Vuwlac(wTx + b)]

zg2(wTx + b)

Oqlao(wTx 4 b)]
(SM2.9) (91(“’Tw +b) )

One can split the Fourier transformed kernel K into two parts, more precisely,
K:Eq_[/\{q, Kq :KQJ)_’_K’UJ)

where

Kq(€.€) = EqFuse[Vqo™(2,9)]  Farrse' [Vqor (2, q)],
Kop(&,8) = Flgi(wTz +b)] - F [g1(wTa’ + b)],
Ky(&,8) = Fzga(wTa + )] - F [wgo(wTa! + b)].

For any ¢, € S(R?), we have
(SM2.10) (Kq, ¢ @) 1= (Kq, ¢ ® ¥) g/ (r2ay s(r2a) = /]de Kq(€,€)(&)v(¢) dgde’.

The expressions for Ka’b and Kw are similar.
2. Calculate K, (&, ¢'). Since

Kap(&,€) = 0w(€)6w (&) Flgi] (ET"’> - Fla1] <€,Tw>e2wib<ss’>m/w,

[[wll o]
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we have

<Ka7b’¢ ® w> _ /RM(Sw(g)(S’w(&/)}-[ ] <£Tw> [ ] <£/Tw>e27rib(E—EI)T'Lil/||'w||d)(s)w(g/) dﬁdﬁl

[wll [[wll

= [, _otnw)vfw)Flgaln) Flgi] ()™= dp .

22,2

*5, then Fpp)(n) = e=7 7"

By assumption b ~ N(0,07), i.e., py(b) =

vV 2770'b

. / 1 2 /952 9 /
E e27r1b(77—77 )\ — / e—b /207 e?mb(n—n ) db
’ ( ) R V270,
= Flpo] (=(n = 1))
— 2%} (n—n')?

Therefore

By |(Kap 0 @0)] = [ olmo)y(n/w) Flgaltn) - Flanl)Es |70 dydof

= [ olm)yetnw)Flgi)(n) Flgi]m)e 20— ap dyf.

Applying the Laplace method, we have

E, [<f(a,b,¢®w /¢ nw)Flgi)( Uzﬁ nw)Flgi) (n)e > ob =) dn’] dn
1
\/27rab

/R o(nw)(mw) Flgi] (n) - Flgi(n) dn + O(0;2).

= /R ¢(nw)Flg:](n) - {T/)(W)ﬂ]() Ole 3)} o

Next we consider the expectation with respect to w. Up to error of order O(o,3), we have

Bt (R0 )] =B | S [ otomwyitomo)Flanln) - Flanllr) ao

= /R(H1 \/%Ubdnw)l/}(??w)]:[gl](ﬁ) - Flg1](n) pw (w) dw dn.

Here we assume that p,, is radially symmetric so p(w) is a function of r := ||w|| only. By
using spherical coordinate system, we have

1—/ pw(w) dw
Rd
- / puller) du
/ / w(rep)r ¢ dwdr
we Jsin !
/ () dr,
R+
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where w € S* ! and we define

(SM2.11) (r) := / (re))rétdw = Ldﬂ (rej)rd=?
. Pr = i Pw 1 = F(d/Q) Pw 1 )
where I'(+) is the gamma function. Then we introduce the following change of variables,
¢ =nw,
r=[Jwl,
whose the Jacobian determinant is
i n 0 0 wl‘
0 N 0  wo il
det oG, r) = det : . : = -l = o M
Olaw. 1) o - -
(wi /T wa/r - wg/r 0]
Thus
we 'S
(SM2.12) ¢l
_ ¢l

)
r

and its Jacobian determinant is

3(%?7))__ rd-1
det(@(cm = TreET

So one can obtain,

Euw b [(Ka,b,¢®¢>] = /Rd+1 \/%Ub

_ 1 M —HLH pd—1 g )
- [ ezl (L) i) () patren aca

~ [ o0l (1) rign (Y1) s [0 acar

L'(d/2) 1 [N
Q\fw (d+1)/24, /Rd - [THCHdl]:[gl] <T> - Flgi] <T>] (¢ pr(r)drdg,

Therefore taking ¢ = Flu,|, we have

¢(nw)p(nw)Flgi1](n) - Flg1)(n)pw(rer) dwdn

_ I'(d/2) 1 €]l 1€l
Laal Pl = 575y Ber [f[gﬂ () g (1 )] Fluy) ©)
_ I'(d/2) €]l €]l
(SM2.13) = 2\/%(61“)/2%”5”61_1% []:[91] ( > Flgi] (—Tﬂ Flup)(8).
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3. Calculate Ky, (&,¢'). Since

