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Abstract We present an event tree analysis of studying
the dynamics of the Hodgkin-Huxley (HH) neuronal
networks. Our study relies on a coarse-grained pro-
jection to event trees and to the event chains that
comprise these trees by using a statistical collection
of spatial-temporal sequences of relevant physiologi-
cal observables (such as sequences of spiking multi-
ple neurons). This projection can retain information
about network dynamics that covers multiple features,
swiftly and robustly. We demonstrate that for even
small differences in inputs, some dynamical regimes
of HH networks contain sufficiently higher order sta-
tistics as reflected in event chains within the event
tree analysis. Therefore, this analysis is effective in
discriminating small differences in inputs. Moreover,
we use event trees to analyze the results computed
from an efficient library-based numerical method pro-
posed in our previous work, where a pre-computed high
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resolution data library of typical neuronal trajectories
during the interval of an action potential (spike) al-
lows us to avoid resolving the spikes in detail. In this
way, we can evolve the HH networks using time steps
one order of magnitude larger than the typical time
steps used for resolving the trajectories without the
library, while achieving comparable statistical accuracy
in terms of average firing rate and power spectra of
voltage traces. Our numerical simulation results show
that the library method is efficient in the sense that the
results generated by using this numerical method with
much larger time steps contain sufficiently high order
statistical structure of firing events that are similar to
the ones obtained using a regular HH solver. We use
our event tree analysis to demonstrate these statistical
similarities.

Keywords Event tree analysis ·
Information transmission · Hodgkin-Huxley
neuronal network · Library method · Neuronal coding

1 Introduction

Animals can respond to noisy stimulus swiftly within a
few 100 ms (Roitman and Shadlen 2002; Uchida and
Mainen 2003; Rousselet et al. 2003; Abraham et al.
2004; Mainen 2006; Uchida et al. 2006). How the brain
encodes sensory information in such a short time is a
fundamental question in neuroscience. In other words,
what are the mechanisms by which the brain extracts
the salient features of noisy input reliably and robustly?
To effectively capture the relevant information about
the input from the whole spatiotemporal history of the
high-dimensional network dynamics, there is a need
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to understand coarse-grained projection mechanisms to
lower dimensions. The firing rates of individual neurons
are certainly low-dimensional information. However,
in order to accurately determine a firing rate, exces-
sively long integration windows are required when the
firing rate is low (Shadlen and Newsome 1998; Litvak
et al. 2003). A new method for quantifying neuronal
network dynamics is proposed in Rangan et al. (2008)
by using a projection to event trees, which are statistical
collections of spatial-temporal sequences of correlated
network activities over coarse-grained times. When
this event tree-based projection is applied to idealized
integrate-and-fire (I&F) networks and a large scale
realistic computational model (Cai et al. 2005; Rangan
et al. 2005) of mammalian primary visual cortex
(V1), it can effectively and efficiently capture essential
stimulus-specific, and transient, variations in the full
dynamics of neuronal networks. Therefore, we can use
the information carried by the event trees for swift
discriminability, i.e., the ability to discriminate fine in-
put features over a short observation window Tobs. In
addition, through the large set of diverse event trees, it
is possible for them to be able to encode many distinct
stimulus features simultaneously (note that n features
constitute an n-dimensional space that characterizes
the input), as is discussed within spike metric coding
(Victor and Purpura 1997). The proof of concept for the
event tree analysis is illustrated in Rangan et al. (2008)
through the idealized I&F networks and the large scale
V1 model indicates the possible application of event
trees for extracting fine features coded in real cortices.
This event chain analysis may potentially become a use-
ful computational tool for analyzing experimental data.

We emphasize that in the event tree analysis, the
entire event tree collectively serves as a signal within
the network. Each individual spike of a particular neu-
ron is merely a subcomponent of this signal. The infor-
mation represented through event trees is a network-
distributed or space-time-distributed signal, which is
a function of both the network’s architecture and its
dynamic regime. Therefore, we can quantify this event
tree signal statistically without restriction to any partic-
ular type of network architecture.

Networks of conductance-based I&F neurons have
been used to simulate the dynamics and study the
properties of large scale neuronal networks (Somers
et al. 1995; Troyer et al. 1998; McLaughlin et al. 2000;
Rangan and Cai 2007). Here, we consider a physio-
logically realistic Hodgkin-Huxley (HH) model, which
accounts for the detailed generation of action potentials
due to voltage-dependent membrane conductances
arising from ionic channels (Hodgkin and Huxley
1952; Dayan and Abbott 2001). However, the com-

plexity of the HH model precludes detailed analytical
studies of its quantitative properties, hence one often
resorts to numerical simulations to study them. In gen-
eral, we cannot take large time steps to solve the HH
neuron equations since they are stiff when the neuron is
spiking. But in network simulations we often need to in-
vestigate the system’s behavior for many different sets
of parameters or to perform a statistical analysis over
many trial conditions. It is therefore often necessary to
integrate the dynamics with an efficient algorithm that
allows us to use as large a time step as possible.

Inspired by the simplicity of the I&F model, we
have proposed a specialized numerical method which
reduces the dynamics of the HH neuron model to an
I&F-like model (Sun et al. 2009). This method, referred
to as the library method, can overcome the time step
limitation due to the stiffness of the HH neuron model.
During a single action potential, the ion currents cause
the membrane potential to rise and drop down very
rapidly and the HH dynamics is very stiff, for which
we need a sufficiently small time step to resolve the
dynamics numerically. The time interval of an action
potential can last about 3 ms and the neuron cannot
fire again during this period, i.e., in the absolute re-
fractory period, which is explicitly imposed in the I&F
model. Based on this observation, we take the following
strategy. Once the membrane potential reaches the
threshold value (say, −50mV), we stop evolving the
HH neuron model and restart the integration after the
refractory period with the reset values of the membrane
potential and other gating variables. However, unlike
in the I&F model for which the membrane potential is
fixed to be the reset value during the refractory period,
here in our method we can recover the time-courses
of the membrane potential (as well as other dynamic
gating variables) from a pre-computed high resolution
data library. By this means we can circumvent numer-
ical issues associated with stiffness, and use reasonably
large time steps to evolve the HH neuron model.

