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Abstract

To understand how neural networks process information, it is important to investigate how neural network dynamics

varies with respect to different stimuli. One challenging task is to design efficient statistical approaches to analyze

multiple spike train data obtained from a short recording time. Based on the development of high-dimensional statisti-

cal methods, it is able to deal with data whose dimension is much larger than the sample size. However, these methods

often require statistically independent samples to start with, while neural data are correlated over consecutive sampling

time bins. We develop an approach to pretreat neural data to become independent samples over time by transferring

the correlation of dynamics for each neuron in different sampling time bins into the correlation of dynamics among

different dimensions within the each sampling time bin. We verify the method using simulation data generated from

Integrate-and-fire neuron network models and a large-scale network model of primary visual cortex within a short

time, e.g., a few seconds. Our method may offer experimenters to use the advantage of development of statistical

methods to analyze high-dimensional neural data.

Introduction

A brain can process information swiftly (in a few hundred milliseconds) and robustly [1–6], however, the understand-

ing of behaviors of the brain within a short time remains a great theoretical and experimental challenge. There are

many experimental observations suggesting that neural populations in the brain containing tens to thousands of neu-

rons are correlated to perform elementary cognitive operations [7–10]. The dimension p of the recorded neural data,

i.e., the number of neurons that are simultaneously recorded under a brain state, could be as large as several hundreds,

whereas the sample size n of the data, i.e., the number of sampling bins in a short recording time, could be much

smaller than p (“large p, small n”). The exponentially growing data has created urgent needs to design methods that

can perform multivariate analysis of neural data within a short recording time [11–22].

In this work, we aim to design statistical methods to discriminate two different stimuli from the recordings of activities

of hundreds of neurons in a short time, e.g., hundreds of milliseconds to a few seconds. To get enough statistical

power in a discrimination analysis, it usually requires neural activities of many identical trials, such as principle

component analysis (PCA). However, the responses of a neural network vary significantly on nominally identical

trials. This variation is suspected especially to be true for tasks that involve internal states, say, attention, decision-

making and more [17]. Therefore, averaging responses across trials may obscure the analysis, and single-trial analysis

with statistical power is therefore essential.

In our setting, for an experiment trial, we have two population recordings (a referential one and a test one), such as

spike trains, in response to two stimuli. The goal of our analysis is to discriminate whether the underlying test stimulus
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comes from the same source as the referential one based on the two population recordings in the experimental trial.

We simplify our analysis by testing the null hypothesis that the mean value of the test sample equals the mean value

of the referential sample. To incorporate information of correlation, statistically, we can apply high-dimensional

two-sample test methods (See Methods.) that account for correlation structure to detect the difference of neural

activities. Recently, there is great progress in high-dimensional two-sample test methods to deal with samples of

“large p, small n” [23–28]. Typically, statistical methods including these high-dimensional two-sample test methods

require statistically independent sampling to start with. However, neural activity, such as spike train, is dependent in

the following sense. One data point is defined by the neural firings in one sampling time bin. The decay time of neural

dynamics is dozens of milliseconds, e.g., 20ms, then the consecutive data points are not statistically independent. We

refer to “dependent samples” as the samples that are correlated over time. The problem of dependent samples is a

large challenge of big data analysis [29], because except for neural data, there are many types of dependent samples

of “large p, small n”, e.g., fMRI and time course microarray data. However, there are still few studies about how to

deal with dependent samples [29, 30]. It remains unclear of how to perform a two-sample test for dependent samples.

In this work, we propose a method based on averaging and correlation transferring (ACT for short, see Results for

details.) to pretreat neural dependent samples to become independent ones. The idea of ACT method is as follows.

A time window, which is larger than correlation time length of samples, is selected to partition samples over time.

The mean value of samples in each time window is calculated to get an averaged series. Then, each dimension of the

averaged series splits into two dimensions which are consist of data points of odd positions and even positions in the

averaged series, respectively. Through ACT method, data points in each dimension of new series are independent. The

ACT method enables statistical two-sample test methods to be applied to deal with neural recordings from hundreds of

milliseconds to seconds. Comparing to the naive method of discarding partial data, the ACT method compensate the

power of high-dimensional statistical methods by increasing the dimension of data. In our work, the discrimination

analysis is performed by only the CQ method [23] (See Methods, we call this method CQ for short.), while other

high-dimensional two-sample test methods [24–28] can be applied in the same procedure.

We perform two-sample tests on samples that are obtained as spike trains from the conductance-based integrate-and-

fire (I&F) type neural networks. It has been shown in experiment that I&F models can statistically faithfully capture the

response of cortical neurons under in-vivo-like currents in terms of both firing dynamics and subthreshold membrane

dynamics [31]. To show the advantage of incorporating correlations, we compare the high-dimensional two-sample

test with the Student t-test (TT) (See Methods.), in which neurons are assumed to be independent. Results show that,

based on the ACT method, the high-dimensional two-sample test method is much better to detect difference in stimuli

from high-dimensional neural spike trains than the TT method in all scanned dynamical regimes exemplified by two

scenarios: one is that we performed the two-sample tests for 2s recording of both referential and test samples; the other

is that by only using the referential sample to estimate the variance of statistics, we performed the two-sample tests

for the case that the recording time for a test data is very short, i.e., 360ms, while the recording time for a referential

data is 4s. We have also used the high-dimensional two-sample test method to build one tuning curve of population

neurons from a large-scale network model of primary visual cortex. This tuning curve is much sharper than a tuning

curve of firing rate and a tuning curve that uses the firing rates of two neurons [32]. The sharper tuning curve indicates

that the high-dimensional two-sample test is potentially more sensitive with respect to different inputs. Therefore, our

results show that by incorporating the information of correlations among neurons, the high-dimensional two-sample

test based on ACT method can detect difference in stimuli from the neural activities recorded in very short time.

