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Granger causality (GC) is a powerful method for causal inference for time series. In general,
the GC value is computed using discrete time series sampled from continuous-time
processes with a certain sampling interval length τ , i.e., the GC value is a function of
τ . Using the GC analysis for the topology extraction of the simplest integrate-and-fire
neuronal network of two neurons, we discuss behaviors of the GC value as a function of
τ , which exhibits (i) oscillations, often vanishing at certain finite sampling interval lengths,
(ii) the GC vanishes linearly as one uses finer and finer sampling. We show that these
sampling effects can occur in both linear and non-linear dynamics: the GC value may
vanish in the presence of true causal influence or become non-zero in the absence of
causal influence. Without properly taking this issue into account, GC analysis may produce
unreliable conclusions about causal influence when applied to empirical data. These
sampling artifacts on the GC value greatly complicate the reliability of causal inference
using the GC analysis, in general, and the validity of topology reconstruction for networks,
in particular. We use idealized linear models to illustrate possible mechanisms underlying
these phenomena and to gain insight into the general spectral structures that give rise
to these sampling effects. Finally, we present an approach to circumvent these sampling
artifacts to obtain reliable GC values.
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1. INTRODUCTION
There have been great advances in experimental observational
techniques in neuroscience, from single-unit, multi-unit, local
field potential (LFP), to non-invasive electroencephalogra-
phy (EEG), magnetoencephalography (MEG), and functional
Magnetic Resonance Imaging (fMRI). These experimental
tools have expanded the examination of physiological cor-
relations of neuronal responses to stimuli to causal effects
of how different parts of the nervous system influence one
another. One of the fundamental questions is how one
can infer causal relations between neurons or between neu-
ronal populations through measured time series, which rep-
resent neural activities of different neurons or neuronal
populations.

There is a long history of studying causal relations between
time series. Granger causality (GC) has been developed to study
how one time series is influencing the other. Recently GC
has been applied to extract causal or structural information
from time series (Strogatz, 2001; Boccaletti et al., 2006; Bressler
and Seth, 2011). It has been applied to analyze times series
obtained through invasive techniques, such as single-unit, multi-
unit (Passaro et al., 2008), LFP (Brovelli et al., 2004; Bressler
et al., 2007) recordings as well as non-invasive techniques, such
as EEG (Astolfi et al., 2006), MEG (Gow et al., 2008), and fMRI
(Roebroeck et al., 2005; Deshpande et al., 2008; Hamilton et al.,

2010). The GC theory aims to analyze causal influence of one time
series Xt on the other Yt by examining whether the prediction
of Yt can be improved upon the incorporation of information
of Xt (Wiener, 1956; Granger, 1969; Geweke, 1982). Although
GC has proven to be a powerful framework to study directed
causal connectivity within the brain, there are many challenges
in its application to acquire reliable results. Usually the applica-
tion of GC requires the time series to be linear. When time series
are linear and Gaussian, GC is equivalent to the transfer entropy
(Barnett et al., 2009; Bressler and Seth, 2011). For non-linear,
non-Gaussian time series, it remains an active research field to
study the applicability of the GC. Note that, the notion of GC is
statistical rather than structural, i.e., through statistical features of
responses, it identifies directed statistical functional connectivity,
which may be different from physical causal interactions in the
systems.

As a statistical method, one of the important issues in the GC
analysis is how to sample the dynamics in order to obtain suit-
able time series for a reliable result from GC analysis. It has been
pointed out that GC is not invariant to the sampling interval
(McCrorie and Chambers, 2006). Spurious causality may arise
if sampling is not sufficiently fine to capture the evolution of
dynamical variables (McCrorie and Chambers, 2006). In its appli-
cation to the analysis of fMRI data, one is confronted with the
unavoidable issue of low-pass filtering and down-sampling in
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processing the BOLD signal (Roebroeck et al., 2005; Danks and
Plis, 2013).

However, the directed statistical functional connectivity as
revealed in the GC analysis is intimately related to the struc-
tural connectivity of networks. Previously, we have applied the
GC analysis to reconstruct network structural connectivity and
our results demonstrate that the GC analysis can be successfully
used to reconstruct the coupling structures of the integrate-
and-fire (I&F) networks (Zhou et al., 2013b, 2014). We note in
passing that for smoothly coupled oscillator networks (with or
without noisy inputs), techniques including chaotic synchroniza-
tion or phase dynamics have been used to uncover the struc-
tural connectivity via random phase reset or their responses to
perturbations (Yu et al., 2006; Timme, 2007; Napoletani and
Sauer, 2008; Smirnov and Bezruchko, 2009; Ren et al., 2010;
Levnajić and Pikovsky, 2011), whereas, for some simple non-
smooth network dynamics, e.g., δ-pulse coupled, current-based
integrate-and-fire systems, their topologies can be reconstructed
by designing a specific set of external inputs (Bussel et al., 2011).
However, in general, it remains a challenging task to directly
uncover the network topology for a non-smooth, non-linear sys-
tem, such as the conductance-based I&F networks, given the
condition that only the dynamical activity at individual nodes
can be measured. The GC analysis in our network construction
uses time series measured from the network dynamics response,
such as the membrane potential, to a natural input. In this
approach, we do not design specific inputs to probe the spe-
cific response of the system in order to uncover the network
topology.

Because most dynamical quantities are continuous in time, GC
values are computed using the discrete time series sampled from
these continuous time processes. In this work, we analyze sam-
pling artifacts in the GC analysis. In particular, we examine the
reliability of the I&F network topology reconstructed using the
GC analysis, by studying behaviors of the GC value as a function
of sampling interval length. We will term this function as the GC
sampling structure. As will be shown below, surprisingly, there are
oscillations in the GC sampling structure and the GC may even
vanish on a set of finite sampling interval lengths even if there are
physical couplings between neurons. The phenomenon of vanish-
ing GC on a set of sampling interval lengths obviously complicates
the interpretation of causal inference and raises the issue of the
reliability of network topology reconstruction using the GC anal-
ysis. In addition, if sampling interval is not sufficiently small, as
mentioned above, GC may not vanish even when there is actually
no causal influence (McCrorie and Chambers, 2006). Therefore,
in general, without properly taking into account the sampling
effect, different conclusions can be drawn about causality, due
to the difference in sampling, when the GC analysis is applied
to experimental observational data. One may presume that if we
used discrete time series sampled using ever finer interval lengths
from a continuous process in time, a more reliable GC value for
causal inference could be obtained since the sampled time series
in such case is more and more close to the continuous dynamical
process. However, as we will show below, the GC value actually
approaches zero linearly in proportion to the sampling interval
length. Therefore, in the GC analysis for the network topology

reconstruction, one of the main theoretical challenges is what is
an appropriate sampling interval in order to obtain reliable GC
values.

To answer the question of how to determine the sampling
interval, we first characterize various features associated with the
GC sampling structures arising from the network topology recon-
struction. We will use idealized linear models to illustrate possible
mechanisms underlying these structures and to gain insight into
reliability of the GC analysis applied to linear and non-linear
systems. Finally, we will present general strategies to circumvent
these complications in the GC analysis. It is important to point
out that these sampling issues arise from how discrete time series
for the GC analysis are sampled from continuous time processes
and they need to be addressed regardless of whether one uses
a parametric method or a non-parametric method for the GC
evaluation (Geweke, 1982; Dhamala et al., 2008).

This article is organized as follows. In the section of Methods,
we briefly introduce the I&F network model, the GC analysis
and its application in the network reconstruction. In the section
of Results, first, we numerically study the GC sampling struc-
tures for the I&F networks. We observe that GC values oscillate
with respect to the sampling interval length τ and approach zero
linearly in proportion to τ as τ tends to zero. These two phe-
nomena may give rise to complications for reliable GC analysis
of the I&F network, in addition to the possible spurious GC in
the absence of causal influence. Second, we study mechanisms
of oscillations in GC sampling structures through linear mod-
els. Third, we study the limiting behavior of GC as τ tends to
zero and discuss the underlying mechanisms. In the section of
Discussion and Conclusion, we describe our approach of elimi-
nating the sampling artifacts in the application of GC and present
our conclusions. In Appendices A–C of Supplementary Material,
we present related mathematical details.