In our previous work (Sun et al. 2009), by using sev-
eral statistical measures, such as average firing rate and
power spectrum analysis of voltage traces, we demon-
strated that the numerical results using the library
method with much larger time steps are consistent with
those obtained by the standard method (say, Range-
Kutta methods) with smaller time steps, and the long
time low-order statistical results are in very good agree-
ment between the library method and the standard
method. We also examined whether fine dynamical
bifurcation structures reflected in transient dynamics
between the library method and the standard method
could be different. As noted above, the coarse-grained
event tree analysis is designed to discriminate the
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difference between stimuli using statistical structures
of event chains. Therefore, it is interesting to study
whether simulation results obtained using the library
method can be examined using this event tree analysis.
In this work, we will further employ the event tree
analysis to study whether the library method can pro-
duce HH network dynamics with higher order statistics
preserved. Here we find that the event tree analysis
is sensitive to high order structures in the dynamics
simulated by both the standard and the library meth-
ods. We show that the library method is very efficient
in the sense that the numerical results obtained using
this method contain higher order event chains that are
similar to the HH neuronal networks and that these
event chains can be used in the event tree analysis for
discrimination of fine input features. Combining the
previous results (Sun et al. 2009), our results demon-
strate that the library method may have a wide applica-
tion in efficient numerical simulations of HH network
dynamics arising from realistic settings.

The outline of the paper is as follows. In Section 2,
we present a brief description of our HH neuronal
network model and recapitulation of both the standard
and the library methods for evolving the HH network
dynamics. In Section 3, the coarse-grained event tree
analysis is described and the discriminability function is
constructed. In Section 4, we show numerical results of
event tree analysis in three different dynamic regimes,
which typically occur in the HH neuronal network
dynamics. Then, we further compare the results of the
standard and the library methods. These results well
illustrate the advantage of our methods. Finally, we
present conclusions in Section 5.

2 Methods

2.1 The network of Hodgkin-Huxley neurons

The dynamics of a Hodgkin-Huxley (HH) neuronal
network with N neurons is governed by

C
d
dt

Vi = −GNam3
i hi(Vi − VNa) − GKn4

i (Vi − VK)

− GL(Vi − VL) + Iinput
i , (1)

dmi

dt
= αm(Vi)(1 − mi) − βm(Vi)mi, (2)

dhi

dt
= αh(Vi)(1 − hi) − βh(Vi)hi, (3)

dni

dt
= αn(Vi)(1 − ni) − βn(Vi)ni, (4)

where the index i labels the neuron in the network, C is
the cell membrane capacitance and Vi is its membrane
potential, mi and hi are the activation and inactiva-
tion variables of the sodium current, respectively, and,
ni is the activation variable of the potassium current
(Hodgkin and Huxley 1952; Dayan and Abbott 2001).
The parameters GNa, GK, and GL are the maximum
conductances for the sodium, potassium and leak cur-
rents, respectively, VNa, VK, and VL are the correspond-
ing reversal potentials. Functional forms and parame-
ters values for the HH neuron equations are given in
Appendix A.

In our conductance-based network model, Iinput
i

stands for the synaptic input current, which is given by

Iinput
i = −

∑

Q

GQ
i (t)

(
Vi(t) − VQ

G

)
, (5)

where GQ
i (t) are the conductances with the index Q

running over the types of conductances used, i.e., in-
hibitory and excitatory, and VQ

G are their corresponding
reversal potentials (see Appendix A). The dynamics of
GQ

i (t) are governed by

d
dt

GQ
i (t) = −GQ

i (t)

σ Q
r

+ G̃Q
i (t), (6)

d
dt

G̃Q
i (t) = − G̃Q

i (t)

σ Q
d

+
∑

j�=i

∑

k

S̃Q
i, jδ

(
t − TS

j,k

)

+
∑

k

FQ
i δ

(
t − TF

i,k

)
. (7)

Each neuron is either excitatory or inhibitory, as indi-
cated by its type Li ∈ {E, I}. There are two conductance
types Q ∈ {E, I} also labeling excitation and inhibition.
We say an action potential or emission of a spike occurs
at time t if the membrane potential of a neuron (say the
jth neuron of type Q) reaches a threshold value Vth at
that time. Then the spike triggers postsynaptic events
in all the neurons that the jth neuron is presynaptically
connected to and changes their Q-type conductances
with the coupling strengths S̃Q

i, j. On the other hand,
for the postsynaptic ith neuron, its Q-type conductance
GQ

i (t) is determined by all spikes generated in the past
from the presynaptic neurons of type Q. The term
G̃Q

i (t) is an additional variable to describe the decay
dynamics of conductance and the variable GQ

i (t) has an
impulse response with the form of an α-function with
both a fast rise and a slow decay timescale, σ Q

r and
σ Q

d , respectively. The time TS
j,k stands for the kth spike

of neuron j prior to time t. The excitatory (inhibitory)
conductance G̃E (G̃I) of any neuron is increased when
that neuron receives a spike from another excitatory
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(inhibitory) neuron within the network. This is
achieved as follows: The coupling strengths S̃E

i, j are zero
whenever L j = I, and similarly S̃I

i, j are zero whenever
L j = E. For the sake of simplicity, we consider an all-
to-all heterogeneously coupled neuronal network, in
which S̃Q

i, j is exponentially distributed (see Section 4.1

for the definition of S̃Q
i, j). However, our method can

readily be extended to more complicated networks that
can encode many different types of network architecture.