The remainder of this paper is organized as follows. First, we show how to understand the results for a two-sample test

of multiple trials. Second, we describe ACT method in details. Third, we show ACT method is applicable for data of

2s recording of I&F neurons in most dynamical regimes. Fourth, we show ACT method is applicable for the case that

the recording time of I&F neurons for a test data is only 360ms while the recording time for a referential data is 4s.

Fifth, we apply the high-dimensional two-sample test method to build one tuning curve of population neurons from a

large-scale network model of primary visual cortex. Finally, we present our discussion and conclusion.

Results

The systems we study here are conductance-based I&F type neural networks [See Eq. (23) in Methods.]. We record

binary spike trains with sampling time bin size of 0.5ms from trajectories of neurons obtained by evolving system Eq.

(23) numerically. If a neuron fires during the recorded bin, its recorded value is 1, otherwise 0.
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Fig 1. Probability of rejection fractions. The plot is the probability of Nρ events rejected against the rejection

fraction ρ under the null hypothesis H0 [Eq. (1)] and the significance level 0.05. The red and blue lines are the case

of 100 trials and 200 trials, respectively.

The null hypothesis H0 is that the mean values of the referential and the test samples are the same in every dimension.

The significance level for a two-sample test is selected as 5%. For the TT method, we perform a two-sample test for

each dimension and accept the null hypothesis H0 when all dimensions pass the test. To keep the confidence level

95%, we set the significance level for each dimension in the TT method as 0.05/p (See Methods.), where p is the

dimension of data.

Rejection fraction

Under the null hypothesis H0, we can theoretically obtain the distribution of the statistic of CQ two-sample test method

(see Methods). By selecting the significance level of 5%, we can define a confidence interval (CI) to which the value

of the CQ statistic would belong with probability of 95% under the null hypothesis H0. During a test of one trial, we

would reject H0 with significance level of 5% if the value of the statistic is beyond the CI. If there are multiple trials,

what we get is a rejection fraction of H0. The understanding of this rejection fraction is as follows. Since we have

selected the significance level, we can calculate the probability of every rejection fraction ρ in N trials under H0:

Prob( fre j = ρ |H0,N) =C
Nρ
N 0.05Nρ(1− 0.05)N(1−ρ), (1)

where C
Nρ
N comes from the selection of Nρ terms from all the possible N choices. Fig. 1 displays the corresponding

probability of a rejection fraction ρ under H0, i.e., Prob( fre j = ρ |H0,N). In the case of 100 trials (red), for example,

Prob(ρ = 0.15|H0,N = 100) is more than three orders of magnitude smaller than Prob(ρ = 0.05|H0,N = 100). Hence,

it is very significant to reject H0 for the rejection fraction of 0.15. The function curve of Prob( fre j = ρ |H0,N) is sharper

in the case of 200 trials (blue), e.g., Prob(ρ = 0.15|H0,N = 200) is more than six orders of magnitude smaller than

Prob(ρ = 0.05|H0,N = 200). Therefore, it is more significant to reject H0 by a rejection fraction of 0.15 for the case

of 200 trials than that of 100 trials. The rejection fraction in an experiment of multiple trials indicates the significance

of rejecting H0. Fig. 1 also shows that a higher rejection fraction (larger than 0.05) makes the rejection of H0 more

significant. Therefore, when stimuli underlying the test and the referential samples are different, a higher rejection

fraction is better to detect the difference of these two stimuli. Note that when the test stimulus is the same as the

referential one, the rejection fraction of 0.05 is the most probable outcome, which is a consequence of the selected

significance level of 0.05. Since the rejection fraction can reflect the discriminability of a two-sample test method, in

the following examples, we focus on the rejection fraction.

3/16



Swift Two-sample Test on High-dimensional Neural Spiking Data Xu et al.

ACT pretreatment for neural data

In this section, we will elaborate the ACT pretreatment for neural data. As mentioned above, because of neural

dynamics, the consecutive recording data points of neural activity are not statistically independent. However, high-

dimensional two-sample test methods typically require statistically independent sampling to start with [23–28]. For

example of CQ method, the CQ statistic Qn ≡ Tn/σ̂n, where σ̂n is defined in Eq. (11) in Methods and

Tn =
∑

n1
i6= j

XT
1iX1 j

n1(n1 − 1)
+

∑
n2
i6= j

XT
2iX2 j

n2(n2 − 1)
−

2∑
n1
i=1 ∑

n2
j=1 XT

1iX2 j

n1n2

, (2)

X1 ∈ Rp×n1 and X2 ∈ Rp×n2 are the referential and the test samples, respectively, p is the dimension size of samples,

n1 and n2 are the sample sizes of the referential sample X1 and the test sample X2, respectively. Under the null

hypothesis H0, when the data points of X1 and X2 are sampled statistically independently, as p tends to infinity, the

statistic Qn would tend to the standard Gaussian distribution, by which the two-sample test can be performed. Under

the null hypothesis H0, it can be shown that the expected value E(Tn) = ||µ1 − µ2||22 is 0, where µ1 and µ2 are means

of the referential and the test samples, respectively. We consider a case that samples are dependent over time, such as