2. MATERIALS AND METHODS
2.1. I&F NETWORK MODEL
As we mentioned in the Introduction, we have applied GC anal-
ysis to reconstruct the topological connectivity of I&F networks.
Experimentally, it has been shown that models of I&F neurons
are able to capture rather well the subthreshold dynamics of a real
neuron in terms of linear response properties as well as statistical
firing properties of a real neuron (Carandini et al., 1996; Rauch
et al., 2003; Burkitt, 2006). The models of I&F neurons have been
extensively used in simulations of large-scale neuronal networks
in the modeling of cortical phenomena in the brain (Somers
et al., 1995; Troyer et al., 1998; McLaughlin et al., 2000; Tao et al.,
2004; Cai et al., 2005; Rangan et al., 2005; Zhou et al., 2013a). In
this work, we study the network of the conductance-based, I&F
neurons of excitatory type and its dynamics is governed by the
following equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dVi

dt
= −GL(Vi − εL) − Gi(Vi − εE) ,

dGi

dt
= − 1

σ
Gi +

N∑
j �= i

∑
k

sjiδ
(
t − Tj,k

)+ λ
∑

l δ
(

t − TP
i,l

)
,

(1)
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where Vi and Gi are the membrane potential and conductance
for the ith neuron in the network, respectively, GL is the leak
conductance, εL is the resting potential, εE is the reversal poten-
tial, σ is the conductance time constant. When Vi is between the
threshold Vth and the resting potential εL, the dynamics of a neu-
ron is described by Equation (1). However, when the membrane
potential of a neuron reaches the threshold Vth, it is reset to the
resting potential εL for a certain period τref (refractory period).
An action potential of a real neuron is modeled here by the event
of the threshold crossing and the voltage resetting. The event
of this threshold-reset dynamics is referred to as a firing event
(spike) of a neuron. sji is the connection strength from the presy-
naptic neuron j to the postsynaptic neuron i. For simplicity, we
study a homogeneously coupled network, i.e., sji = sAji, where s
is the connection strength, A = (Aji) is the adjacency matrix of
the network. Tj,k is the time of the kth spike of the jth neuron,
whereas TP

i,l is the arrival time of the lth spike of the input to
the ith neuron. The input is a Poisson process with rate ν and
strength λ.

In our work, we use dimensionless unit for membrane poten-
tials, in particular, Vth = 1, εL = 0, εE = 14

3 . These correspond
to unscaled physiological values, Vth = −55 mV, εL = −70 mV,
and εE = 0 mV (McLaughlin et al., 2000; Cai et al., 2005; Rangan
et al., 2005; Zhou et al., 2013a). Time constants retain its dimen-
sion, for which we use ms for its unit. We set τref = 2 ms and the
conductance time constant σ = 2 ms. Conductance has the unit
ms−1. We have GL = 0.05 ms−1, which corresponds to the phys-
iological membrane time constant 20 ms. The method we used
to solve system (1) numerically is a fourth order Runge-Kutta
method with spike-spike corrections, the details of which can be
found in Rangan and Cai (2007).

In addition to voltage signals, we also use time series con-
structed from spike trains:

S(t) =
+∞∑
i = 1

δ
(

t − Ti
f

)
,

where, δ(t − Ti
f ) is the Dirac delta function, Ti

f is the firing time of
the ith spike. In order to avoid the infinity in the Dirac δ-function,
we convolve these spikes with a kernel. The simplest kernel is
the indicator function with width d. Then, a spike train can be
represented as the following:

S̃(t) =
+∞∫
0

+∞∑
i = 1

δ
(
τ − Ti

f

)
Id(t − τ)dτ, (2)

where, Id(x) = 1 for |x| ≤ d
2 and Id(x) = 0 for |x| > d

2 . We use
sufficiently small d so there are no overlaps between spikes. Then,
we can obtain a time series of binary type by sampling signal (2)
with a certain sampling interval length.

In the following, we will perform the GC analysis on the time
series of voltage or spike trains to reconstruct the I&F network
topology, i.e., the adjacency matrix A = (Aji) and discuss the
sampling issues in this approach.

2.2. BRIEF INTRODUCTION TO THE GC ANALYSIS
The GC analysis is based on the idea that, if one can reduce the
prediction error about a time series after incorporating the history
of the second time series, then there must be a causal influence
of the second time series on the first (Wiener, 1956; Granger,
1969; Geweke, 1982). The GC analysis can be naturally formu-
lated in a bivariate form. However, the causality analysis can also
be naturally generalized to a multivariate form using conditional
Granger causality (Geweke, 1984; Ding et al., 2006). In the follow-
ing, for ease of later discussions, we briefly recapitulate properties
of Granger causality in the bivariate setting.

For two stationary time series Xt and Yt , one can perform
autoregression to obtain{

Xt = ∑∞
j = 1 a1jXt − j + ε1t,

Yt = ∑∞
j = 1 d1jYt − j + η1t,

(3)

where ε1t and η1t are autoregression residuals representing the
prediction errors when we consider the history of each time
series separately. Here, 	1 = var(ε1t), 
1 = var(η1t). The corre-
sponding joint regression has the following form for times series
Xt and Yt{

Xt = ∑∞
j = 1 a2jXt − j +∑∞

j = 1 b2jYt − j + ε2t,

Yt = ∑∞
j = 1 c2jXt − j +∑∞

j = 1 d2jYt − j + η2t,
(4)

where ε2t and η2t are joint regression residuals representing the
prediction errors after we consider a shared history for both time
series. The covariance matrix for ε2t and η2t is denoted by

� =
[

	2 ϒ2

ϒ2 
2

]
,

where 	2 = var(ε2t), 
2 = var(η2t), ϒ2 = cov(ε2t, η2t). By the
Gauss-Markov theorem (Scheffé, 1959), the series {ε1t}, {ε2t},
{η1t}, and {η2t} are white noise time series. It is evident from
Equations (3) and (4) that 	2 � 	1 and 
2 � 
1, that is, one can
never obtain a worse prediction (i.e., greater residual variance) of
one time series after incorporating information from the other
time series.

Following the idea of Granger causality, if 	2 = 	1, i.e., the
prediction error cannot be reduced by the joint regression, then
there is no causal influence from Yt to Xt . However, if 	2 < 	1,
there is a causal influence from Yt to Xt . This causal influence is
characterized by the Granger causality which is defined as

Fy→x = ln
	1

	2
. (5)

Clearly, Fy→x � 0 because 	2 � 	1; Fy→x = 0 when 	2 = 	1.
Similarly, Granger causality from {Xt} to {Yt} is defined as

Fx→y = ln

1


2
. (6)

The idea of instantaneous causality is to quantify the mutual
instantaneous influence of both time series without any time
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lag. If ϒ2 = 0, i.e., ε2t and η2t are uncorrelated, then incorpo-
ration of the new instantaneous information of Xt (ε2t) cannot
help to reduce the variance of η2t and vice versa. Therefore, the
instantaneous causality can be defined as

Fx · y = ln

2	2

|�| , (7)

where |�| is the determinant of the matrix �. Note that, when
ϒ2 = 0, |�| = 
2	2 − ϒ2

2 = 
2	2, therefore Fx.y vanishes, i.e.,
no instantaneous causality. The total Granger causality between
{Xt} and {Yt} can now be defined as

Fx , y = ln
	1
1

|�| ,

which can easily be seen to be the sum of all the three causality
terms Equations (5), (6), and (7):

Fx,y = Fy→x + Fx→y + Fx · y. (8)

Note that, in the GC analysis of our network topology recon-
struction, we mainly focus on the values of Fy→x and Fx→y

because they quantify the directional causal strengths. As can
be seen below, Fy→x and Fx→y can be related to the directional
connectivity of a network (Zhou et al., 2013b, 2014).

For our later discussions, in addition to the time-domain
description of GC, we also briefly summarize the description
of GC in the frequency domain (Geweke, 1982; Ding et al.,
2006). For the bivariate time series Xt, Yt , the spectral matrix

S(ω) is represented as S(ω) =
[

Sxx(ω) Sxy(ω)
Syx(ω) Syy(ω)

]
, where Sxx(ω)

is the auto-spectrum of the time series Xt , defined by Sxx(ω) =∑+∞
n = −∞ cov(Xt, Xt − n)e−inω, Syy(ω) is the auto-spectrum of

the time series Yt , Sxy(ω) is the cross-spectrum of Xt and

Yt , defined by Sxy(ω) = ∑+∞
n = −∞ cov(Xt, Yt − n)e−inω. Note that

Syx(ω) is the complex conjugate of Sxy(ω). The covariances
of residuals possess the following spectral representations [see
(Geweke, 1982; Ding et al., 2006) for details]:

ln 	1 = 1

2π

π∫
−π

ln Sxx(ω)dω, (9)

ln 
1 = 1

2π

π∫
−π

ln Syy(ω)dω, (10)

ln |�| = 1

2π

π∫
−π

ln |S(ω)| dω, (11)

Fx,y = 1

2π

π∫
−π

ln

(
Syy(ω)Sxx(ω)

|S(ω)|
)

dω, (12)

where |S(ω)| = Sxx(ω)Syy(ω) − Sxy(ω)Syx(ω) is the determinant
of the spectral matrix S(ω).

2.3. EXTRACTION OF THE NETWORK TOPOLOGY
We now turn to the reconstruction of the network topology using
the GC analysis. For a two-neuron network as shown in Figure 1A
in which neuron x is postsynaptic to neuron y whereas there is
no synaptic input from neuron x to neuron y, the corresponding
adjacency matrix of the network is shown in Figure 1B. Applying
the GC analysis on voltage time series with sampling interval
length τ = 0.5 ms, time length T = 106 ms and regression order
p = 20, we obtain Fy→x = 8.3 × 10−4 and Fx→y = 0.1 × 10−4

(Figure 1C). Note that, in our work, the Bayesian information
criterion (Schwarz, 1978) is used to determine the regression
order p. In our example in Figure 1, we have Fy→x � Fx→y and
the GC value from neuron y to neuron x is almost two orders
of magnitude larger than the inverse direction. From this, one
may conclude that GC values are linked to the adjacency matrix
of the network, i.e., Ayx = 1 and Axy = 0. This is also consis-
tent with the result by performing statistical significance test (see
Appendix C in Supplementary Material for details) (Zhou et al.,
2013b, 2014). In the present work, we focus on the implication
of sampling effects and on the assessment of the reliability of this
reconstruction by the GC analysis.