The system is also driven by feedforward inputs.
Here we consider stochastic inputs: we use a spike
train sampled from a Poisson process with rate ω as
the feedforward input. We denote TF

i,k as the kth spike
from the feedforward input to the ith neuron and it
instantaneously increases that neuron’s Q-type G̃Q

i (t)
by magnitude FQ

i . For simplicity, we also take FQ
i to be

a constant, FQ, for Q-type conductance of all neurons
in the network. The typical values or ranges of σ Q

r ,
σ Q

d , S̃Q and FQ can be found in Appendix A. For the
numerical results reported here, we set Vth = −50mV.
The simulation results of the network dynamics are
insensitive to slight adjustments of the Vth value as
demonstrated in Sun et al. (2009).

2.2 Numerical scheme

For network modeling, we need a stable and accurate
numerical method to evolve the HH neuron equations
coupled with the dynamics of conductances (Eqs. (1)–
(7)) for each neuron. Since individual neurons interact
with each other through conductance changes associ-
ated with presynaptic spike times, it is also necessary to
have numerical interpolation schemes that can deter-
mine the spike times accurately and efficiently (Hansel
et al. 1998; Shelley and Tao 2001). In our numerical
study, we use the Runge-Kutta fourth-order scheme
(RK4) with fixed time step for integrating the system,
along with a cubic Hermite interpolation for estimating
spike times. The whole scheme is fourth-order accurate.
In Appendix B, Algorithm 1 details this standard nu-
merical scheme for a single neuron.

When simulating the network dynamics, we need
to carefully take into account the causality of spiking
events within a single time step via spike-spike inter-
actions, especially for large time steps (Rangan and
Cai 2007). Here, we choose a strategy similar to the
event-driven approach (Mattia and Del Giudice 2000;
Reutimann et al. 2003; Rudolph and Destexhe 2007).
We take the spike-spike correction procedure, which
is equivalent to stepping through the sequence of all
the synaptic spikes within one time step and computing
the effect of each spike on all future spikes. We step

through this correction process until the neuronal tra-
jectories and spike times of neurons converge. Details
of this spike-spike correction algorithm and the gen-
eral coupling strategy are discussed in Rangan and Cai
(2007).

Although the standard numerical scheme with the
spike-spike corrections can evolve the HH neuronal
networks quite accurately, there is still some limitation
on the time step. It is because explicit Runge-Kutta
(RK) methods have finite domains of stability, and
will have stability problems in solving Eq. (1) if the
conductances are high (i.e., the HH neuron equations
are stiff) and the time step �t is large. Standard linearly
stable schemes such as implicit Euler methods tend
to be of low order accuracy when applied to smooth
ODEs (Gear 1971), and may not be very accurate if �t
is large. Moreover, we also have three Eqs. (2) to (4)
for the gating variables m, h, n coupled with Eq. (1) to
be solved simultaneously, so an implicit method may
not be efficient since it requires extra computation for
solving the system iteratively in each step.

To overcome the time step limitation due to the
stiffness, we proposed the library method (Sun et al.
2009), which treats the HH neuron like an I&F neuron.
We briefly describe the idea of the method here. When
the membrane potential V(t) reaches a preset threshold
value Vth, we stop evolving the HH neuron equations
associated with this neuron since the total current (i.e.,
the right-hand side of Eq. (1)) becomes very large after
this moment, making these equations very stiff. Instead
of resolving the action potential by using a very small
time step, we recover the action potential from our pre-
computed high resolution data library. Besides the po-
tential V(t), we also have the intermediate replica, i.e.,
the time courses of the gating variables m, h, n during
the spiking period. The action potential takes a certain
time duration like an absolute refractory period in the
I&F model. At the end of this period, the potential
V(t) is hyperpolarized and the total current returns to
a sufficiently small value. This allows us to evolve the
HH neuron equations of this neuron using a large time
step as before. Since the values of V, m, h, n at the end
of this period are not fixed, depending on the strength
of the input current, we need to build the data library in
advance. The details of how to build the data library can
be found in Sun et al. (2009). Here, we take the same
high resolution data library as in our previous work. In
Appendix C, Algorithm 2 details the library method for
a single neuron.

The main advantage of our library method is that we
can evolve the HH neuronal networks using a much
larger time step than the one used for resolving the
whole trajectories without the library, while achieving
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Fig. 1 The comparison results of an all-to-all heterogeneously
connected network of 75 excitatory neurons and 25 inhibitory
neurons driven by a feedforward input of a particular realization
of a Poisson process with the rate ω = 50 Hz (see Section 4.1
for more details). We fix the maximum values of the cou-
pling strength for inhibitory (excitatory) synapses onto excita-
tory (inhibitory) neurons SEI = SIE = 0.1 mS/cm2, the maximum
value of recurrent inhibitory coupling strength SII = 0.1 mS/cm2,
and vary the maximum value of recurrent excitatory coupling
strength SEE ranging from 0.025 to 1.0 mS/cm2. (a): Average
firing rate versus the maximum coupling strength SEE. The
squares correspond to the result using the standard method
with time step (�t = 0.03125 ms); the circles represent the one
computed with much larger time step (�t = 0.25 ms) by using the
library method, and the crosses are the solution computed for the
maximum time step (�t = 0.37 ms) with the library method. (b):
The relative error in the average firing rate, ER = |Rstandard −
Rlibrary|/Rstandard, between the library method on maximum time
step (�t = 0.37 ms) and the standard method on small time step
(�t = 0.03125 ms) versus SEE. The total run time is 65536 ms

comparable numerical resolution in statistical quan-
tifications. In Fig. 1, the numerical results show that
we can still obtain at least 2 or 3 digits of accuracy
in the average firing rate by using a time step about
10 times larger than the typical time step used by the
standard RK methods. Note that the average firing rate
is a low order statistical characterization of a voltage
trajectory. Moreover, our library method has allowed
us to take large time steps (�t = 0.37 ms) and circum-
vent the stability requirement of standard RK methods
(the maximum time step at which the method is still
stable is �t = 0.08 ms). We refer to Sun et al. (2009)
for more comparison results, such as power spectra of
voltage traces.