E(Xk, jXk, j+1) 6= E(Xk, j)E(Xk, j+1), where k = 1,2, Xk, j and Xk, j+1 are a pair of two consecutive sampling data points

of Xk, E(x) denotes the expectation of stochastic variable x. Since Xk, jXk, j+1 is a part of Tn and E(Xk, jXk, j+1) under

dependent sampling deviates from E(Xk, j)E(Xk, j+1) of independent sampling, as a result, E(Tn) would also have a

deviation from 0 even the null hypothesis H0 holds. Since the expected value E(Tn) of the null hypothesis H0 is 0, the

deviation of E(Tn) caused by dependent sampling cannot be dominated. Then, the distribution of Qn would deviate

from the standard Gaussian distribution under the null hypothesis H0. Hence, because of the bias induced by the

correlation in samples over time, the CQ method is not applicable for dependent samples.

We observe that the correlation over dimensions would not affect Tn. To apply two-sample test methods in neural data,

our idea is to transfer the correlation between data points over time into correlation over dimensions. For the case of

one neuron, its spike train is recorded as a time series (x1,x2, · · · ,xn) ∈ {0,1}n, where n is the total recorded bins. If

the correlation length of the time series is only one, i.e., E(xixi+1) 6= E(xi)E(xi+1) and E(xixi+ j) = E(xi)E(xi+ j) for

i ≤ n− j and j ≥ 2. We can turn the time series into a new two-dimensional series (Here, we assume n is an even

number. If n is an odd number, we discard the last data point.)

Y =

[

x1 x3 · · · xn−3 xn−1

x2 x4 · · · xn−2 xn

]

, (3)

in which every dimension of Y is an independent series over time. In general, we don’t know the correlation length

of a neural time series. Since the correlation time length of an aperiodic neural dynamical is usually around dozens

of milliseconds, we can select a time window ∆T which is much larger than the neural correlation time length to

partition the recording time. Multiple data points exist in every ∆T window. For example, if the sampling time bin

size is 0.5ms and ∆T = 60ms, then, each ∆T window has 120 data points. The mean value of these data points is

calculated to represent each ∆T window. Since the correlation length of a neural time series is smaller than the selected

∆T , if two data points have time distance larger than ∆T , they are effectively statistically independent. Hence, the

correlation length of the new time series is only one. We can perform the same process as Eq. (3) to split every

dimension into a two-dimensional series. If the original series has dimension p, the dimension of the new series is 2p

as follows














x11 x13 · · · x1,n−3 x1,n−1

x12 x14 · · · x1,n−2 x1,n

x21 x23 · · · x2,n−3 x2,n−1

x22 x24 · · · x2,n−2 x2,n
... · · ·

...
...















. (4)

We refer this process as the averaging and correlation transferring (ACT) method. Next, we would address the follow-

ing problem of ACT:

(i) There are still some extra correlations, such as x2 and x3 in Eq. (3), which we refer to as antidiagonal correlation. In

the estimator of the variance part of CQ statistic Qn [Eq. (11) in Methods], the antidiagonal correlation is not allowed,

either. What is the influence of the antidiagonal correlation?
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(ii) There are infinite values larger than the neural correlation length. How can we select a proper time window ∆T?

We first use a numerical example to study the influence of different ∆T . Fig. 2 displays a numerical example of

scanning ∆T while applying ACT method to analyze data recorded from an I&F neural network. The network consists

of 160 excitatory and 40 inhibitory neurons with random connections of probability 0.1 driven by a Poisson input.

Every trial requires 2s recording time for each stimulus. The mean firing rate of each neuron is around 20Hz. We

apply two-sample test methods for 400 trials in four situations, namely, CQ with 200 neurons (blue), CQ with 50

neurons (black), TT with 200 neurons (red) and TT with 50 neurons (cyan). Note that the 50 neurons are selected at

random.

In Fig. 2a, the test stimulus is the same as the referential one. When ∆T is not too small (larger than 20ms), the

rejection fractions of all cases are around the selected significance level 0.05, which is consistent with the most

probable outcome in Fig. 1. We can also examine whether the distribution of the statistic Qn tends to the standard

Gaussian distribution. When ∆T is only 10ms, the distribution of Qn for the sample of 200 neurons is far from the

Gaussian distribution (Fig. 2c). When ∆T is larger, such as 60ms, the distribution of Qn for the sample of 200 neurons

fits the Gaussian distribution well (Fig. 2d). These phenomena indicate that the antidiagonal correlations barely have

influence for a large ∆T . There are two sources of antidiagonal correlation, one is the consecutive recordings of a

neuron, such as x12 and x13 in Eq. (4), the other is the consecutive recordings of different neurons, such as x22 and x13

in Eq. (4). Here is the reason why the antidiagonal correlations barely have influence: (i) We select a ∆T larger than the

correlation length of neuron data, then, the antidiagonal correlations from the consecutive recordings would be weak

comparing to the variance; (ii) The correlation coefficient between neurons are normally rather weak (≤ 0.1) [33],

then the antidiagonal correlations from the consecutive recordings of different neurons would also be rather weak

comparing to the variance; (iii) In addition, for a data of dimension p, there are many non-zeros in the covariance of

Eq. (4), i.e., p variances of all dimensions and p(p− 1) pairwise correlations between dimensions. Therefore, the

bias induced by antidiagonal correlations can be dominated. The correlations of neural data over time do not vanish,

whereas ACT method split them into two parts, one is correlations between dimensions which can be dealt with by

statistical methods, the other is antidiagonal correlations which can be dominated.