3. RESULTS
3.1. EFFECTS OF SAMPLING
As discussed in the Introduction, the GC analysis has emerged
as a popular tool in detecting causal relations among times series
of physiological data measured in the brain. Note that most of
the dynamical quantities underlying these times series are con-
tinuous in time, therefore, a natural and important issue arises
about what is the proper way of constructing discrete time series
from continuous quantities when applying the GC analysis. To
address this issue, we examine the following two related ques-
tions: one is whether it makes great differences when discrete time
series sampled at different time intervals are used and the other
is whether the GC analysis would become more reliable as the
sampling interval length shrinks to zero. We will answer these
two questions using our I&F network dynamics below. Due to
its own importance, as mentioned previously, we will refer to the
GC value as a function of sampling interval length τ as the GC
sampling structure.

3.1.1. Oscillations in the GC sampling structure
In the topology extraction for the network dynamics of two
neurons (see Methods) with unidirectional interactions, whose
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FIGURE 1 | (A) Schematic representation of a unidirectional two-neuron
network with only neuron y synaptically connected to the postsynaptic
neuron x. (B) The corresponding adjacency matrix A with Ayx = 1 for the
network in (A). (C) The grayscale grid representation of the GC matrix F

(Fij = Fi → j ) for the network. The gray scale bar indicates the value of GC.
The parameters of the network are ν = 1ms−1, λ = 0.012, and s = 0.02.

Frontiers in Computational Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 75 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zhou et al. Sampling artifacts on the Granger causality analysis

topology is shown in Figure 1A, we perform the GC analysis on
both voltage and spike train signals of the neurons. In order to
examine possible differences of GC values with different sampling
intervals, we first perform a scan of interval lengths in sampling
of the dynamical variables from the I&F network. Note that we
evaluate the GC values with different sampling interval lengths
based on the same original signal, i.e., the same total duration of
the signal.

The scanning result is summarized in Figure 2A, which dis-
plays the GC value as a function of sampling interval length τ for
the I&F dynamics. From Figure 2A, for GC values obtained from
both the voltage and spike train time series, we have the follow-
ing Observations: (i) there are oscillations in the GC sampling
structure, (ii) the GC value becomes almost zero periodically,
and (iii) the GC value oscillates almost at a constant frequency
(approximately 500 Hz in Figure 2A), (iv) the GC value decays
to zero as τ becomes sufficiently large. It is easy to appreci-
ate Observation (iv) because for time series with a sufficiently
large sampling interval length, much of the information is lost,
resulting in unreliable causal detection, i.e., vanishing GC val-
ues. These observations demonstrate that for I&F dynamics there
are great effects of sampling interval length on the GC val-
ues regardless of whether the voltage or spike train time series
are used.

In general, there are oscillations, with a narrow spectral band
or a broad spectral band, in time series from the I&F networks. It
is natural to use the frequency domain to examine these features
of the time series. We ask whether there is a relation between the
oscillations of time series which can be revealed by the spectra and
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FIGURE 2 | The GC sampling structure and corresponding spectra. The
top row of panel is GC vs. sampling interval length: (A) Fx → y (red), Fy → x

(cyan) obtained from voltage time series and Fx → y (red dash), Fy → x (cyan
dash) obtained from spike train time series with sampling interval τ . The
time series are generated by the I&F network whose topology is shown in
Figure 1A with parameters ν = 1ms−1, λ = 0.066, s = 0.02. (B) Fx → y

(red) and Fy → x (cyan) with sampling interval length k (see text) for the
second order autoregressive model (13). (C) and (D): Corresponding
spectra of the voltage time series for (A) and the autoregressive time
series for (B), respectively: Sxx (cyan), Syy (red),

∣∣Sxy
∣∣ (black).

the GC sampling structure. In Figure 2C, the peak frequencies
of all spectra Sxx,

∣∣Sxy
∣∣ and Syy are approximately 250 Hz which

is half of the oscillation frequency 500 Hz in the GC sampling
structure in Figure 2A. In the following, we will investigate this
relation.

From the results of Figure 2A, a question naturally arises:
whether the oscillation phenomenon is general and is not con-
fined to the time series from the non-linear dynamics of the
I&F networks. In particular, we ask whether the oscillations
exist for linear autoregressive models, for which the GC frame-
work is established. In order to answer this question, we study a
simple example of linear models. A representative second-order
autoregressive model we study is{

Xt = 0.9Xt − 1 − 0.6Xt − 2 − 0.3Yt − 1 + 0.15Yt − 2 + εt,

Yt = 0.7Yt − 1 − 0.4Yt − 2 + ηt,
(13)

where εt and ηt are Gaussian white noise time series with vari-
ances var(εt) = 0.5, var(ηt) = 1 and covariance cov(εt, ηt) =
0.2. Figure 2B displays the GC values computed using the time
series generated by the model (13) with different “sampling inter-
val length” τ = k, i.e., we use every datum point after skipping
k − 1 points in between. From Figure 2B, we can also observe
the oscillatory feature in the GC sampling structure, which also
exhibits the behavior of GC that almost periodically vanishes.
Note that we have examined many other parameters for second-
order autoregressive models and found that the oscillatory fea-
tures are quite common, as will be addressed below. In Figure 2D,
the peak frequencies of all spectra for this model are approxi-
mately 1

6 which is again half of the oscillation frequency 1
3 in the

GC sampling structure in Figure 2B.
In summary, it can be seen that the oscillations of the GC val-

ues with respect to sampling interval length is a common feature,
not only for I&F networks but also for linear models. These fea-
tures in the GC sampling structure have strong ramifications in
the application of the GC analysis. Importantly, it is disconcert-
ing to observe that the GC value almost become zero at some
sampling interval lengths despite the fact that there are clearly
physical connections in the network or the coupling in the lin-
ear model between the two time series. We further note that, in
Figure 2A, Fx→y from both voltage and spike train time series
displays non-zero values for some ranges of τ , in contrast to the
physical couplings in the system for which there is no synap-
tic connection from neuron x to y. As will be shown below,
this spurious GC also arises for linear systems. Evidently, the
phenomena of vanishing GC and spurious GC will greatly com-
plicate the reliability of any conclusions about the causal influence
and will make the validity of the network topology reconstruc-
tion questionable. Later, we will return to the resolution of
these issues.

3.1.2. The GC sampling structure as τ→0
As demonstrated through the oscillation phenomenon of GC
above, clearly, we cannot choose sampling interval length arbi-
trarily in the application of GC analysis. Then, an important issue
arises: what should be the criteria of choosing a correct sampling
interval length to obtain discrete time series in measurement for
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reliable GC analysis. For a natural discrete-time dynamics, we can
simply use their intrinsic intervals, e.g., for discrete time series
generated by an autoregressive model, and we can then obtain
reliable GC values for causal interpretations because the entire
information is incorporated in the causal analysis. However, most
physical quantities are continuous in time, one does not have
particular intrinsic intervals for sampling. In order to obtain reli-
able GC values, one possible scenario, similar to the discrete case,
is that it is always better if one uses more finely sampled time
series because apparently more information is incorporated for
causality determination. To examine this scenario, we study the
convergence property of the GC sampling structure as the sam-
pling interval length τ tends to 0. The corresponding numerical
results are shown in Figure 3 for a two-neuron I&F network.

From Figure 3, we observe that for both voltage and spike train
time series, GC values approach 0 almost linearly as the sampling
interval length τ tends to 0. This phenomenon of vanishing GC
values implies that we eventually fail to extract real causal rela-
tion through GC analysis when sampling interval length vanishes
regardless of whether or not there are interactions between two
time series. In this situation, obviously, we cannot use the limit
GC value as τ → 0 to infer the causal interaction especially for
the I&F networks. Here, we note that this limit effect of sam-
pling is general for continuous-time processes and the underlying
mechanism will be demonstrated later.

In summary, the phenomena shown in Figures 2, 3 demon-
strate that time series obtained by using different sampling inter-
val lengths lead to great differences in GC values and a finer
sampling does not result in more reliable GC values for causal
interpretation. Therefore, in order to obtain meaningful inter-
pretation through GC, how to choose a sampling interval length
becomes an important issue in practice. Without properly taking
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FIGURE 3 | The GC sampling structure as sampling interval length

tends to zero. Fx→y (red), Fy→x (cyan) obtained from voltage time series
and Fx→y (red dash), Fy→x (cyan dash) obtained from spike train time series
with sampling interval length τ . Note that, by the asymptotic distribution
theory of GC (Geweke, 1982), the estimator of a directed GC has a bias p

n ,
where p is the regression order and n is the length of the discrete time
series. We have used the Bayesian information criterion (Schwarz, 1978) to
determine the regression order p and have subtracted this type of biases in
the figure (see Appendix C in Supplementary Material for details). The time
series are generated by the I&F network whose topology is shown in
Figure 1A with parameters ν = 1 ms−1, λ = 0.0177, s = 0.02.

this issue into account, GC analysis may produce unreliable or
even opposite conclusions about causal influence when applied to
empirical data sampled with different sampling interval lengths.
In what follows, we first use linear regressive models and spectral
methods to study theoretically possible mechanisms underlying
the oscillation phenomenon. With these idealized models we can
gain insight into possible origins of general oscillations in the GC
sampling structure.