3 The event tree analysis

In this section we briefly review the idea of the event
tree and show how it can be used to discriminate fine
input features. More details about this method and its
application to a large scale V1 model can be found in
Rangan et al. (2008).

3.1 Definition of the event chain and the event tree

The notion of an event tree takes a projection of the
system dynamics down to a set of event chains. To
define event chains, we need the following notation:
let σ

j
t denote a firing event of the jth neuron at time

t (not discretized), and let σ
j

I denote any firing event
of the jth neuron that occurs during the time interval
I. Then, given a time scale τ , an m-event chain, de-
noted by {σ j1 → σ j2 → . . . → σ jm} (spanning neurons
j1, . . . , jm, which need not be distinct), is defined to
be any event σ

jm
t conditioned on (i.e., preceded by)

the events σ
jm−1

[t−τ,t), . . . , σ
j1

[t−(m−1)τ,t−(m−2)τ ). Here we only
consider firing events as the relevant observables to
construct the event chain, as motivated by the physio-
logical fact that neurons only directly respond to spikes,
with no response to the absence of spikes. Figure 2
schematically illustrate the idea of event chains.

Given an observation window Tobs of the system, one
can record every m-event chain for all m up to some
mmax. Note that the number of observed one-event
chains {σ j1} corresponds to the total number of spikes
of the j1th neuron during Tobs; the number of observed
two-event chains {σ j1 → σ j2} corresponds to the total
number of spikes of the j2th neuron that occur within
τ ms after a spike of the j1th neuron; and so forth.

t

3-event
chain

t-t-2t -3t-4t-(m-2)t-(m-1)

j1 j2 jm-1 jmjm - 2 2 jm -3jm-4

j2 j3
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Fig. 2 Illustration of the event chains produced by a network
of eight coupled neurons. The upper left in this figure is a
raster plot for these eight neurons. An m-event chain, denoted
by {σ j1 → σ j2 → . . . → σ jm }, is defined to be any event σ

jm
t

conditioned on (i.e., preceded by) the events σ
jm−1

[t−τ,t), σ
jm−2

[t−2τ,t−τ),

. . . , σ
j1

[t−(m−1)τ,t−(m−2)τ )
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We refer to the full collection of all possible m ≤ mmax

event chains with their occurrence counts as the mmax-
event tree over Tobs. An event tree can be thought of as
an approximation to the set of conditional probabilities
P j1,..., jm

τ , i.e.,

P
(
σ

jm
t |σ jm−1

[t−τ,t), σ
jm−2

[t−2τ,t−τ), . . . , σ
j1

[t−(m−1)τ,t−(m−2)τ )

)

over the window Tobs. We remark that both the ob-
servation window size Tobs and the given time scale τ

should be dictated by the dynamics being studied. In
many cases, rich network properties can be revealed by
choosing Tobs comparable to the system memory and τ

comparable to the characteristic time scale over which
one neuron can directly affect the dynamics of another
through a synapse (τ ≈ 2-20 ms). By keeping the τ -
separation of events within each event chain, the event
tree can contain more dynamic information than does a
record of event orderings within the network (Thorpe
and Gautrais 1998).

Figure 3 shows a schematic illustration of the event
chains produced by a network of three coupled neu-
rons. The system is driven by two slightly different
stimuli I1 and I2. We record all pairs of events in
which the second firing event occurs no later than τ ms
after the first. Three such two-event chains, {σ 1 → σ 2},
{σ 1 → σ 3}, and {σ 2 → σ 3}, are highlighted in Fig. 3(e).
Note that the events σ 1, σ 2, σ 3 each occur two times
within both rasters in Fig. 3(a) and (b). Figure 3(c)
and (d) shows representations of the two-event tree
corresponding to (a) and (b), respectively. Note that
the event chain {σ 1 → σ 3} occurs twice within raster
(b) but zero times within raster (a), whereas the event
chain {σ 3 → σ 1} occurs zero times within raster (b) but
twice within raster (a). The Tobs ms rasters in Fig. 3(a)
and (b) clearly show that firing rate and oscillation
frequency cannot be used to classify correctly the input
underlying these typical Tobs ms observations of the
system. However, due to different temporal ordering,
it is clear that the two-event trees over these Tobs ms
rasters can correctly classify the inputs. Figures 4 and 5
show the cases of a network of eight coupled neurons
with mmax = 3, where the numerical results obtained by
using our library method also retain many dynamical
features of the original system, and the occurrence rate
of most event chains are similar to those produced by
the standard method. This similarity shows that the
library method can be used to evolve the HH neuronal
network dynamics with high order statistics preserved.
We will also discuss below whether the numerical re-
sults of the library method can be used in the event tree
analysis of fine discrimination tasks.