We also found that, when the test stimulus is different from the referential one, the rejection fraction of H0 is not very

sensitive to the parameter ∆T when ∆T is sufficiently large. The expectation of the statistic Qn [Eq. (9) in Methods]

in CQ method is crucial to the rejection fraction. Hence, we study the expectation E(Qn) for different ∆T . We can

compute the expectation E(Qn) by Eq. (15) in Methods. We assume that ∆T is larger than the correlation time length

of neural data and the total recording time is enough long. We denote n as the sample size of both two samples with a

time window ∆T . When we use ∆T ′ = α∆T , the new sample size is

n′ ≈ n/α. (5)

Since the correlation between neurons is small comparing to the variance [33] and we have assumed that ∆T is larger

than the correlation length of neuron data, we can assume the antidiagonal correlation is weak. Under this assumption,

the covariance Σ̃′ for ∆T ′ and Σ̃ for ∆T (see Eq. (11) in Methods) have the following relation (See Appendix for a

proof.)

Σ̃′ ≈ Σ̃/α, (6)

then substituting Eqs. (5) and (6) into Eq. (15), we can obtain the expectation of Q′
n for ∆T ′,

E(Q′
n)≈ 2C

(n/α)||µ1 − µ2||2
√

tr(Σ̃2/α2)
= 2C

n||µ1 − µ2||2
√

tr(Σ̃2)
= E(Qn),

where the coefficient C = 1/(4
√

2) as defined in Eq. (16) in Methods. Hence, ∆T would not affect the test result

too much. But our recording time is finite, ∆T should not be selected as a too large value. Numerical simulations

also show that the test result is not very sensitive to the parameter ∆T . As is shown in Fig. 2b, where the test stimuli

are 1.8% larger in Poisson input magnitude than that of the referential stimuli, the rejection fractions of CQ and TT

method do not change a lot when ∆T is not too small (larger than 40ms). We can also see that CQ have much higher

rejection fractions than TT, and the results of CQ are better of 200 neurons (blue dots) than those of 50 neurons (black

dots).

Since we have shown that the test result is not very sensitive to the parameter ∆T , in the following, we will fix ∆T as

60ms and show that this data pretreatment is applicable in most neural dynamical regimes.
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Fig 2. Test results for different time window ∆T . The network consists of 160 excitatory and 40 inhibitory

neurons with random connections with probability 0.1 driven by a Poisson input. The coupling strength is

s = 0.001ms−1 (the corresponding excitatory/inhibitory postsynaptic potential is∼ 0.1mV). The input parameters are

chosen µ = 0.7ms−1 (Poisson input rate) and f = 0.008ms−1 (Poisson input magnitude). The sampling time bin size

is 0.5ms. Every trial requires 2s recording for each stimulus. The mean firing rate is around 20Hz. We apply

two-sample test methods for 400 trials in four situations, CQ with 200 neurons (blue), CQ with 50 neurons (black),

TT with 200 neurons (red) and TT with 50 neurons (cyan). For (a) and (b), the plot is the rejection fraction against

the time window ∆T . (a) The test stimuli are the same as the referential one. The dashed line is y = 0.05. (b) The test

stimuli are 1.8% larger in Poisson input magnitude than the referential stimuli. (c) and (d) are the distributions of the

statistic Qn for the case of 200 neurons in (a) for ∆T = 10ms and ∆T = 60ms, respectively. Blue dots are the

numerical results and green lines are the standard Gaussian distributions, where both are normalized by the

corresponding maximum values.
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Fig 3. Test results in different dynamical regimes of an I&F neural network. The network consists of 160

excitatory and 40 inhibitory neurons with random connections with probability 0.1 driven by Poisson inputs. The

coupling strength between two connected neurons is selected at random based on the uniform distribution of the

interval [0,s], s = 0.01ms−1 (the corresponding excitatory/inhibitory postsynaptic potential is∼ 1mV). The Scanning

parameters covers the realistic firing rates (3Hz− 50Hz) of real neurons. The sampling time bin size is 0.5ms. ∆T is

fixed as 60ms. The recording time at every trial for the referential and the test stimuli are 2s. We apply two-sample

test methods for 400 trials in four situations, CQ with 200 neurons (blue), CQ with 50 neurons (black), TT with 200

neurons (red) and TT with 50 neurons (cyan). For (a) and (b), the plot is the rejection fraction. (a) The test stimuli are

the same as the referential one. (b) The test stimuli are 1.8% larger in Poisson input magnitude than the referential

stimuli. The parameters of stimuli of each index in (a) and (b) are from the left bottom corner of the box with the

corresponding index inside in (c).