3.2. MECHANISM OF OSCILLATIONS IN THE GC SAMPLING
STRUCTURE

3.2.1. Spectra and the GC sampling structure
We will invoke the frequency domain description of GC for
our analysis of the GC sampling structure. First, we discuss
the relation between the spectrum S(ω) for the time series
{X0, X1, X2, · · ·} whose sampling time interval is τ , and spectrum
S(k)(ω) for time series {X0, Xk, X2k, · · · }, which is a time series
sampled at the interval length kτ , k being a positive integer. Using
the Wiener-Khinchin theorem, we can relate the spectra S(ω) and
S(k)(ω) of these two time series to their time correlations, thus
enabling us to show that

S(k)(ω) = 1

k

k − 1∑
j = 0

S(
ω

k
+ 2π j

k
). (14)

The details of the proof can be found in Appendix A in
Supplementary Material. Note that Equation (14) is also valid for
cross-spectrum Sxy(ω) of time series Xt and Yt , which is defined

by Sxy(ω) = ∑+∞
n = −∞ cov(Xt, Yt − n)e− inω.

A direct implication of Equation (14) is that if S(ω) = C (C is
a constant), then S(k)(ω) ≡ C. That is, if the original time series is
white, then the time series obtained by sampling with any inter-
val length remains to be white. In addition, we have the following
results about GC in the case in which one of the bivariate time
series is white and the other has no correlation with it. If Yt , t
is an integer, is a white noise series and cov(Yt, Xt − i) = 0 for

any positive integer i > 0, then F(k)
x→y ≡ 0. In particular, when

cov(Yt, Xt − i) = 0 for any integer i � 0, F(k)
x→y ≡ F(k)

x·y ≡ 0. These
facts conform with our intuition that there is no causal flow if
there is no correlation between Xt and Yt and the Yt remains
always white (see Appendix A in Supplementary Material for
details). We will use these facts in our discussions below.

We now turn to the question of what is the structure in time
series that will give rise to oscillations in the GC sampling struc-
ture. A possible origin of oscillations in the GC sampling structure
may be a consequence of oscillations in the original time series.
Our strategy of tackling this question is as follows: First, we note
that the spectrum of the original time series characterizes the
oscillation strength of the time series over different frequencies.
We will construct simplified models in which we can focus on
the relationship between the peak frequencies of the spectrum
and oscillations in the GC sampling structure. We will construct
different classes of models which allow us to directly analyze the
GC sampling structure through the spectral representation (14).
Using Equation (14), we can derive an expression of the spectral
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matrix S(k) with sampling interval k, S(k) =
[

S(k)
xx S(k)

xy

S(k)
yx S(k)

yy

]
, and S(k)

can be directly used to compute the total causality F(k)
x,y through

Equation (12) as follows

F(k)
x,y = − 1

2π

∫ π

−π

ln

(
1 − S(k)

xy (ω)S(k)
yx (ω)

S(k)
xx (ω)S(k)

yy (ω)

)
dω. (15)

Because the total causality in Equation (8) involves three different
terms and it is usually difficult to derive the analytical formula
for each term, one way of tackling this issue is to consider each
term separately. In particular, we construct a special model for

which we have F(k)
x→y ≡ F(k)

x.y ≡ 0. Then, the directional GC F(k)
y→x

is identical to the total causality F(k)
x,y and we can therefore analyze

the GC sampling structure F(k)
y→x through the total causality in

Equation (15). If the condition S(k)
xx (ω)S(k)

yy (ω) � S(k)
xy (ω)S(k)

yx (ω)
holds, we can obtain the following simplified approximation for

the directional GC F(k)
y→x:

F(k)
y→x = 1

2π

∫ π

−π

S(k)
xy (ω)S(k)

yx (ω)

S(k)
xx (ω)S(k)

yy (ω)
dω. (16)

In the following, we will use simplified models to reveal the ori-
gin of oscillations in the GC sampling structure, thus, providing
insight into an intuitive understanding of the possible origin of
oscillations in the GC sampling structure for the I&F network as
well as for other general situations.

3.2.2. Idealized model I
The first idealized linear model we have constructed is as follows{

Xt = a(L)εt + b(L)ηt,

Yt = ηt,
(17)

where {εt} and {ηt} are independent white noise series with

covariance matrix � =
[
μ 0
0 1

]
. L is the lag operator satis-

fying LXt = Xt − 1. a(L) = 1 + a1L + a2L2 + · · · , b(L) = b1L +
b2L2 + · · · . We can obtain the spectra of Xt, Yt , which are

Sxx = a(ω)a∗(ω)μ + b(ω)b∗(ω),

Syy = 1,

i.e., Yt is a white noise time series, and

Sxy = b(ω),

where a(ω) = 1 +∑+∞
n = 1 ane− inω and b(ω) = ∑+∞

n = 1 bne−inω,
which are the Fourier transforms of a(L) and b(L), respectively.

By the result of the previous section (also see Appendix A in

Supplementary Material for details), we have F(k)
x·y ≡ F(k)

x→y ≡ 0 for
this model, therefore, the other directional GC is equal to the total

causality, i.e., F(k)
y→x ≡ F(k)

x,y. Then, we can use Equations (15) and

(16) to analyze the relation between F(k)
y→x and sampling interval

length k.
To illustrate clearly the sampling phenomena, we discuss two

classes of a(L) and b(L) in the following.
For the first class, we fix Sxx = a(ω)a∗(ω)μ + b(ω)b∗(ω) = C,

where C is constant and we always assume C � max (b(ω)b∗(ω))
so as to guarantee that Equation (16) is a good approximation.
Under this condition, there are no oscillations in the time series
Xt as discussed previously and the only spectrum that varies over
k is the cross-spectrum Sxy. Then, we can find explicit asymp-

totic expressions and approximations of F(k)
y→x in order to study

the relation between the peak frequency of Sxy(ω) and the oscilla-

tions of F(k)
y→x with respect to the sampling interval length k. The

spectrum Sxy corresponds to the Fourier transform of the corre-
lation function between Xt and Yt . In applications, it is common
that a correlation function has damping and oscillation struc-
tures. Therefore, we will study the following three cases in the first
class:

Case 1.1 b(L) = ∑+∞
j = 1 e−τdjLj.

Case 1.2 b(L) = ∑+∞
j = 1 e−τdjcos(βj)Lj.

Case 1.3 b(L) = ∑+∞
j = 1 e−τdjcos(βj + φ)Lj.

Here, τd, β and φ are constants. We note that there are no oscilla-
tions in b(L) in Case 1.1, and there are oscillations in b(L) in Cases
1.2 and 1.3 and with a further phase shift in Case 1.3.

For the second class, we do not fix Sxx(ω) as a constant, i.e., the
time series Xt is no longer white. Instead, we study some special
combinations of a(L) and b(L). For this class, we cannot derive
explicit analytic forms of F(k)

y→x. Therefore, we turn to GC values
obtained numerically through Equations (14) and (15) to study

the relation between the oscillations of F(k)
y→x and the peak fre-

quencies of Sxx(ω) and
∣∣Sxy(ω)

∣∣. We will study the following cases
in this class:

Case 2.1 a(L) = ∑+∞
j = 0 e−τdjcos(β1j)Lj, b(L) = ∑+∞

j = 1 e−τdjLj,

Case 2.2 a(L) = ∑+∞
j = 0 e−τdjcos(β1j)Lj, b(L) =∑+∞

j = 1 e−τdjcos(β2j)Lj.

Here, τd, β1, β2 are constants. We note that in Cases 2.1 and 2.2
there are oscillations in the time series in Xt with a non-oscillatory
b(L) in Case 2.1 and with an oscillatory b(L) in Case 2.2.

We now turn to the detailed discussion of the properties of

F(k)
y→x in all the listed cases.

Case 1.1 We consider the case b(L) = ∑+∞
j = 1 e−τdjLj which

has no oscillations in b(L) and, therefore, the peak frequency of∣∣Sxy(ω)
∣∣ is at 0. We will examine whether F(k)

y→x oscillates with
respect to k. From Equation (16), Under Approximation I: C �
bk(ω)bk(ω)∗, we can derive the following asymptotic result (see
Appendix A in Supplementary Material for details)

F(k)
y→x ≈

e−2τdk

C
, (18)
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for which, we can clearly see that GC decreases exponentially with
respect to k.

In Figure 4A, which displays spectrum
∣∣Sxy

∣∣, we can observe
that the magnitude of Sxy concentrates near 0 which signifies
that there are no oscillations induced by the coupling b(L). In
Figure 4D, which displays the GC sampling structure for this
case, clearly, there are no oscillations. It can also be seen that
GC obtained through the asymptotic result, [Equation (2) in
Supplementary Material], agrees very well with the numerically
obtained GC for all k’s and the asymptotic formula Equation (18)
approximates GC rather well when k is large. Therefore, we can
conclude that if there are no oscillations in the coupling b(L), as
signified in the peak frequency of

∣∣Sxy
∣∣ near 0 and if Sxx and Syy

are constant (i.e., both are white), then F(k)
y→x does not oscillate

with respect to k .