T

(a)
1

(b)

obs

(c) (d)

2
3

1
2
3

(e)
1

2

3

τ
Fig. 3 Illustration of the event chains produced by a network
of three coupled neurons. The system is driven by two slightly
different stimuli, I1 and I2. The different colors stand (here only
two colors, black and white), in general, for the number of oc-
currences over Tobs or “occurrence count” of the event σ

jm
t con-

ditioned on σ
jm−1

[t−τ,t), σ
jm−2

[t−2τ,t−τ)
, . . . , σ

j1
[t−(m−1)τ,t−(m−2)τ )

. (a) The
raster plot of the network under stimulus I1 over Tobs. (b) Raster
plot under stimulus I2, with the same initial conditions as (a).
(c–d) Representations of the two-event tree corresponding to
(a) and (b), respectively. The singleton events {σ j} of the jth
neuron are displayed within the central circles at complex vector
location e2π i( j−0.5)/3 with their occurrence count indicated by
black (2 recorded events) or white (0 recorded events). The oc-
currence count of event pairs {σ j → σ k} are shown in the periph-
eral circles (displayed at complex vector location 3e2π i( j−0.5)/3 +
e2π i(k−0.5)/3). (e) This panel zooms in on the second single syn-
chronous burst observed in raster (b). The three black rectan-
gles correspond to spikes, and the three two-chains, {σ 1 → σ 2},
{σ 1 → σ 3}, and {σ 2 → σ 3}, each correspond to a different posi-
tion within the graphic representation of (d), and these positions
are indicated with dashed arrows leading from the event chains
in raster plot (e) to their corresponding locations in the graphical
representation (d)

3.2 Discriminability

The event tree described above is a natural intermedi-
ate projection of the system dynamics with a dimension
Nmmax . However, when N or mmax is large, there is a
severe undersampling problem associated with analyz-
ing the set of event trees produced by the network over
multiple trials of a given Tobs. Namely, given multiple
Tobs trials, each trial will in general produce a different
event tree, and it is very difficult to estimate accurately
the full joint probability distribution (over multiple
trials) of the ∼ Nmmax various event chains comprising
the event trees. But we can circumvent this difficulty
by considering first the probability distribution (over
multiple trials of Tobs ms) of the observation count of
each event chain individually and then considering the
full collection of all these observation-distributions of
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Fig. 4 The three-event trees collected over Tobs = 512 (with the
coarse-grained time interval τ = 8 ms) of the chaotic regime
(SEE = 0.3, see Section 4 for more details about the dynamic
regimes) under stimulus I1 (with input rate ω1 = 50 Hz and
strengths FE

1 = FI
1 = 0.05 mS/cm2). The tree on the left is col-

lected from the raster data obtained by using the standard
method with a time step (�t = 0.03125 ms); the tree on the right
is collected from the raster data computed with a much larger
time step (�t = 0.25 ms) by using the library method. The col-
ors correspond to occurrence rate, plotted logarithmically from
1 occurrence per second to 40 occurrences per second. Event
chains with an occurrence rate less than 1 occurrence per second
have intentionally not been plotted. The tree is represented by
a collection of rings (circles). On each ring, the discrete set of
angles θ j = 2π( j − 0.5)/N, ( j = 1, . . . , N) labels the N neurons.
For succinct representation, we choose N = 8 neurons out of
the network. For example, consider the three-event chain {σ 3 →
σ 1 → σ 5}, indicated by the circle pointed by an arrow. This
single circle lies within a hierarchical structure—a ring of rings of
rings. Its location can be defined in terms of the following three

angles: the angle of the outer major ring in which it lies (with the
orientation angle θ3, because the first event is σ 3), followed by
the angle of the medium ring in which it lies (with the orientation
angle θ1, since the second event is σ 1), followed again by the
angle of the smallest ring in which it lies (with the orientation
angle θ5, as the third event is σ 5). Thus, the color of this single
circle corresponds to the occurrence rate of the 3-event chain
{σ 3 → σ 1 → σ 5}. All of the three-event chains are organized this
way within the outer major ring (for example, another three-
event chain {σ 6 → σ 5 → σ 4} is shown). All the two-event chains
can be organized in a similar hierarchical structure—a ring of
rings, which is the middle medium ring (for example, the two-
event chain {σ 6 → σ 5} is shown). Finally, the single inner ring
in the center of the diagram represents the set of one-event
chains. Note that the color coding of the one-event chain merely
labels the firing rates of each of the N neurons on the ring. It
is important to note that there is a strong similarity between the
left and right panels, indicating that the higher order statistics of
rich event chains in terms of occurrence rate are captured by our
library method

event chains, which we also refer to as an event tree. It
is this object that we use to assess the discriminability
of network dynamics, i.e., the ability to classify the
stimulus based on a Tobs sample of the dynamics.

We note that event chains are appropriate for esti-
mating the observation-distributions and assessing dis-
criminability. Since many distinct event chains can oc-
cur simultaneously, there can be a large amount of
distinct, stimulus-sensitive event chains spanning differ-
ent neurons in the network even within short (Tobs ∼
100 ms) observations of networks with low firing rates.
Because event chains are not mutually exclusive, mul-

tiple event chains can occur during each Tobs, and
we can collect accurate Tobs-observation-distributions
(one for each event chain) with relatively few trials.
As discussed previously (Rangan et al. 2008), it is this
statistical feature that enables our event tree projection
to characterize robustly, over short Tobs, the transient
response and relevant dynamic features of a network.
As will be discussed below, it can be seen that a neu-
ronal network contains information for swift discrim-
inability when that network can generate sufficiently
rich, effectively multidimensional dynamics that reflect
the salient features of the input.
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Fig. 5 The three-event trees collected over Tobs = 512 (with
the coarse-grained time interval τ = 8 ms) of the asynchronous
regime (SEE = 0.1, top panels) and the synchronous regime
(SEE = 1.0, bottom panels) under stimulus I1 (with input rate
ω1 = 50 Hz and strengths FE