Numerical experiments on various neural dynamical regimes

Next, we examine whether this pretreatment is dependent of a particular dynamical regime. Dynamical regimes

are often realized by a particular choice of network system parameters. We investigate this issue by scanning the

magnitude f and the rate µ in the Poisson drive of I&F neural networks. The scanned range of these parameters

produces network dynamics with the range of firing rates (3Hz− 50Hz) of real neurons. Note that there are typically

three dynamical regimes for the I&F neurons with a fixed input magnitude f [34]: (i) a highly fluctuating regime

when the input rate µ is low; (ii) an intermediate regime when µ is moderately high; (iii) a low fluctuating or mean

driven regime when µ is very high. The underlying network consists of 160 excitatory and 40 inhibitory neurons. It

is a network of random connections with connection probability 0.1 and the coupling strength between two connected

neurons is selected at random based on the uniform distribution between 0 and 1mV. Every trial requires 2s recording

time for each stimulus. We also apply two-sample test methods for 400 trials in four situations, CQ with 200 neurons

(blue), CQ with 50 neurons (black), TT with 200 neurons (red) and TT with 50 neurons (cyan). Note that the 50

neurons are also selected at random. The parameters of stimuli of each index in Fig. 3a and b are from the left bottom

corner of the box with the corresponding index inside in Fig. 3c. As is shown in Fig. 3a, CQ and TT both work well for

all scanned dynamical regimes, i.e., the rejection fractions of the null hypotheses H0 for the case of the same stimuli

are around the selected significance level 0.05. When the test stimuli are 1.8% larger in Poisson input magnitude than

those of the referential stimuli, Fig. 3b shows that CQ has higher rejection fractions than those of TT, and CQ with 200

neurons has higher rejection fractions than those of CQ with 50 neurons. Conclusion is that, in all scanned dynamical

regimes, CQ method is better than TT method and CQ can use the advantage of large neuron number.

Swift discrimination tasks

As is shown in above numerical examples, every trial requires 2s recording time for each stimulus. However, a prey

can react to a predator in a shorter time, whereas it stays at a safe stimulus for a longer time. We can mimic the prey to

perform a discrimination task. Thus, we can let the recording time of the referential stimulus X1 longer, such as several

seconds, and that of the test stimulus X2 shorter, such as hundreds of milliseconds. There are usually two parts in a

test statistic, one is the summation of difference of mean values [e.g. Eq. (10)], the other is the variance part [e.g. Eqs.

(11), (12) and (13)], which is to normalize the statistic. The variance estimator usually requires more data points, for

example, in our estimator for CQ statistic, the variance part requires at least 6 data points (See Methods.), whereas the

mean difference part requires at least 2 data points. Since the recording time of X1 is much longer than that of X2, for
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Fig 4. Swift discrimination task. The recording time at every trial for X1 and X2 are 4s and 360ms, respectively.

Other parameters and illustrations are the same as Fig. 3. (a) The test stimuli are the same as the referential one. (b)

The test stimuli are 1.5% larger in Poisson input magnitude than the referential stimuli.

CQ and TT methods, we can estimate the variance part by X1 solely under the null hypothesis (See Methods.). We use

a numerical example to show that this treatment is able to deal with swift discrimination of hundreds of milliseconds.

Fig. 4 displays a swift discrimination version of Fig. 3. The recording time at every trial for X1 and X2 are 4s and

360ms, respectively. In the case of the same stimuli, as is shown in Fig. 4a, the rejection fractions of TT and CQ are

around the selected significance level 0.05. This indicates TT and CQ are available to perform swift discrimination

tasks. In the case of different stimuli, in which the test input is 1.5% larger in Poisson input magnitude, the results

are similar as above results, i.e., as is shown in Fig. 4b, CQ is better to discriminate different stimuli and CQ can use

advantage of large neuron number.

Tuning curve

Tuning curve is widely used to characterize the responses of one or a group of neurons with respect to various inputs.

The width of a tuning curve is a popular way to potentially reflect the sensitivity of considered neurons to the inputs.

In general, a tuning curve of firing rate is a classical and most used one. However, this idea is based on one clas-

sical viewpoint, in which neurons are considered to be independent. To understand how neurons code information,

correlations between neurons need to be probed. There is an idea [32] considering pairwise correlations, which we

refer to as Dependency in this paper (See Methods for details.). They consider the Kullback-Leibler distance of joint

distribution of two selected neurons to the distribution of the forced-independent type, which is a type formed under

the assumption that the neurons are acting independently.

To build a tuning curve by a two-sample test method, we establish a quantity from the rejection fraction,

Ntst = 1−ρ , (7)

where ρ ∈ [0,1] is the rejection fraction as mentioned above, it is larger for the input of larger difference. The quantity

Ntst is also in [0,1], but it is smaller for the input of larger difference.

To perform the comparison among different tuning curves, we record spike trains for drifting inputs of 10 different

orientations from an I&F neural network model of the primary visual cortex of the macaque (See Methods for Details.),

as is shown in Fig. 5. For the tuning curves of the firing rate and the Dependency, we selected two neurons who have

the same prefer orientations. The blue curves are normalized tuning curves of the firing rates for the two selected

neurons, the black one is the normalized Dependency tuning curve of the two selected neurons. The red one is the

normalized tuning curve of CQ method [Eq. (7)] using 2s recording data for both the referential and test stimuli in

each of 200 trials, where the referential orientation is the prefer orientation of the two selected neurons in the method

of Dependency. The cyan one is similar to the red one but using recording data of 4s. For the tuning curves of

CQ method, we select about 340 neurons to perform two-sample tests, where the firing rates of the selected neurons

are larger than 2.5Hz under at least referenntial inputs or test inputs. As is shown in Fig. 5, the curves of the CQ

method are sharper than those of the other two methods, which indicates the CQ method is potentially better than
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Fig 5. Normalized tuning curves in orientation tasks. We record spike trains for drifting inputs of 10 different

orientations from an I&F neural network model of the primary visual cortex of the macaque (See Methods for

Details.). The sampling bin size is 0.5ms. For the tuning curves of the firing rate and the Dependency, we selected

two neurons who have the same prefer orientations. The blue curves are normalized tuning curves of the firing rate

for the two selected neurons, the black one is the normalized Dependency tuning curve of the two selected neurons.