Case 1.2 From Case 1.1 in Model I, no oscillations in b(L)
implies no oscillations in the GC sampling structure. Next, we
consider b(L) = ∑+∞

j = 1 e−τdjcos(βj)Lj to examine whether oscil-
lations in the coupling b(L) may induce oscillations in the GC
sampling structure.

Under Approximation II, i.e., large τ and k, we can obtain
the following asymptotic expression through Equation (16) (see
Appendix A in Supplementary Material for details)

F(k)
y→x ≈

1

C

(
e−4τdk + e−2τdkcos2βk

)
, (19)

from which we can observe that there are oscillations in the GC
sampling structure.

In Figure 4B, the peak of |Sxy(ω)| is located approximately

at f = 1
16 , which faithfully reflects the oscillation frequency f0

(f0 = β
2π

= 1
16 ) of b(L). In Figure 4E, the oscillation frequency

f ′
0 of F(k)

y→x is approximately 1
8 , which is twice of f0. In addi-

tion, the curve obtained by using Approximation I [Equation
(5) in Supplementary Material] overlaps with the numerically
computed curve, and for large k, the curve obtained by using
Approximation II, Equation (19), fits well with the numeri-
cally computed curve. Therefore, from Equation (19), we can
conclude that oscillations at frequency f0 in the coupling b(L),
manifested as the peak frequency f = f0 = β

2π
in
∣∣Sxy

∣∣, implies

double frequency oscillations (f ′
0 = 2f0 = β

π
) in the GC sampling

structure.

Case 1.3 By the study of Case 1.2, we can further ask how the
phase of oscillations in b(L) regulates the oscillations in the GC
sampling structure. We consider oscillations with phase φ in b(L),
that is, b(L) = ∑+∞

j = 1 e−τdjcos(βj + φ)Lj. Under Approximation
II, we obtain following asymptotic form through Equation (16)
(see Appendix A in Supplementary Material for details)

F(k)
y→x ≈ 1

C
e−2τdkcos2(βk + φ). (20)

For a special case, when φ = −π
2 , Equation (20) becomes

F(k)
y→x ≈ 1

C
e−2τdksin2βk. (21)
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FIGURE 4 | Contrast between spectra and GC sampling structures for

the first class. Magnitude of Sxy (|Sxy |) vs. frequency f (f = ω
2π

) (black) for
(A) Case 1.1. (B) Case 1.2. (C) Case 1.3. (D) Comparison of F (k)

y → x obtained
through numerical solution Equation (15) (blue), asymptotic expressions
Equation (2) in Supplementary Material (red plus) and Equation (18) (green
cross) vs. sampling interval k for Case 1.1. (E) Comparison of F (k)

y → x obtained
through numerical solution Equation (15) (blue), Equation (5) in

Supplementary Material (red plus) and Equation (19) (green cross) vs.
sampling interval k for Case 1.2. (F) Comparison of F (k)

y → x obtained through
numerical solution Equation (15) (blue), Equation (9) in Supplementary
Material (red plus) and Equation (21) (green cross) vs. sampling interval k for
Case 1.3. Insets are corresponding log-linear plots of GC vs. sampling interval
length k. The exponential decay is clearly seen in the insets. The parameters
are C=104, τd = 0.05, and β = π

8 .
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In Figure 4C, which depicts the spectrum of Sxy, the peak fre-

quency of |Sxy| is the same as the peak frequency f = 1
16 in

Figure 4B, and this reflects the same frequency of the oscillations
in the coupling term b(L). In Figure 4F, the oscillation frequency

f ′
0 of F(k)

y→x is again twice of the peak frequency of |Sxy| [as can
be seen in Equation (21)]. In addition, the GC sampling structure
via the approximation of Equation (9) in Supplementary Material
is in excellent agreement with numerically solved GC sampling
structure for all k’s. For large k, the asymptotic expression of
Equation (21) fits well with numerically solved GC sampling
structure. However, in contrast to Case 1.2, there is a shift in k
for the points at which F(k)

y→x attains minimum (or maximum).
Therefore, from Equation (20), we can conclude that the phase

factor φ in b(L) does not affect the frequency of F(k)
y→x but it

regulates the phase of the oscillations, i.e., it changes the loca-

tions of the extrema of F(k)
y→x depending on φ. We also note that,

in the present case, the minimum value of F(k)
y→x in oscillations

approaches 0.

Case 2.1 and Case 2.2 For the first class we studied above, we
have S(k)

xx (ω) ≡ C and S(k)
yy (ω) ≡ 1, which do not contribute to the

variations of F(k)
y→x. Then, we obtain a direct relation between the

cross-spectrum Sxy(ω) and the GC sampling structure. However,
because Sxx(ω) often has peaks at some frequencies especially
for time series in neural systems, we further examine the role of
Sxx(ω) [or Syy(ω)] in the oscillations of the GC sampling struc-
ture. Therefore, we turn to the study of the second class. In order
to examine how the oscillation of the causality depends on the
oscillations of a(L) and b(L), we examine the large μ limit, and
thus, the location of frequency in the peak of Sxx(ω) is determined
by a(L), whereas the peak of Sxy(ω) is determined by b(L).

First, for a(L) = ∑+∞
j = 0 e−τdjcos(β1j)Lj, b(L) = ∑+∞

j = 1 e−τdjLj,
from which there are no oscillations in the coupling b(L), we

study the behavior of F(k)
y→x to look for the relation between

the oscillations in F(k)
y→x and oscillations in a(L). In Figure 5A,

which displays spectra of Sxx and
∣∣Sxy

∣∣, the peak of Sxx is located

approximately at f = 1
8 , which reflects the oscillation frequency

in a(L) and |Sxy| concentrates near 0, which reflects the non-
oscillatory nature of b(L). In Figure 5D, which displays the cor-
responding GC sampling structure, the oscillation frequency f0
in the GC sampling structure is approximately 1

8 , which equals
to the peak frequency of Sxx as well as the oscillation frequency
in a(L). In this case, we conclude that Sxx with a peak at f0
can induce oscillations with frequency f0 in the GC sampling
structure.

Second, for the case of a(L) = ∑+∞
j = 0 e−τdjcos(β1j)Lj, and

b(L) = ∑+∞
j = 1 e−τdjcos(β2j)Lj, in which both have oscillations

with frequency β1 and β2, respectively, we investigate the inter-
actions of different oscillations in a(L) and b(L) in inducing the

oscillations in F(k)
y→x. From the studies above, one may suspect that

the oscillations in F(k)
y→x should be a combination of frequency

β1
2π

and β2
π

, implying that we may encounter complicated oscilla-

tion structures for F(k)
y→x with frequency consisting of β1

2π
and β2

π
.

Shown in Figures 5E,F are such cases. In Figure 5B, the peak fre-
quencies of Sxx and |Sxy| meet the oscillation frequency of a(L)

( β1
2π

= 1
12 ) and b(L) ( β2

2π
= 1

8 ), respectively. The GC sampling

structure is shown in Figure 5E, where F(k)
x,y oscillates at frequency

1
4 which is twice of β2

2π
and is three times of β1

2π
. In Figure 5C, the

peak frequencies of Sxx and |Sxy| meet the oscillation frequency

of a(L) ( β1
2π

= 1
6 ) and b(L) ( β2

2π
= 1

16 ), respectively. The GC
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FIGURE 5 | Contrast between spectra and the GC sampling structure for

the second class. The top row of the panel is spectra Sxx (cyan) and |Sxy |
(black), which is three orders of magnitude smaller than that of Sxx and is
magnified by a factor 103, vs. frequency f , (A) Case 2.1 with parameters

β1 = π
4 , τd = 0.02, μ = 200. (B) Case 2.2 with parameters β1 = π

6 , β2 = π
4 ,

τd = 0.05, μ = 200. (C) Case 2.2 with parameters β1 = π
3 , β2 = π

8 ,
τd = 0.02, μ = 200. (D–F) the corresponding log-linear plots of F (k)

y → x

obtained numerically (blue) with respect to sampling interval length k.
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sampling structure is displayed in Figure 5F, in which the oscilla-
tion features are complicated, making it difficult to discern simple
frequencies. Therefore, the results in Figure 5 confirm that both
oscillations of a(L) and b(L) can contribute to the oscillations in
the GC sampling structure whose oscillation frequency can be a
combination of those in a(L) and b(L).

3.2.3. Idealized model II
In Model I, there is no oscillation in the white noise time series
Yt . For Case 1, the oscillations in the GC sampling structure are
related to the peak in Sxy, whereas, for Case 2, the GC oscillations
are related to the interplay between peaks in Sxy and Sxx. However,
in the reconstruction of the topology of the simple two-neuron
network, as shown in Figure 2C, there are peaks at approximately
the same frequency in Sxx,

∣∣Sxy
∣∣, Syy, and this frequency is half

of the oscillation frequency in the GC sampling structure. We
consider the following linear model that possesses the same prop-
erties as those in the I&F network case, i.e., Sxx,

∣∣Sxy
∣∣, and Syy all

possess a peak at the same frequency:{
Xt = a(L)εt + b(L)ηt,

Yt = c(L)ηt,
(22)

where the covariance matrix � for the white noise time series

εt , ηt is � =
[

1 0
0 1

]
. Then, Sxx = a(ω)a∗(ω) + b(ω)b∗(ω),

Syy = c(ω)c∗(ω), and Sxy = b(ω)c∗(ω). In this case, we set

a(L) = ∑+∞
j = 0 e−τdjcos(βj)Lj, b(L) = γ

∑+∞
j = 1 e−τdjcos(βj +

φ)Lj, c(L) = ∑+∞
j = 0 e−τdjcos(βj)Lj, where τd, β, γ , φ are con-

stants. Note that this model is different from Idealized Model I in
that we no longer have F(k)

y→x ≡ F(k)
x,y and F(k)

x→y ≡ F(k)
x·y ≡ 0.