1 = FI
1 = 0.05 mS/cm2). The trees

on the left are collected from the raster data obtained by using
the standard method with a time step (�t = 0.03125 ms); the
trees on the right are collected from the raster data computed
with a much larger time step (�t = 0.25 ms) by using the library

method. Note that for SEE = 0.1 (top panels), the color scale
for occurrence rate ranges from 1 occurrence per second to 32
occurrences per second; for SEE = 1.0 (bottom panels), the color
scale for occurrence rate ranges from 1 occurrence per second
to 50 occurrences per second. Again note that there is a strong
similarity between the left and right panels for these dynamical
regimes, indicating that the higher order statistics of rich event
chains in terms of occurrence rate are captured by our library
method for all these dynamical regimes
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Our discriminability function is constructed with
standard methods from classification theory (Dayan
and Abbott 2001), by assuming the observation counts
of different event chains are independent. If the
difference between the two empirical Tobs distributions
under the stimuli I1 and I2 is significant, then the event-
tree-projected network dynamics from a single Tobs

observation can be used to discriminate between the
stimuli. The procedure is as follows. More details can
be found in Appendix D.

We say an event chain is not a good indicator of the
stimulus if the Tobs distributions of occurrence counts
of this event chain for I1 and I2 merge together. On the
other hand, there are event chains that can be used to
discriminate between the stimuli since the distributions
corresponding of their occurrence counts to the two
stimuli are fairly well separated. For instance, as de-
picted in Fig. 6, the Tobs = 512 ms distribution of occur-
rence counts of the three-event chain {σ 3 → σ 1 → σ 5}
is quite different under stimulus I1 than stimulus I2.
Therefore, the observation distribution of this event
chain alone can be used to discriminate the inputs I1

and I2. For instance, we may take many independent
single sample Tobs = 512 ms observations of the net-
work dynamics under different randomly chosen stim-
uli (either I1 or I2, with equal probability). For each
of these samples, we obtain the occurrence count n
of the {σ 3 → σ 1 → σ 5} event chain, and determine a
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Fig. 6 The Tobs = 512 ms distributions of occurrence counts
of the three-event chain {σ 3 → σ 1 → σ 5} with the blue and
pink histograms, P1 and P2, corresponding to I1 and I2, re-
spectively (I1 with input rate ω1 = 50 Hz and input strengths
FE

1 = FI
1 = 0.05 mS/cm2; and I2 with input rate ω2 = 50 Hz and

input strengths FE
2 = FI

2 = 0.0495 mS/cm2, i.e., there is a 1%
difference in input strengths between two stimuli). The values of
other parameters are the same as those in Fig. 4

possible candidate stimulus by using these two distrib-
utions P1(·) and P2(·). We choose I1 if P1(n) > P2(n),
otherwise we choose I2 (e.g., in this case in Fig. 6, we
guess I2 if the event chain occurs eight or fewer times,
otherwise we guess I1). Applying this classification
procedure to all different independent single samples
can give us a probability of making a correct choice,
i.e., a hit rate A = 1

2

∑∞
n=0 max

(
P1(n), P2(n)

)
, and a

false alarm rate B = 1 − A, and the information ratio
Iσ j1 →...→σ jm

I1,I2
≡ A/B (see Appendix D for more details).

For this case in Fig. 6, we have A = 79%, B = 21%,
and Iσ 3→σ 1→σ 5

I1,I2
≡ A/B = 3.76.

The procedure described above classifies the stim-
ulus underlying a single sample Tobs observation by
considering only the occurrence count of a single event
chain (i.e., a single element of the event tree). We
can easily extend this procedure to incorporate every
event chain within the event tree constructed from one
Tobs observation. For example, given a sample Tobs

observation and its associated event tree, we can inde-
pendently use the occurrence count of each event chain
within that event tree to estimate a possible candidate
stimulus. Thus, each event chain “votes" for either
stimulus I1 or I2, weighting each vote with the factor

log
(

Iσ j1 →...→σ jm

I1,I2

)
, which is a function of the information

ratio of the contributing event chain. Then the weighted
votes across the entire event tree are summed up to de-
termine the candidate stimulus underlying the sample
Tobs observation.

The discriminability of the mmax-event tree (for this
two-way discriminability task) is defined as the per-
centage of sample observations that were correctly
classified under our voting procedure. For three-way
discriminability tasks, we go through an analogous pro-
cedure, performing all three pairwise discriminability
tasks for each sample observation and ultimately se-
lecting the candidate stimulus corresponding to the
majority. Note that the discriminability is a function of
τ , Tobs, and mmax. As shown in the results in Figs. 10,
11, 12 and 13 in Section 4.2 below, for most of the sys-
tems we have observed, the discriminability increases
as mmax and Tobs increase. More details can be found in
Appendix D.

4 Results

4.1 Three dynamical regimes of the network

We consider an all-to-all heterogeneously connected
HH network of 75 excitatory neurons and 25 inhibitory
neurons driven by the feedforward input of a particular