The red and cyan ones are normalized tuning curves of CQ method [Eq. (7)] using 2s and 4s data in each of 200

trials, respectively, where the referential orientation is the prefer orientation of the two selected neurons in the method

of Dependency. For tuning curves of CQ method, we select about 340 neurons to perform two-sample tests, where

the firing rates of the selected neurons are larger than 2.5Hz at least under reference inputs or under test inputs.

∆T = 60ms.

other methods in discrimination tasks. The cyan curve is computed by CQ method with 4s data for each trial, which is

sharper than the red curve using 2s data for each trial. This shows that the CQ method is able to use the advantage of

large neural number and long recording time. It is no surprise that the CQ method is much better than other methods

since we are able to use more information to estimate the turning curves.

Discussion

To understand how neurons code stimulus in short time, a very first step is to detect the difference of external stimuli

in the activities of neural networks. To achieve this goal, it requires proper high-dimensional methods for neural data

of “large p, small n”. In another aspect, there is great progress in statistics to deal with samples of “large p, small

n”. However, because of neural dynamics, the correlation of neural recordings over time forms a barrier between the

neural data and high-dimensional statistical methods. ACT method, which transferring the correlation over time to

the correlation over dimensions, shows a possible way to overcome this barrier. Through spike trains obtained from

I&F neural networks, we show that ACT method enables the high-dimensional two-sample test methods to analyze

numerical neural data within very short time (hundreds of milliseconds). Even there is only one trial data, with ACT

method, we can also perform a two-sample test on neural data with single-trial statistical power.

Comparing to the TT method and other tuning curves considering only few neurons, based on ACT method, the high-

dimensional statistical methods incorporating with neural correlations and neural number can probe finer difference

in the activities of neural networks. How well the CQ method can use the advantage of large neuron number? As

is shown in Eq. (17) in Methods, in an example of data of Gaussian distribution, since the covariance matrix is an

identity, the expectation E(Qn) is a linear function of
√

p, where p is the dimension of the data. How is the situation in

the neural data? Fig. 6 displays one case of Fig. 3, where µ = 0.7ms−1 and f = 0.008ms−1, the expectation E(Qn) is

a nearly linear function of
√

p, where p is the selected neuron number. This linear relation is a consequence of sparse

covariance of neural data.
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Fig 6. The relation between E(Qn) and neuron number. This is one case in Fig. 2, where µ = 0.7ms−1 and

f = 0.008ms−1. The red points are the E(Qn) from numerical neural data with respect to the number of selected

neurons, and the green line is a linear fitting in the log-log plot with slope 0.495. This shows that E(Qn) is a nearly

linear function of
√

p, where p is neuron number.

The antidiagonal correlation is a limitation of extending our method to data with slow decay dynamics. For the neural

data, a ∆T of 60ms also limits us from performing a two-sample test on data of 100ms recording time.
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Methods

High-dimensional two-sample test problem

In general, we can describe the problem in the following way. Xk1,Xk2,· · · ,Xknk
∈Rp×1 are a sample of data sampled

independently from the k-th distribution, where k = 1,2, p is the dimension and nk is the sample size of the k-th sample.

The mean value and covariance of the k-th sample are denoted by µk = (µk1,µk2, · · · ,µkp)
T ∈ Rp×1 and Σk ∈ Rp×p,

respectively. The null and alternative hypotheses are as follows:

H0 : µ1 = µ2 v.s. H1 : µ1 6= µ2, (8)

where the null hypothesis H0 consists of p marginal hypotheses, i.e., H0l : µ1l = µ2l , for l = 1, · · · , p. If any component

of µ1 is not equal to the corresponding one of µ2, H0 is rejected. The significance level for this paper is selected as

0.05.

CQ two-sample Test

The CQ method [23] considers the test statistic Qn as follows, under the null hypothesis,

Qn ,
Tn

σ̂n

d→ N(0,1) p → ∞,n → ∞, (9)

10/16



Swift Two-sample Test on High-dimensional Neural Spiking Data Xu et al.

where
d→ indicates that the distribution of Qn converges to the standard Gaussian distribution in distribution, Tn and

σ̂n are defined as below,

Tn =
∑

n1
i6= j XT

1iX1 j

n1(n1 − 1)
+

∑
n2
i6= j XT

2iX2 j

n2(n2 − 1)
−

2∑
n1
i=1 ∑

n2
j=1 XT

1iX2 j

n1n2

, (10)

σ̂2
n1 =

2t̂r(Σ2
1)

n1(n1 − 1)
+

2t̂r(Σ2
2)

n2(n2 − 1)
+

4 ̂tr(Σ1Σ2)

n1n2

, (11)

in which σ̂n is the standard deviation of Tn, Σk is the covariance of X2. We use the following estimators for t̂r(Σ2
i ) and

̂tr(Σ1Σ2), which are slightly different with the estimators in Ref. [23]. We denote A jk is a copy of X1 eliminating the

j-th and the k-th data point,

t̂r(Σ2
1)new

= {n1(n1 − 1)}−1tr{
n1

∑
j 6=k

(X1 j − c
jk
11)(X1 j − c

jk
12)

T (X1k − c
jk
13)(X1k − c

jk
14)

T}, (12)

where c
jk
1i , i = 1,2,3,4, is the sample mean of the i-th quarter of A jk. We denote Al is a copy of X1 eliminating the l-th

sample and Bk as a copy of X2 eliminating the k-th sample,

̂tr(Σ1Σ2)new = {n1n2}−1tr{
n1

∑
l

n2

∑
k

(X1l −dl
11)(X1l −dl

12)
T (X2k −dk

21)(X2k −dk
22)

T}, (13)

where dl
1i, i = 1,2 is the sample mean of the i-th half of Al , dk

2i, i = 1,2 is the sample mean of the i-th half of Bk.