From the spectrum plots shown in Figures 6A,B, it can be
seen that the peak frequencies of all spectra are approximately
1

12 . Figures 6C,D display the corresponding GC sampling struc-
ture. We can observe that the oscillation frequencies in the GC
sampling structure are approximately 1

6 , which is again twice
of the peak frequency in Figures 6A,B. Therefore, for both the
linear model (22) and the I&F networks, there is the same rela-
tion between the frequency in the GC sampling structure and
that of the peaks in the spectra as those shown in Figure 2.
We note that the phase difference φ between b(L) and a(L) [or
c(L)] may lead to a rather different behavior of the instantaneous
Granger causality, Fx·y, as demonstrated in the two cases shown
in Figures 6C,D (φ = π

2 in Figure 6C and φ = π
4 in Figure 6D).

Note that, by construction, there is no causal influence from Xt to
Yt in Equation (22). However, Fx→y in Figures 6C,D show signifi-
cantly non-zero values for ranges of k. Clearly, these GC values are
spurious and potentially give rise to erroneous causal inferences
even in this linear setting. As pointed out previously, this spurious
GC phenomenon also occurs in the I&F neuronal networks (see
Figure 2A).

In summary, from the results above, we see that the oscillations
in the GC sampling structure are related to the oscillations in the
original time series and in the coupling of the time series regard-
less of their linear or non-linear nature. For special cases, there is
a doubling frequency in the GC oscillations in comparison with
the peak frequency in spectra. However, in general, there may
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FIGURE 6 | Contrast between spectra and the GC sampling structure

obtained numerically for Model II. Sxx (cyan), |Sxy | (black), Syy (red) with
parameters τd = 0.05, β = π

6 , γ = 0.4, (A) φ = π
2 , (B) φ = π

4 . Fx → y (red),
Fy → x (cyan), Fx,y (red dash), Fx·y (cyan dash) with respect to sampling
interval length k with the parameters (C) same as the parameters in (A). (D)

same as the parameters in (B).

not be a simple relation between these oscillation frequencies.
Nevertheless, we can infer that, in general, all oscillations man-
ifested as peaks of Sxx,

∣∣Sxy
∣∣ and Syy may give rise to oscillations

in the GC sampling structure.

3.3. VANISHING GC AS τ→0
We have already observed in Figure 3 that the GC value vanishes
as the sampling interval length τ tends to 0 for GC obtained from
both voltage and spike train time series. Moreover, we note that
Figure 3 also exhibits that the GC value approaches 0 in a man-
ner almost linearly proportional to the sampling interval length
τ as τ → 0. As mentioned before, this sampling effect gives rise
to the paradox that GC analysis seems to be less reliable as more
information is incorporated as τ → 0. In the following, we will
study the mechanisms of such effect and address the question of
extracting reliable causal interaction as τ → 0 in order to resolve
this paradox.

Because GC can be analyzed through the spectra, we first
study the limit of the spectral matrix S(τ )(ω), which is the spec-
trum of the time series with sampling interval length τ . Suppose
that we perform a uniform sampling of a bivariate continuous-
time stationary process Xt and Yt with sampling interval length
τ to obtain Xnτ , Ynτ , where n is an integer. Using the Wiener-
Khinchin theorem, through the relation between the time corre-
lation of discrete time series and that of the original continuous
signal, we can obtain the relation between the corresponding
spectral matrix S(τ )(ω) and the power spectral density P(f ) (ω =
2πτ f ) of the continuous-time processes Xt and Yt as follows (see
Appendix B in Supplementary Material for details):

τ

[
S(τ )

xx (ω) S(τ )
xy (ω)

S(τ )
yx (ω) S(τ )

yy (ω)

]
→
[

Pxx(f ) Pxy(f )
Pyx(f ) Pyy(f )

]
(23)

as τ → 0. Therefore, S(τ )(ω) is scaled as 1
τ

as τ → 0.
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Using Equation (12), total Granger causality F(τ )
x,y with sam-

pling interval length τ can be directly computed using each
component of spectral matrix S(τ )(ω), which is

F(τ )
x,y = − 1

2π

∫ π

−π

ln

(
1 − S(τ )

xy (ω)S(τ )
yx (ω)

S(τ )
xx (ω)S(τ )

yy (ω)

)
dω. (24)

Taking the limit of τ → 0 and using Equation (23), we obtain

1

τ
F(τ )

x,y → −
∫ +∞

−∞
ln
[
1 − C(f )

]
df (25)

as τ → 0, where C(f ) = Pxy(f )Pyx(f )
Pxx(f )Pyy(f ) is the coherence of

continuous-time processes Xt , Yt .
Because a spectral matrix possesses the property of factoriza-

tion (Wilson, 1972), i.e., S(ω) = A(eiω)A∗(eiω), where ∗ denotes
matrix adjoint, the factorization of the spectral matrix gives rise
to the decomposition S(τ )(ω) = H(τ )(ω)�(τ )H(τ )(ω)∗ of spectral
matrix S(τ )(ω), where H(τ )(ω) = A(τ )(eiω)A(τ )(0)−1, and

the covariance matrix �(τ ) = A(τ )(0)A(τ )(0)∗, H =
[

Hxx Hxy

Hyx Hyy

]
,

� =
[

	2 ϒ2

ϒ2 
2

]
(see Appendix B in Supplementary Material

for details). Defining Ĥ(f ) = limτ → 0 τH(τ )(2πτ f ),
�̂ = limτ → 0

1
τ
�(τ ), we obtain the limit expressions for

F(τ )
x → y, F(τ )

y → x and F(τ )
x·y , which are

1

τ
F(τ )

y→x →
∫ +∞

−∞
ln

Pxx(f )

Ĥxx(f )	̂2Ĥ∗
xx(f )

df , (26)

1

τ
F(τ )

x→y →
∫ +∞

−∞
ln

Pyy(f )

Ĥyy(f )
̂2Ĥ∗
yy(f )

df , (27)

1

τ
F(τ )

x·y → −
∫ +∞

−∞
ln

⎧⎨⎩ Pxx(f )Pyy(f )[
Ĥxx(f )	̂2Ĥ∗

xx(f )
] [

Ĥyy(f )
̂2Ĥ∗
yy(f )

] −1

⎫⎬⎭ df, (28)

as τ → 0.
Then, if

∫ +∞
−∞ ln

[
1 − C(f )

]
df is finite, we can easily show

that 1
τ

F(τ )
x,y , 1

τ
F(τ )

x → y, 1
τ

F(τ )
y → x and 1

τ
F(τ )

x·y all approach finite val-
ues in the limit of τ → 0. Therefore, the Granger causality is
linearly proportional to the sampling interval length τ for small

τ . Hence, vanishing F(τ )
x,y , F(τ )

x → y, F(τ )
y → x and F(τ )

x·y as τ → 0. The
corresponding limits are related to the intrinsic properties of the
continuous-time processes.

4. DISCUSSION AND CONCLUSION
4.1. SELECTION OF SAMPLING INTERVALS IN THE APPLICATION OF GC
From our results above, it becomes evident that one has to be
careful in interpreting causal inference using the GC analysis.
For sufficiently large sampling interval length, the GC in general
decays exponentially to zero because much of information over
dominant frequencies is lost and the GC value becomes small and
unreliable for causal inference. When there is causal flow, to avoid
a possible vanishing GC value due to zeroes in the oscillations
in the GC structure, one should use a range of sampling interval

lengths to obtain discrete time series to ascertain the general fea-
tures of the GC sampling structure, such as Figure 2, so as to avoid
using accidental vanishing GC values for causal inference and
to obtain a reliable interpretation of causality. When there is no
causal flow, spurious causality may also arise (e.g., Figures 2, 6)
when the sampling interval length is large because the loss of high
frequency information for self prediction of one time series can
possibly be compensated by the other time series.

In order to preserve the high frequency information, one
would use very fine sampling intervals to sample a continuous-
time process. However, as we have pointed out above that the
GC values exhibit a linear relation with τ as the sampling interval
vanishes, thus, again leading to seemingly unreliable inference of
causality. We can circumvent this difficulty by using the following
procedure.

First, for a range of small τ ’s, we ascertain the linear range of
the GC value as a function of τ , then we plot the ratio of the GC
value to the corresponding sampling interval length τ to extract
its limiting value as τ → 0, e.g., by Equation (25), Figure 7 shows
such an example for time series sampled from the I&F network
dynamics. It is clear that the directed couplings of the neuronal
network dynamics are correctly inferred by the clearly non-zero
ratio for the presence of the synaptic coupling and a vanishing
ratio for the absence of synaptic coupling. According to asymp-
totic distributions of GCs, the GC computed from time series
is a biased estimate, e.g., the bias is p

n for Fx → y, where p is
the regression order, n is the length of time series. To plot the
ratio of GC to τ , we used the numerical computed GC with
the bias subtracted (see Appendix C in Supplementary Material
for details).