[[wll

5w(£/)]:[92](£”w>e_2”ib5/“f’/w] ’

Kul&€) = 15V [5w(§)]:[92] (5“’) e%ww/nwn}

. Vg,

Jw|
we have
(Ko, & ® 1))
- ﬁ /Rd ¢(§)Ve [5w(£)f[gz] <£Tw> e%ibﬁ%/w] de

[[wll

5w(£/)F[92] (ElTw>e_2”ib£lTﬁ’/|w] dEI

| p(€)Ve

R4

[o]

— 1z [, Veol@u(@ 7] (oo ) oo ag

[[wll

Verh(€)0w (&) Fg2] (’SlTw)e?ﬂib&’%/nm de’

R [wll

= [, Votmw) - Vil w)Flg)n) Floo) (7)™~ dy

By the same computation as for R’a’b(f, ¢'), we can get

Ews |(Kuw, ¢ )]

- 2{21;((%3/2% /Rdv‘f’(o' /]R [rngﬁdi [92] (”f”)  Floo] <”f’>] Vo (C)pr(r) dr d¢

(d/2)

_ _ 1 ISl <]

= @2y Jpa M) B | et [92]< " ) d [92]( r ) Ve(e)de
I'(d/2) 1 <]l <]

= T ovan @ agy Juu POV {E 7“||C||d1]:[92]< r )'ﬂ”]( - ) W(C)}dc'

Thus taking 1(§) = Flu,](£), we have
(SM2.14)

CalFlu€) = 5V - (Bar | o) (160) o) (1) | v lc0))

Finally, one can plug (SM2.13) and (SM2.14) into (SM2.5) and obtain the dynamics (SM2.7).H

Corollary. (Corollary 1 in main text) Suppose that Assumption 1 holds. If op > 1 and
o = ReLU, then the dynamics (4.9) has the following expression,

(SM2.15) (0cFlul, 6) = —(L[Flupll, ¢) + O(a;),
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where ¢ € S(R?) is a test function and the LFP operator reads as

I'(d/2 3 2
LUt = 5B | otz + gratgiar | Flu©)

I'(d/2) a’r
T 2Var@ g, <E“v’" [47T2H£Hd+1} 5 [up](£)> :

The expectations are taken w.r.t. initial parameter distribution. Here r = |w| with the

(SM2.16)

probability density p,(r) := %pw(rel)rd—l} e1 = (1,0,---,0)T.
Proof. Let

(SM2.17) fa(x) =V, [aReLU(w - & + b)] = ReLU(w - « + b),

(SM2.18) ga(2) := ReLU(2),

(SM2.19) fo(x) = Vp[aReLU(w - +b)] = aH(w - x + b),

(SM2.20) g(2) == aH(z),

(
s0 g1(2) = (9a(2), g5(2))T and g2(2) = gs(2). Then

1 .
(SM221) f[ga](f) - _47T2§2 + 47T5 (5)7
1 1
(sM2.22) Flanl€) = a | g + 306
By ignoring all 6(¢) and §'(&) related to only the trivial 0-frequency, we obtain
1 €]l — €]l rl
M2.2 — — =
(S 3) rf[ga] ( r ’F[ga] r 167_‘_4H€H47
1 €]l — €]l a’r
M2.24 - — = .
(S ) Tf[gb] < r f[gb] r 47[2“5”2
We then obtain (SM2.16) by plugging these into (SM2.8). [ ]

Corollary. (Corollary 2 in main text) Suppose that Assumption 1 holds. If op > 1 and
o = tanh, then the dynamics (4.9) has the following expression,