Elementary derivations show that

E(Tn) = ||µ1 − µ2||2, (14)

where E(x) is the expectation of a stochastic variable x, E(Xki) = µk for k = 1,2 and 1 ≤ i ≤ nk.

The expectation of Qn is

E(Qn) =C
n0||µ1 − µ2||2

√

tr(Σ̃2)
, (15)

where n0 = n1 + n2 − 2, the composite covariance Σ̃ = (1− h)Σ1 + hΣ2, h = n1/(n1 + n2) and

C =
h(1− h)√

2
. (16)

To see the power of CQ method intuitively, we give a simple example. Both samples have the same lengths, denoted as

n, and the same dimensions, denoted as p. The mean of the first sample is µ1 = 01×p, and that of the second sample is

µ2 = 11×p. Assuming that the k-th sample (k = 1,2) is sampled independently from the normal distribution N(µk,1),
then, we have

E(Qn)≈
n||µ1 − µ2||2
√

8tr(Σ2)
= n

√
p/

√
8. (17)

Since the expectation of Qn is crucial to the resolution of the method, p and n are therefore important factors to the

resolution.

In a swift two-sample test, the variance part is estimated by X1 solely. Eq. (11) would become

σ̂2
n1 =

2t̂r(Σ2
1)

n1(n1 − 1)
+

2t̂r(Σ2
1)

n2(n2 − 1)
+

4t̂r(Σ2
1)

n1n2

,

where t̂r(Σ2
1) is estimated by Eq. (12).
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Student t-test (TT)

x = (x1, · · · ,xnx) and y = (y1, · · · ,yny) are independently sampled from two one-dimensional distributions for nx and

ny times, respectively. The statistic quantity of Student t-test (TT) test is defined as follows:

QTT
n ,

x− y
√

s2
x

nx
+

s2
y

ny

, (18)

where

x =
1

nx

nx

∑
j=1

x j, (19)

y =
1

ny

ny

∑
j=1

y j, (20)

s2
x =

1

nx − 1

nx

∑
j=1

(x j − x)2, (21)

s2
y =

1

ny − 1

ny

∑
j=1

(y j − y)2. (22)

For data with dimension p, it can be dealt with by TT one by one dimension independently. In order to keep the total

significance level still being 0.05, the significance level for each dimension is selected by 0.05/p. For each dimension,

the acceptation of null hypothesis is 1−0.05/p. If we assume that data of different dimensions are independent, for a

large p, the acceptation of null hypothesis of total test is

(1− 0.05

p
)p ≈ 1− 0.05,

which indicates the significance level for the whole test is still around 0.05.

In a swift two-sample test, the variance part is estimated by x solely, i.e., s2
y is replaced by s2

x in the QTT
n in Eq. (18).

Integrate-and-fire model

In this paper, we use the integrate-and-fire (I&F for short) neuron model for neural simulations. The dynamics of

conductance-based I&F model [35] is governed by














dVi,Q

dt
=−GL(Vi,Q − εL)−GE

i,Q(Vi,Q − εE)−GI
i,Q(Vi,Q − ε I),

dGE
i,Q

dt
=−GE

i,Q

σ E + SQE ∑
NE

jE 6=i ∑k mi jE δ (t −TjE ,k)+ fE ∑l δ (t −T
F,E

i,l )
dGI

i,Q

dt
=−Gi,Q

σ I + SQI ∑
NI

j 6=i ∑k mi jI δ (t −TjI ,k)+ fI ∑l δ (t −T
F,I

i,l ),

, (23)

where the i-th neuron with type Q = E or I, has both excitatory conductance GE
i,Q and inhibitory conductance GI

i,Q,

and the εE and ε I are the excitatory and inhibitory reversal potentials, respectively. Vi,Q is the membrane potential.

GL is the leak conductance. The decay time scale of excitatory and inhibitory synaptic conductance are σE and σ I ,

respectively. SQE and SQI are the strength of input from excitatory and inhibitory neurons in the system, respectively.

We only use excitatory Poisson input to drive the system with the rate µ and magnitude fE = f , fI = 0. The network

structure is denoted by adjacency matrix mi j.

The i-th neuron will evolve according to Eq. (23) until Vi,Q reaches the voltage threshold VT at which the neuron will

produce a spike. The spike time is denoted by T
F,Q

i,k , where i is the index of neuron, k is the order of the spike of neuron

i. Then Vi,Q is reset to be the resting potential VR immediately. Vi,Q will be kept at VR for a refractory period τre f .

When this is over, Vi,Q starts to evolve again.

The parameter set we used in the numerical experiment is: τref = 2ms, σE = 2ms, σ I = 5ms, GL = 0.05ms−1.