64 J Comput Neurosci (2012) 32:55–72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

SEE

Ly
ap

un
ov

 e
xp

on
en

t
Regular: dt=2−5=0.03125

Library: dt=2−2=0.25
Library: dt=0.37

Fig. 7 The pseudo-Lyapunov exponent of the network of 75 ex-
citatory and 25 inhibitory neurons with heterogeneous coupling
strengths versus the maximum coupling strength parameter SEE

between the excitatory neurons. The network is driven by a feed-
forward input, which is a realization of a Poisson process with the
rate ω = 50 Hz. The total time of the trajectories is sufficiently
long (65536 ms) in order to obtain statistically convergent results
for the pseudo-Lyapunov exponent. As the same in Fig. 1, the
squares correspond to the result using the standard method
with time step (�t = 0.03125 ms); the circles represent the one
computed with much larger time step (�t = 0.25 ms) by using the
library method, and the crosses are the solution computed for the
maximum time step (�t = 0.37 ms) with the library method. The
results here indicate our library method can achieve comparable
resolution in the pseudo-Lyapunov exponent

realization of a Poisson process with the rate ω = 50 Hz.
We fix the maximum values of the coupling strength
for inhibitory (excitatory) synapses onto excitatory (in-
hibitory) neurons SEI = SIE = 0.1 mS/cm2, the maxi-
mum value of recurrent inhibitory coupling strength
SII = 0.1 mS/cm2, and vary the maximum value of
the recurrent excitatory coupling strength SEE rang-
ing from 0.025 to 1.0 mS/cm2 with an increment of
�SEE = 0.025 mS/cm2. Other parameters are given in
Appendix A. To make the connection heterogeneous,
we generate an N × N random matrix A with expo-
nentially distributed random elements Ai, j. Then the
coupling strength for the jth neuron’s synapses onto the
ith neuron is given by S̃Q

i, j = δQ,L j Ai, jSLi,Q/NQ. Here,
the Kronecker δQ,L j indicates that a spiking neuron can
only increase the conductance associated with its type.
The maximum coupling strength SLi,Q only depends
on the type of conductance Q, and the type of the
postsynaptic neuron Li. The parameter NQ is the total
number of Q-type neurons in the network.

The systematic scanning result of the pseudo-
Lyapunov exponents obtained by using our method
(Sun et al. 2010) over a long time interval of T =
216 = 65536 ms is shown in Fig. 7. As illustrated below,
the result reveals three typical dynamical regimes—
an asynchronous, a chaotic, and a synchronous regime.
We refer to Sun et al. (2010) for the definition of the
pseudo-Lyapunov exponents and the details of other

quantifications that characterize these regimes, such as
power spectrum analysis and numerical convergence
tests.

(i) Asynchronous state For very small values of the
maximum coupling strength SEE, the drive to a single
neuron due to the presynaptic spikes is so weak that
the dynamics of each neuron is essentially driven by the
feedforward input and the neurons fire at random, as is
expected. The raster plot of the case SEE = 0.1 mS/cm2

is shown in Fig. 8(a). This type of asynchronous states
exists for 0.025 � SEE � 0.16 mS/cm2. In this regime,
the firing times are reliable in the sense that they are
not sensitive to numerical simulation time steps as long
as they are sufficiently small (Sun et al. 2010).

This case is also characterized by the mean power
spectrum, averaged over all neurons, of membrane
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Fig. 8 Raster plots of spike events in the same network as the
one in Fig. 7 computed with same initial conditions. The plots
from (a) to (c) show typical cases of three dynamical regimes with
the maximum coupling strength SEE = 0.1, 0.3, and 1.0 mS/cm2,
respectively: (a) Asynchronous dynamics; (b) Chaotic dynamics;
(c) Synchronous dynamics. In each plot, the indices from 1 to 75
label the 75 excitatory neurons and the indices from 76 to 100
represent the other 25 inhibitory neurons in the network
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potential trace (Fig. 9(a)). The power spectrum is of
broad-band, with an asymptotic ∼ ω−2 decay at high
frequencies, signifying that (1) there are no clear oscil-
lations in the dynamics, and (2) there is an exponential
decay of time-correlations of the measured quantities,
as implied by the Wiener-Khinchin theorem (Gardiner
1998).

(ii) Chaotic state For intermediate coupling strength,
as shown in the raster plot of the case SEE =
0.3 mS/cm2 in Fig. 8(b), sometimes the neurons fire at
random in an asynchronous way and sometimes they
fire in an almost synchronous way, especially for the
excitatory neurons. As indicated in Sun et al. (2010),
the firing times seem to be unreliable and very sensitive
to numerical time steps even if they are very small.
Moreover, the statistical results for long time simula-
tion show that the dynamics of the network is chaotic
in the sense that the pseudo-Lyapunov exponent is
measured to be positive, as shown in Fig. 7. The range
for this type of states is 0.16 � SEE � 0.41 mS/cm2.

The mean power spectrum, averaged over all neu-
rons, of membrane potential trace in Fig. 9(b) also has
a broad-band nature with small peaks. The power spec-
trum of this chaotic state is similar to that of the asyn-
chronous state (Fig. 9(a)). However, there are weak
peaks in the spectrum, typical of a chaotic dynamics, in
which weak coherent synchronous oscillations coexist
with irregular time dynamics (Schuster and Just 2005).

(iii) Nearly synchronous state When the coupling is
strong, SEE � 0.41 mS/cm2, a large portion of neurons
in the network fire synchronously after a few of the neu-
rons fire in advance. This firing pattern is shown in the

raster plot in Fig. 8(c) for the case SEE = 1.0 mS/cm2.
In this regime, firing times are again reliable as ex-
pected from the negative pseudo-Lyapunov exponent.
(Sun et al. 2010).

As shown in Fig. 9(c), the mean power spectrum
contains peaks clearly located at integer multiples of
the fundamental frequency 50 Hz, indicating that the
membrane potential evolves with a strong periodical
component consistent with the feedforward input rate
50 Hz and the neurons fire almost synchronously, as
seen in Fig. 8(c).

Figures 4 and 5 show the three-event trees collected
from the raster data obtained by using the standard
method and the library method, respectively, over
Tobs = 512 (with the coarse-grained time interval τ =
8 ms) of the three regimes. It is important to emphasize
that there is a strong similarity between the left and
right panels for these dynamical regimes, indicating that
the higher order statistics of event chains (in terms of
occurrence rate) are captured by our library method for
all these dynamical regimes.