In applications, we may wonder how we determine this lin-
ear range and whether this linear range is sufficiently large for
the GC extraction. Here, we present an estimation using Equation

(25). The idea is that if
∫ 1

2τ0

− 1
2τ0

ln
[
1 − C(f )

]
df is a good approxi-

mation of
∫ +∞
−∞ ln

[
1 − C(f )

]
df for some τ0, which implies that

the causal information with frequency higher than 1
2τ0

can be
ignored, then, τ0 is inside the linear range for small GCs. We can
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τ
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y → x

(cyan), 1
τ

F (τ )
x,y (red dash), 1

τ
F (τ )

x · y (cyan dash) for voltage time series and
1
τ

Fx,y computed through Equation (25) (black horizontal line) vs. sampling
interval length τ . The time series are generated by the I&F network whose
topology is shown in Figure 1A with parameters ν = 1 ms−1, s = 0.02,
λ = 0.0177. Note that we have subtracted the estimation bias of GC from
the estimate of GC values for (B). The procedure of removing biases is
described in Appendix C in Supplementary Material.
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determine such range by inspecting directly the figure of C(f ) and
choose a proper cut-off frequency f0 such that C(f ) is sufficiently
small, thus can be ignored when

∣∣f ∣∣ > f0. We take the voltage time
series of a two-neuron I&F network as an example. Figure 7A
displays the coherence function C(f ). It can be seen from the fig-
ure that we can choose the cut-off frequency f0 = 500 Hz, above
which the coherence almost vanishes. Then, we can conclude that
the linear range for GC is from 0 ms to ∼1 ms. Figure 7B demon-

strates the validity of our estimate where 1
τ

F(τ )
x,y is approximately a

constant over the range from 0 ms to ∼1 ms of the sampling inter-
val. Therefore, it is sufficient to use voltage time series sampled
with time interval 0.5 ms or less to extract good approximations
of the limiting GC-to-τ ratios. We note in passing that, in the
Method section, we used τ = 0.5 ms to evaluate the GC values
for the network reconstruction.

4.2. CONCLUSIONS
In this work, we have discussed general features of the GC
sampling structure and their strong implications for causal
inference by using the GC analysis. We have also discussed a
general approach that can overcome these artifacts arising from
sampling interval lengths to obtain reliable GC values. We note
that these issues arise when we sample continuous-time pro-
cesses to obtain discrete time series for the GC analysis. Therefore,
the issues should be examined regardless of whether one uses
parametric or non-parametric methods for the GC estimation.
Furthermore, the general strategies of overcoming these sampling
issues are not limited to the bivariate time series with unidi-
rectional connection as discussed in this work. They are also
applicable to the GC analysis of bivariate time series with bidi-
rectional connections (shown in Supplementary Figure 2) as well
as multivariate time series with any general connectivity structure
(Zhou et al., 2013b, 2014).
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1 SUPPLEMENTARY DATA

1.1 APPENDIX A

In this section, we describe in detail certain results about sampling in the main text.

1.1.1 Spectrum with sampling interval k Here we show that S(k)(ω) is given by Eq. (14) in the
main text in which S(ω) is the spectrum for the original time series {X0, X1, X2, · · ·}, k is the
sampling interval length, which is a positive integer, for discrete time series, and S(k)(ω) is the
spectrum for time series {X0, Xk, X2k, · · ·}. By the Wiener-Khinchin theorem, the spectrum of a
time series can be written as the Fourier transform of the covariance series cov(n), i.e., cov(n) ≡
E(Xt, Xt+n), n is an integer, i.e.

S(ω) =
+∞∑

n=−∞
cov(n)einω,

and

S(k)(ω) =
+∞∑

n=−∞
cov(nk)einω.

1
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Then

1
k

k−1∑
j=0

S(ω

k
+ 2πj

k
) = 1

k

k−1∑
j=0

+∞∑
n=−∞

cov(n)ein( ω
k + 2πj

k ),

= 1
k

+∞∑
n=−∞

cov(n)ei n
k ω

k−1∑
j=0

ei 2πn
k j

 .

For ∑k−1
j=0 ei 2πn

k j , only when n = mk (m is an integer), it does not vanish and it is equal to k. Thus,

1
k

k−1∑
j=0

S(ω

k
+ 2πj

k
) = 1

k

+∞∑
m=−∞

(
cov(mk)ei mk

k ωk
)

,

=
+∞∑

m=−∞
cov(mk)eimω,

= S(k)(ω),
which is Eq. (14) in the main text as we desire to show.

1.1.2 Special bivariate time series yielding F
(k)
x→y ≡ F

(k)
x·y ≡ 0 Here we briefly illustrate that for

discrete time series Xt and Yt, if Yt, t is an integer, is a white noise series and cov(Yt, Xt−i) = 0
for any positive integer i > 0, then F

(k)
x→y ≡ 0. In particular, when cov(Yt, Xt−i) = 0 for any integer

i > 0, F
(k)
x→y ≡ F

(k)
x·y ≡ 0.

Note that the time series with sampling interval k for Xt, Yt, t is an integer, are Xtk and Ytk. Since
Ytk is a white noise series, the auto-regression residual series is Ytk itself. Thus, Γ(k)

1 = var(Ytk) =
var(Yt). Since Ytk is uncorrelated with the set X(t−i)k, Y(t−i)k (integer i > 0), the joint regression
residual series is also Ytk itself. Therefore, Γ(k)

2 = Γ(k)
1 = var(Yt). By definition (6) in the main text,

F
(k)
x→y = ln Γ(k)

1
Γ(k)

2
= 0.

When cov(Yt, Xt−i) = 0 for i > 0, Ytk is uncorrelated with X(t−i)k, i > 0 and Y(t−j)k, j > 0, which
implies that Υ(k)

2 = E(ϵ2(tk), Y2(tk)) = 0 (otherwise Ytk is correlated with X(t−i)k, i > 0). Then, by

definition (7) in the main text, we obtain F
(k)
x·y = ln Γ(k)

2 Σ(k)
2

|Σ(k)| = 0.

1.1.3 Computation of F
(k)
y→x in Case 1.1 We consider the case b(L) = ∑+∞

j=1 e−τdjLj , which has
no oscillations in b(L). From Eq. (12) in the main text, we have

F (k)
y→x = ln C − 1

2π

ˆ π

−π
ln

[
C − b(k)(ω)b(k)(ω)∗

]
dω, (1)

where C = a(ω)a∗(ω)µ + b(ω)b∗(ω), and b(k)(ω) = ∑+∞
j=1 e−τdkje−iωj , which can be simplified as

b(k)(ω) = e−τdke−iω

1 − e−τdke−iω
.

2
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For C > 1
(eτd−1)2 , we obtain

F (k)
y→x = − ln 1

2

1+(1− 1
C

)e−2τdk+
√(

1 + (1− 1
C

)e−2τdk
)2

−4e−2τdk

 . (2)

Under Approximation I: C ≫ b(k)(ω)b(k)(ω)∗, we have

F (k)
y→x ≈

e−2τdk

C
, (3)

which is Eq. (18) in the main text.

1.1.4 Computation of F
(k)
y→x in Case 1.2 We consider b(L) = ∑+∞

j=1 e−τdjcos(βj)Lj to examine
whether oscillations in the coupling b(L) may induce oscillations in the GC sampling structure.

For this case, we have

b(k)(ω) =
+∞∑
j=1

e−τdkjcos(βkj)e−iωj ,

= e−τdke−iω −e−τdke−iω + cosβk

(1 − e−τdke−iωeiβk)(1 − e−τdke−iωe−iβk)
. (4)

Under Approximation I: C ≫ b(k)(ω)b(k)(ω)∗, we have

F (k)
y→x = e−2τdk(1 − 3e−2τdk)cos2βk + e−4τdk + e−6τdk

C(1 − e−2τdk)(1 + e−2τdk − 2e−τdkcosβk)(1 + e−2τdk + 2e−τdkcosβk)
.

(5)
Under Approximation II, i.e., large τd and k, we can obtain a simplified approximate expression of
Eq. (5)

F (k)
y→x ≈

1
C

(e−4τdk + e−2τdkcos2βk), (6)

which is Eq. (19) in the main text.