(SM2.25) (0 F[ul, ¢) = — (LIFTull, ¢) + O(0, %),
where ¢ € S(R?) is a test function and the LFP operator reads as
(SM2.26)
I'(d/2) T sen2 (TIEN | 4m a2\|£H2 QHEH
= Eaor | — h
£UFtu) = 5 75y o g [ esen? (T u)(€)
'(d/2) dmta? 2 (2l
T = 311\ /0 : Ea T NCYIVEIV ) h
22 g, < | [rsusnd—fs‘? r
The expectations are taken w.r.t. initial parameter distribution. Here r = |Jw| with the

probability density p,(r) := 12&7(722)pw(rel)rd_l, er = (1,0,---,0)T.
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Proof. Let
(SM2.27) fa(x) := Vg [atanh(w - & + b)] = tanh(w - © + 1),
(SM2.28) ga(z) := tanh(z),
(SM2.29) fo(x) := Vj [atanh(w - x + b)] = asech?(w - x + b),
(SM2.30) av(2) := asech?(2),
50 g1(2) = (9a(2), 95(2))" and ga(2) = gs(2). Then
(SM2.31) Flga)(€) = —imesch(n%¢),
(SM2.32) Flgp)(€) = 2m%aesch(rn3€).

By ignoring all §(§) and §'(£) related to only the trivial O-frequency, we obtain

(SM2.33) %]—"[ga] (”f”) Flga] <—\7|n€\> _ chschg (ﬂﬂ&ll) ’
4212 2
(SM2.34) L (10 g (L)~ SAEE (161,
We then obtain (SM2.26) by plugging these into (4.17). [ |

Lemma. (Lemma / in main text) Suppose that Hy and Hs are two separable Hilbert spaces
and P : Hi — Hy and P* : Hy — Hj is the adjoint of P. Then all eigenvalues of P*P and
PP* are non-negative. Moreover, they have the same positive spectrum. If in particular, we
assume that the operator PP* is surjective, then the operator PP* is invertible.

Proof. We consider the eigenvalue problem P*P¢; = A¢;. Taking inner product with
¢1, we have (¢1, P*Pé1)m, = A|é1]|7;,. Note that the left hand side is [Py |3, which is
non-negative. Thus A > 0. Similarly, the eigenvalues of PP* are also non-negative.

Now if P*P has a positive eigenvalue A > 0, then P*P¢p; = A¢p; with non-zero vector
¢1 € Hy. Tt follows that PP*(Pp1) = A(P¢1). It is sufficient to prove that P¢; is non-zero.
Indeed, if Pp; = 0, then P*P¢p; = 0 and A = 0 which contradicts with our assumption.
Therefore, any positive eigenvalue of P*P is an eigenvalue of PP*. Similarly, any positive
eigenvalue of PP* is an eigenvalue of P*P.

Next, suppose that PP* is surjective. We show that PP*¢po = 0 has only the trivial
solution ¢ = 0. In fact, PP*¢2 = 0 implies that HP*@H%M = (¢2, PP*¢2)m, = 0, i.e,,
P*¢po = 0. Thanks to the surjectivity of PP*, there exists a vector ¢35 € Hy such that
P2 = PP*¢ps. Let ¢y = P*¢p3 € H1. Hence ¢p2 = Pp1 and P*Ph; = 0. Taking inner product
with ¢1, we have ||73¢1||%{2 = (1, P*Pop1)m, = 0, ie., ¢p2 = Pp; = 0. Therefore PP* is
injective. This with the surjectivity assumption of PP* leads to that PP* is invertible. W

Theorem. (Theorem 2 in main text) Suppose that PP* is surjective. The above Problems
(i) and (ii) are equivalent in the sense that ¢oo = Pmin. More precisely, we have

(SM2.35) boo = humin = P*(PP*) (g — Pdini) + Gini-
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Proof. Let g?) = ¢ — ¢ini and § = g — P¢ini- Then it is sufficient to show the following
problems (i’) and (ii’) are equivalent.
(i’) The initial value problem

d ~
w7 (9—"P9)
¢(0) =0
(ii’) The minimization problem
min||$]|%,,
¢
s.t. P(j; =g.

We claim that ngin = 73*(7373*)_1@ Thanks to Lemma 4, PP* is invertible, and thus
@min 18 well—deﬁn~ed and satisﬁe~s that P¢ = g. It remains to show that this solution is unique.
In fact, for any ¢ satisfying P¢ = g, we have

<¢; - gf;minv émin) < rmn’ (7)73 ) >H1
<7)(¢ ¢m1n) (PP*) g>H2
<P 7(PP*) > Hy — (Pi)miny (PP*)_1§>H2

=0.