The voltage uses a normalized unit: VT = 1, VR = 0, εL = 0, εE = 14/3, ε I = −2/3. They correspond to typical

physiological values: GL = 50× 10−6 Ω−1cm−2, VT = −55mV, VR = εL = −70mV, ε I = −80mV, εE = 0mV. We

choose this set of parameters because they are widely used.
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Neural network model of the primary visual cortex of the macaque

The simulation model of orientation discrimination task is an I&F neural network model of the primary visual cortex

(V1) of the macaque, details can be found at references [36, 37]. In this paper, the network model consists of 4096

neurons, 25% inhibitory neurons. Each V1 cell sees a collection of Lateral geniculate nucleus (LGN) neurons, where

the number of LGN neurons is uniform selected from 0 to 30. The on and off cells confer the orientation and spatial

phase preference of V1 cell. Orientation preference is laid out in pinwheels. The V1 neurons also get inhibitory and

excitatory input from other V1 cells. The input is drifting sinusoid,

I(~x, t) = I0[1+ ε sin(ωt −~k ·~x+φ)],

where intensity I0 = 15.0, contrast ε = 100%, temporal frequency ω = 2π×20Hz, and spatial phase φ depends on

the neural location. The spatial frequency wave vector of the grating,~k = k(cosθ ,sinθ ), has spatial frequency k =
2π×76.9/cycle and orientation θ . In the task, we pick an orientation input as the referential stimuli, then, we can

compute the rejection fraction of a test orientation input by a two-sample test method.

Tuning curve: Dependency

Another tuning curve [32] considers a pair of neurons, which we refer to as Dependency. It considers the Kullback-

Leibler distance between joint distribution of two selected neurons and the distribution of its forced-independent type,

which is a type formed under the assumption that the neurons are acting independently. By denoting Pσiσ j
is the

probability of neuron state (σi,σ j), the marginal distribution of first neuron can be obtained by

p1
1 = P10 +P11,

p1
0 = P01 +P00,

where p1
σ denotes the probability of the first neuron with state σ ∈ {0,1} of first neuron. Similarly, p2

σ can be evaluated.

By assuming that neurons are independent, the joint distribution of forced-independent type Qσi,σ j
can be obtained,

Q11 = p1
1 × p2

1,

Q10 = p1
1 × p2

0,

Q01, Q00 can be evaluated similarly. The Dependency is defined as following,

D = ∑
σi,σ j∈{0,1}

Pσi,σ j
log

Pσi,σ j

Qσi,σ j

.

Appendix

The relation between Σ′ and Σ

In ACT method, the time window ∆T is a free parameter. Nevertheless, we show that the test result is not sensitive

to the parameter ∆T when ∆T is larger than correlation length. To show this, we prove an important relation Eq. (6),

which is a consequence under the condition that the antidiagonal correlation is very weak. For the sake of illustration,

we consider a two-dimensional time series,

(

u

v

)

=

(

u1 u2 · · · ui · · ·
v1 v2 · · · vi · · ·

)

,

where each dimension is an independent time series, the covariance is denoted as

Σ =

(

σ2
u σ2

uv

σ2
uv σ2

v

)

.
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If we select another ∆T ′ = α∆T , for the sake of simplicity, we assume that α is an integer, then, we have another

two-dimensional time series,
(

U

V

)

=

(

U1 U2 · · · Ui · · ·
V1 V2 · · · Vi · · ·

)

,

where

Ui =
1

α

α

∑
j=1

u(i−1)α+ j,

Vi =
1

α

α

∑
j=1

v(i−1)α+ j.

We denote the covariance of new time series as

Σ′ =

(

σ2
U σ2

UV

σ2
UV σ2

V

)

.

The variance of U is

σ2
U = var(

1

α

α

∑
j=1

u j) =
1

α
σ2

u . (24)

The variance of V is

σ2
V = var(

1

α

α

∑
j=1

v j) =
1

α
σ2

v . (25)

The covariance of U and V is

σ2
UV = E[

1

α

α

∑
i=1

ui −E(
1

α

α

∑
j=1

u j)][
1

α

α

∑
i=1

vi −E(
1

α

α

∑
j=1

v j)]

= E(
1

α

α

∑
i=1

ui ·
1

α

α

∑
j=1

v j)−Eu1Ev1

=
1

α2

α

∑
i, j=1

E(uiv j)−Eu1Ev1,

where E(x) denotes the expectation of a stochastic variable x. We have a key assumption that the antidiagonal correla-

tion is very weak, i.e.,

E(uiv j)≈ EuiEv j, i 6= j. (26)

Based on the assumption Eq. (26), we have

σ2
UV =

1

α2

α

∑
i=1

E(uivi)+
1

α2

α

∑
i6= j

E(uiv j)−Eu1Ev1

≈ 1

α
E(u1v1)+

α(α − 1)

α2
Eu1Ev1 −Eu1Ev1

=
1

α
(E(u1v1)−Eu1Ev1),

therefore,

σ2
UV ≈ 1

α
σ2

uv. (27)

From Eqs. (24,25,27), we arrive at

Σ′ ≈ 1

α
Σ. (28)

Since the covariance is a relation of every two dimensions, Eq. (28) can be generalized to high-dimensional time

series. The assumption Eq. (26) is based on two facts, one is that the correlation between neurons is small comparing

to the variance [33], the other is that we select a ∆T which is larger than the correlation length of neuron data. Since

no matter for ∆T or ∆T ′, data processing is based on the original sampled data, therefore, α does not have to be an

integer.
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