1.1.5 Computation of F
(k)
y→x in Case 1.3 We consider oscillations with phase ϕ in b(L), that is,

b(L) = ∑+∞
j=1 e−τdjcos(βj + ϕ)Lj . Under Approximation I, we have

F (k)
y→x ≈ 1

2π

ˆ π

−π

b(k)(ω)b(k)(ω)∗

C
dω,

=
e−2τdkcos2(βk + ϕ) − 1

2e−4τdk(2cos2βk + cos2ϕ + cos2(βk + ϕ)) + e−6τdkcos2ϕ

C(1 + e−2τdk − 2e−τdkcosβk)(1 + e−2τdk + 2e−τdkcosβk)(1 − e−2τdk)
,

(7)

where the dominant oscillation term is e−2τdkcos2(βk +ϕ). Under this approximation, the following
approximation is obtained

F (k)
y→x ≈ 1

C
e−2τdkcos2(βk + ϕ), (8)

Frontiers in Computational Neuroscience 3
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which is Eq. (20) in the main text. For a special case, when ϕ = −π
2 , from Eq. (7), we obtain

F (k)
y→x ≈ e−2τdk(1 + e−2τdk)sin2βk

C(1 + e−2τdk − 2e−τdkcosβk)(1 + e−2τdk + 2e−τdkcosβk)(1 − e−2τdk)
,

(9)

which can be further approximated by

F (k)
y→x ≈ 1

C
e−2τdksin2βk, (10)

which is Eq. (21) in the main text.

1.2 APPENDIX B

1.2.1 Spectral matrix S(τ)(ω) as τ → 0 The covariance matrix G(nτ) for Xnτ , Ynτ is a sampling
of covariance matrix G(s) for Xt, Yt, where s is a real value. G(s) is defined as

G(s) =
[ cov(Xt, Xt−s) cov(Xt, Yt−s)

cov(Yt, Xt−s) cov(Yt, Yt−s)

]
. (11)

By the Wiener-Khinchin theorem Chatfield (2003), spectral matrix S(τ)(ω) is the Fourier
transform of covariance matrix G(nτ), that is, S(τ)(ω) = ∑+∞

n=−∞ G(nτ)e−inω. The relation between
real frequency f for continuous-time processes and ω in the discrete time is ω = 2πτf. Then,

S(τ)(ω) =
+∞∑

n=−∞
G(nτ)e−inτ2πf . (12)

By fixing the frequency f and taking the limit of τ → 0, replacing the summation in Eq. (12) by
integration, we have

τS(τ)(ω) →
+∞ˆ

−∞

G(s)e−is2πf ds (13)

as τ → 0. Defining

P(f) =
+∞ˆ

−∞

G(s)e−is2πf ds, (14)

which is the power spectral density Rieke et al. (1999) of continuous process Xt, Yt, i.e.,
τS(τ)(ω) → P(f) as τ → 0. Rewrite this equation in terms of all the components of the matrix, we
obtain

τ

 S
(τ)
xx (ω) S

(τ)
xy (ω)

S
(τ)
yx (ω) S

(τ)
yy (ω)

 →
[

Pxx(f) Pxy(f)
Pyx(f) Pyy(f)

]
(15)

as τ → 0, which is the limiting behavior of spectrum matrix S(τ)(ω) as sampling interval length τ
approaches 0.

4
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1.2.2 GC as τ → 0 For spectral matrix S(τ)(ω), we have the following factorization Wilson
(1972)

S(τ)(ω) = A(τ)(eiω)A(τ)(eiω)∗, (16)

where ∗ denotes matrix adjoint. The factorization is unique if A(τ)(z) and A(τ)(z)−1 are analytic
inside the unit disk and A(τ)(0) is real, upper triangular with positive diagonal coefficients
Wilson (1972). Set Σ(τ) = A(τ)(0)A(τ)(0)∗, H(τ)(ω) = A(τ)(eiω)A(τ)(0)−1, then S(τ)(ω) can
be decomposed as

S(τ)(ω) = H(τ)(ω)Σ(τ)H(τ)(ω)∗, (17)

where H(τ)(ω) =

 H
(τ)
xx (ω) H

(τ)
xy (ω)

H
(τ)
yx (ω) H

(τ)
yy (ω)

. By the mean value property of an analytic function,

one has 1
2π

´ π
−π H(τ)(ω)dω = I (I is the identity matrix). The relation between real frequency

f for continuous-time processes and ω in the discrete time is ω = 2πτf . Then, we obtain´ 1
2τ

− 1
2τ

τH(τ)(2πτf)df = I, which implies that H
(τ)
xx , H

(τ)
xy and H

(τ)
yy are scaled as 1

τ as τ → 0 as
confirmed in Supplementary Fig. 1 for time series obtained for the neuronal network reconstruction.
Combining the scaling of S(τ) and H(τ), one can see that Σ(τ) is scaled as τ as τ → 0. This scaling
is confirmed in Supplementary Fig. 1a.

Supplementary Figures 1b and c display the convergence properties of H’s, in which we verify
that τH(τ) converges to a limit as the sampling interval length τ approaches 0.

Defining Ĥ(f) = limτ→0 τH(τ)(2πτf), Σ̂ = limτ→0
1
τ Σ(τ), we can show that P(f) can be

factorized as
P(f) = Ĥ(f)Σ̂Ĥ(f)∗, (18)

where
´ +∞

−∞ Ĥ(f)df = I. Using the components in the factorization (17), the sampled Granger
causalities using the frequency domain decomposition Geweke (1982); Ding et al. (2006), as
τ → 0, become Eqs. (26) (27) and (28) in the main text.

Note that F
(τ)
x,y is the sum of its positive components F

(τ)
x→y, F

(τ)
y→x and F

(τ)
x·y , therefore F

(τ)
x,y is larger

than any of its components. If
´ +∞

−∞ ln [1 − C(f)] df is finite, then we can easily show that 1
τ F

(τ)
x,y ,

1
τ F

(τ)
x→y, 1

τ F
(τ)
y→x and 1

τ F
(τ)
x·y all approach finite values in the limit of τ → 0. As mentioned in the

main text, these limits are related to intrinsic properties of continuous time processes. Therefore,
the Granger causality is linearly proportional to the sampling interval length τ for small τ .

1.3 APPENDIX C

From our observation, the GC values are very small as sampling interval length τ → 0. Under this
condition, we should consider the estimator bias of GC in order to precisely recover the limit GC
sampling structure as τ → 0 through numerical approach. From Ref. Geweke (1982), for bivariate
time series Xt, Yt, if the true GC value Fx→y, Fy→x, Fx·y and Fx,y are 0, then, nF̂x→y ∼ χ2(p),
nF̂y→x ∼ χ2(p), nF̂x·y ∼ χ2(1), nF̂x,y ∼ χ2(2p + 1), where p is the regression order, n is the
length of time series, the caret symbol denotes the sample estimate. If Fx→y, Fy→x, Fx·y and
Fx,y are positive, then nF̂x→y ∼ χ′2(p, nFx→y), nF̂y→x ∼ χ′2(p, nFy→x), nF̂x·y ∼ χ′2(1, nFx·y),
nF̂x,y ∼ χ′2(2p + 1, nFx,y), where χ′ is the noncentral chi-square distribution. Therefore, the
estimate biases of GC values are ∆Fx→y = E(F̂x→y − Fx→y) = p

n , ∆Fy→x = E(F̂y→x − Fy→x) = p
n ,

Frontiers in Computational Neuroscience 5
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Supplementary Figure 1.(a) The covariance Σ(τ)
2 (red), Γ(τ)

2 (cyan) and Υ(τ)
2 (dash red) as

a function of the sampling interval τ . (b)
∣∣∣∣H(τ)

xx

∣∣∣∣. Inset: τ
∣∣∣∣H(τ)

xx

∣∣∣∣. (c)
∣∣∣∣H(τ)

xy

∣∣∣∣. Inset: τ
∣∣∣∣H(τ)

xy

∣∣∣∣.
Sampling interval lengths are 0.0625 ms (cyan star), 0.125 ms (dash red), 0.25 ms (dash cyan),
0.5 ms (red), 1 ms (cyan) respectively. The time series are generated by a two-neuron I&F network
with parameters ν = 1 ms−1, λ = 0.0177, sxy = 0, syx = 0.02.

∆Fx·y = E(F̂x·y − Fx·y) = 1
n , ∆Fx,y = E(F̂x,y − Fx,y) = 2p+1

n regardless of whether the true value of
GC vanishes or not. We can faithfully recover the limit GC sampling structure by subtracting the
estimator biases from the numerical estimators of GC values. Note that this approach may lead to
slightly negative numerical GC values due to statistical fluctuations if the theoretical value of GC
vanishes originally.
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Supplementary Figure 2.The GC sampling structure for the bidirectional two-neuron network.
Parameters of the network are ν = 1ms−1, λ = 0.0177, sxy = 0.015 and syx = 0.02. (a) GC vs.
sampling interval length: Fx→y (red), Fy→x (cyan) obtained from voltage time series and Fx→y

(red dash), Fy→x (cyan dash) obtained from spike train time series with sampling interval τ . (b)
The corresponding spectra of the voltage time series for (a): Sxx (cyan), Syy (red), |Sxy| (black).
(c) The GC sampling structure as sampling interval length tends to zero. Fx→y (red), Fy→x (cyan)
obtained from voltage time series and Fx→y (red dash), Fy→x (cyan dash) obtained from spike train
time series with sampling interval length τ . (d) 1

τ F
(τ)
x→y (red), 1

τ F
(τ)
y→x (cyan) for voltage time series

and 1
τ F

(τ)
x→y (red dash), 1

τ F
(τ)
y→x (cyan dash) for spike train time series vs. sampling interval length

τ . Note that we have subtracted the estimation bias of GC from the estimate of GC values for (c)
and (d). The procedure of removing biases is described in Appendix C.
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