Therefore,

HQSH%{l = HqsminH%{l + ||¢ - QsminH%—h > H(bminH%{l'

The equality holds if and only if ¢ = Gmin.
For problem (i’), from the theory of ordinary differential equations on Hilbert spaces, we
have that its solution can be written as

G(t) =P (PP) g+ ) _ civiexp(—Ait),

el

where \;, ¢ € T are positive eigenvalues of PP*, 7 is an index set with at most countable
cardinality, and v;, i € T are eigenvectors in Hy. Thus ¢oo = ¢min = P*(PP*)~1j
Finally, by back substitution, we have

Poo = min = P (PP*) 15+ ¢o = P*(PP*) (g — Pini) + dini-

Corollary. (Corollary / in main text) Let Hy and Hy be two separable Hilbert spaces and
I': Hy — H;i be an injective operator. Define the Hilbert space Hr :=Im(T"). Let g € Hy and
P : Hr — Hy be an operator such that PP* : Hy — Ho is surjective. Then I'™' : Hp — Hj
exists and Hr is a Hilbert space with norm ||¢|| gy := [T 71|, . Moreover, the following two
problems are equivalent in the sense that oo = Gmin-
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(B1) The initial value problem

d¢ * Y%
{ 2 =TT"P* (g~ Po)
d)( ):(rbini'

(B2) The minimization problem

b—a mlIl ||¢ ¢1n1HHp,

s.t. Pcb =g.

Proof. The operator I' : Hy — Hr is bijective. Hence I'"! : Hr — H; is well-defined and
Hr with norm ||-|| g, is a Hilbert space. The equivalence result holds by applying Theorem 2
with proper replacements. More precisely, we replace ¢ by I'"1¢ and P by PT. [ |

Corollary. (Corollary 5 in main text) Let v : R? — R be a positive function, h be a
function in L?>(R?) and ¢ = F[h]. The operator T : L*(R%) — L2(R?) is defined by [['¢](&) =
v(€)p(€), &€ € RE. Define the Hilbert space Hr := Im(T). Let X = (x1,...,2,)T € R™*4
Y =(y1,-.-,yn)T € R and P : Hr — R™ be a surjective operator

- - T
(SM2.36) P < /R pleyrTIed, /R RG d&) = (h(@1), . ., b))

Then the following two problems are equivalent in the sense that ¢oo = Gmin.
(C1) The initial value problem

YO _ (516 Y. (e 2mle — [pwetnel0] (o))
#(0) = ini- -

(C2) The minimization problem

min, [ (€)H10(€) (€)1 de.

$—dini €Hr
s.t. h(x;)=vy;, i=1,---,n.
Proof. Let Hi = L*(R%), Hy = R", g = Y. By definition, T is injective. Then by
Corollary 4, we have that I'™! : Hp — L?(RY) exists and Hp is a Hilbert space with norm

@]l r1r = [T ¢l L2(ma)- Moreover, [|¢ — dinill7r, = [ra(7(€))*16(€) — dini(€)[* d€. We note
that [P*Y](&) = 1, yie 2™®i€ for all € € RY. Thus

PPo)(€) = [P* ( / p(&)emele de)l 1] (&)

Z 27r1:13T£’ dE —2rix] €
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The equivalence result then follows from Corollary 4. |

Corollary. (Corollary 6 in main teat) Let v : Z% — RT be a positive function defined on
lattice Z* and ¢ = F[h]. The operator T : (2(Z%) — (%(Z9) is defined by [Do](k) = v(k)o(k),
k € 7. Here (*(Z%) is set of square summable functions on the lattice Z%. Define the Hilbert
space Hp :=Im(T). Let X = (x1,...,2,)T € T Y = (y1,...,yn)T € R" and P : Hp — R"
be a surjective operator such as

T
(SM2.37) P | Y p(k)e™ @ik 3" p(k)e?mienk
kezd kezd

Then the following two problems are equivalent in the sense that ¢oo = Gmin-

(D1) The initial value problem

dﬁgfk) = (7("7))2; (yie*Z’Tiszk — | * efzmwg(.)] (k)>

¢(0) = Pini-
(D2) The minimization problem
min Y (7(k) 2|0 (k) — dini (k)

d—dini€H
r kezd

st. h(x))=vy;,, i=1,---,n.

Proof. Let Hy = (*(Z%), Hy = R™, and g = Y. By definition, I" is injective. Then by
Corollary 4, we have that I'™! : Hp — (2(Z%) exists and Hp is a Hilbert space with norm
16l == 7262zt Moreover, |6 — diuillZy, = ez (v(k)) 2/ (k) — diui()[2. We note
that [P*Y](k) = 1, yie 2™k for all k € Z%. Thus

[P*Pgl(k) = | P*| D oK) =¥ (k)

d
k'€ 1

n
_ Z Z o(K)o2mielk o~ 2mialk

=1 k/'ezd

_ znz Z ¢(k/)e—27ri:l:;-r(k—k’)

=1 k/'ezd

= i {(ﬁ * e*%iw}(-)] (k).
i=1
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The equivalence result then follows from Corollary 4. |

Lemma. (Lemma 5 in main text) (i) For Hg = {h : ||h]y < Q} with v : Z¢ — R, we
have

1
(SM2.38) Radg(Hg) < %QH’YHF-

(i) For Hg = {h: ||hlly < Q,|F[RI(0)| < co} with v : 7% — R* and v~(0) := 0, we have

(SM2.39) Rads(He) < —=Q|1le2-

T

Proof. We first prove (ii) since it is more involved. By the definition of the Rademacher
complexity

(SM2.40) Rads(Hg) = —E, lsup 27‘1 x; ] .
hEH/Q i=1

Let 7(z) = >, TZ(S(:I: a:,) where 7;’s are i.i.d. random variables with P(7; = 1) = P(1; =
-1)= % We have F[r = o> i Tib(x — x;)e RTT qp = 31 | 1e” 2R Note that

(SM2.41) sup ZTZ x;) = sup ZTZ x;) = sup ZTZ Z Fh](k)e2mikT=:

heHy =1 heHQz 1 he?—tQZ 1 kezd
(SM2.42) = sup Flr)(k) Fh)(K).
heMty, k%d
By the Cauchy—Schwarz inequality,
sup Flr](k)F[n](k)
(SM2.43)
1/2 1/2
< sup |F[7](0)F[h](0) + ( > (V(k))2f[7](k)2) ( > (’V(k))Qf[h](k)2>
heHa kezZdx kezd
(SM2.44)
1/2
< ¢l F[7](0)| + @ ( > (’Y(k))QJ’[T](k)2> :
kEZd*

Since E-|F[7](0)] < (E-|F[r)(0)]*)'/? = V/n, Er|Flr)(k)* = Er 320y mimje 2mkT@imes) =

n, we obtain
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1/2
(SM2.45) E, | sup Znh(m@)] < covn + QE, Z (v(k))?|FIr](k)|?
hetg i=1 keZdx
1/2
(SM2.46) <covn+Q [ Er D (v(k)*|Flr](k)?
kez,d*
(SM2.47) = covn + Qv .
This leads to
, 1
(SM2.48) Rads(Hg) < —2 +—=Qlhle.
For (ii), the proof is similar to (i). We have
(SM2.49)
1/2
E, | sup Y FlrJ()FR(K) | < QEr [ D (v(k)*IFIF(R)P | < Qvnlrlle.
heHg kezd kczd
Therefore
(SM2.50) Rads(Ho) < \jﬁczrwup. o

Lemma. (Lemma 6 in main text) Suppose that the real-valued target function f € F,(£2)
and that the training dataset {(x;,y;)}, satisfies y; = f(x;), i = 1,--- ,n. Ify:Z% = R*,
then there exists a unique solution h, to the reqularized model
SM2.51 min h — hinilly, st h(x) =vy;, i=1,---,n.

( ) h_hinie‘r’y(Q)H inil | (xi) = yi
Moreover, we have

(SM2.52) [hn = hinilly < [If = hinill+-

Proof. By the definition of the FP-norm, we have ||hy — hinilly = [|[F[hln — Flhlinil mp-
According to Corollary 6, the minimizer of problem (SM2.51) exists, i.e., h, exists. Since the
target function f(z) satisfies the constraints f(x;) = y;, i = 1,--- ,n, we have ||k, — hinil|y <
||f - hini||’7' [ |

Lemma. (Lemma 7 in main text) Suppose that the real-valued target function f € F(£2)
and the training dataset {(x;,y;)}1, satisfies yi = f(x;), i = 1, ,n. If v: Z% — RY with
7~1(0) := 0, then there exists a solution h, to the regularized model

(SM2.53) hihigleirjlrv(mHh — Rinilly, st h(xg) =y, i=1,---,n.

Moreover, we have

(SM2.54) [ Flhn = hin (0)] < [1f = hinilloo + 1f = Prinil5 [ 7]l 2-
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Proof. Let f' = f — hini. Since hy,(x;) — f(x;) = 0 for i = 1,--- |n, we have hy,(z;) —
I (x;) — hini(z;) = 0. Therefore

(SM2.55)

|~F[hn - hlm](O)‘ = f’(wl) — Z -F[hn _ hini](k)e%rikTmi

kezd*
(SM2.56) <N lloo + D [ Flhn — hini] (k)|
keZdx
1 1
5 2
(SM2.57) <P lloe+ { D2 )| | D (1K) [ Flhn = i) ()|
keZd* kezdx
(SM2.58) <Nl + 1n = hinilly Y[l 2
(SM2.59) <1 Moo + 11y l17 N2
We remark that the last step is due to the same reason as Lemma 6. |

Theorem. (Theorem 3 in main text) Suppose that the real-valued target function f €
F+ (), the training dataset {(x;,y:)}, satisfies y; = f(x;), i = 1,--- ,n, and hy is the
solution of the regularized model

(SM2.60) h—higleirjlfw(Q)Hh — Rinilly, st h(xg) =y, i=1,---,n.

Then we have

(i) given v : Z¢ — R, for any § € (0,1), with probability at least 1 — § over the random
training sample, the population risk has the bound

(SM2.61) Ro(h) < 1 = hisilly ] (jﬁ 4 21gn<4/5>) |

(ii) given v : Z% — RY with v(0)~! := 0, for any § € (0,1), with probability at least 1 —§
over the random training sample, the population risk has the bound

2 2log(4/6
(SM2.62) RMMJSUU—hmmw+%f—MMHMWﬂ<¢5+4 mi/)>‘

Proof. Let f' = f — hini and Q = ||f||4-

(i) Given v : Z — R*, we set Hg = {h : |h — hinil, < Q}. According to Lemma 6,
the solution of problem (SM2.60) h,, € Hg. By the relation between generalization gap and
Rademacher complexity [SM1, SM2],

2log(4
(SM2.63) Rp(hn) — Ls(hn)| < 2Rads(H) +2 sup A — Blay] 2080
hoh'EHg n
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One of the component can be bounded as follows

(SM2.64)  sup ||h — Hloo < sup 2||h — hinilloo
h,

heHg heHq

(SM2.65) < sup 2max |y Flh — hiyi)(k)e?™ '

heHq kezd
(SM2.66) < sup 2 ) |F[h — hinil (k)]

heta  gezd

3 3
(SM2.67) <2sup | Y (v(k))’ > (k)72 | Flh = hini (k)|
heta \ geza kezd
(SM2.68) < 2Q[7lle2-
By Lemma 5,
1

(SM2.69) Rads(Hq) < %QHVH@?-

By optimization problem (SM2.60), Ls(hy) < Ls(f’") = 0. Therefore we obtain

2 2log(4/6
(sM270) Ro(h) < =l e + 41l 22502,

(ii) Given 7y : Z% — R* with y(0)~! := 0, set co = || f'|loo + | [l ]|7]l2- By Lemma 5, 6,
and 7, define Hy, = {h : ||h — hinilly < Q, |F[h — hini](0)] < o}, we obtain

(SM2.71) Rads(Hg) < f\lf lloo + fo Iyl llez-

Also
(SM2.72)

sup b —1|loo < sup 2 ) |F[h — hiyi] ()]

h,h' €Hy, €HG  pegd
(SM2.73)
<2 sup || Flh — hini] (0)] + ( > (v(k))2> ( > (k)2 | Flh - hmikkﬂ)
heHq kezd kezd*
(SM2.74)
<2 lloo + 4174117l
Then

SM275)  Rp(hn) < = oo+ I e + (417 T+ 817 ) 2
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