4.2 Discriminability in three dynamical regimes

As seen above, three different dynamical regimes con-
tain rich high order statistical structures as character-
ized by the graphical representation of event chains
and our library method can preserve these high order
statistical structures well. Now we turn to the question
of whether our library method can also produce statis-
tically high order chains that encode inputs sensitively,
and thus, can be revealed by our discriminability test.
Here, we show the swift discriminability of the event

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

log
10

(Frequency) (Hz)

lo
g 10

(P
ow

er
)

(a) SEE=0.1

I
1
I
2

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

log
10

(Frequency) (Hz)

lo
g 10

(P
ow

er
)

(b) SEE=0.3

I
1
I
2

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6

log
10

(Frequency) (Hz)

lo
g 10

(P
ow

er
)

(c) SEE=1.0

I
1
I
2

Fig. 9 The mean power spectrum, averaged over all neurons, of
a neuron’s membrane potential trace in the same network as the
one in Fig. 7. The plots from (a) to (c) show three cases with
the maximum coupling strength SEE = 0.1, 0.3, and 1.0 mS/cm2

corresponding to an asynchronous, chaotic and nearly synchro-
nous regime, respectively. In each plot the black (solid) line
corresponds to the power spectrum under the stimulus I1; the

red (dashed) line represents the power spectrum under the stim-
ulus I2. Note that these two curves essentially overlap with one
another. As we used in Fig. 6, the stimuli I1 and I2 are very
similar with only 1% difference in the input strength (for I1:
ω1 = 50 Hz and FE

1 = FI
1 = 0.05 mS/cm2; and for I2: ω2 = 50 Hz

and FE
2 = FI

2 = 0.0495 mS/cm2)
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Fig. 10 Swift discriminability of the mmax-event tree (with τ =
8 ms) as a function of mmax, with the ordinate denoting discrimi-
nation performance. As we used in Fig. 6, the stimuli I1 and I2
are very similar with only 1% difference in the input strength
(for I1: ω1 = 50 Hz and FE

1 = FI
1 = 0.05 mS/cm2; and for I2:

ω2 = 50 Hz and FE
2 = FI

2 = 0.0495 mS/cm2). The values of other
parameters are the same as those in Fig. 7. The plots from (a) to

(c) show three cases with the maximum coupling strength SEE =
0.1, 0.3, and 1.0 mS/cm2 corresponding to an asynchronous,
chaotic and nearly synchronous regime, respectively. In each plot
the black (squares) line corresponds to the discriminability of the
Tobs = 512 ms observation; the red (circles) line represents the
discriminability of the Tobs = 256 ms observation

tree analysis for the network dynamics in each of three
typical regimes, first, using the dynamics computed with
the standard method, then, using the dynamics com-
puted with the library method. For simplicity, from the
network of total 100 neurons, we randomly choose N =
8 neurons to apply the event tree analysis. It seems that
using a subset of different eight neurons or increasing
the size of subset does not qualitatively change our
conclusions on swift discriminability. The network is
driven by independent Poisson stimuli I1 and I2 that
are fully described by input rate ωk and input strengths
FE

k and FI
k, (k = 1, 2). As with Fig. 6, the stimuli I1

and I2 are very similar (for I1: ω1 = 50 Hz and FE
1 =

FI
1 = 0.05 mS/cm2; and for I2: ω2 = 50 Hz and FE

2 =
FI

2 = 0.0495 mS/cm2), i.e., there is only 1% difference
in the input strength between two stimuli. Here, we

use the standard method with a small time step (�t =
0.03125 ms) to evolve the network dynamics.

As shown in Fig. 9, within each dynamical regime,
the power spectra under two stimuli strongly overlap
each other. With these very similar inputs, the power
spectra fail to discriminate the inputs within Tobs ≤
512 ms. Figure 10 illustrates the utility of event tree
analysis for swift discriminability. In all three dynam-
ical regimes, the firing rate (i.e., mmax = 1-event tree)
cannot discriminate the stimuli very well. The discrim-
inability of Tobs = 512 ms event trees is higher than
that of Tobs = 256 ms event trees since an observation
window of larger size can have more occurrence counts
of event chains so that we may obtain more accurate
statistics. We also note that the discriminability in-
creases as mmax increases.
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Fig. 11 Swift discriminability of the mmax-event tree (with τ =
8 ms) as a function of mmax. The stimuli I1 and I2 are very similar
with only 1% difference in the input rate instead of strength as
in Fig. 10 (for I1: ω1 = 50 Hz and FE

1 = FI
1 = 0.05 mS/cm2; and

for I2: ω2 = 49.5 Hz and FE
2 = FI

2 = 0.05 mS/cm2). The values
of other parameters and the notations are the same as those in
Fig. 10
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Fig. 12 Swift discriminability of the mmax-event tree (with τ =
8 ms) as a function of mmax between the stimuli I1 and I2
with only 1% difference in the input strength. All the values of

parameters and the notations are the same as those in Fig. 10,
except that we use the library method with the large time step
(�t = 0.25 ms) to evolve the network dynamics

As shown in Fig. 10(a) of the asynchronous
regime, all of Tobs = 256 ms event trees again cannot
differentiate the stimuli very well, whereas only the
deeper event tree (mmax = 4) with Tobs = 512 ms can
be used to classify correctly the stimulus ∼ 75% of the
time. In the chaotic regime shown in Fig. 10(b), both of
the Tobs = 256 ms and Tobs = 512 ms event trees with
mmax ≥ 2 can reliably discriminate I1 and I2 more than
∼ 78% of the time. Figure 10(c) illustrates the dis-
criminability in the nearly synchronous case, where the
event trees with mmax ≥ 2 can discriminate very robust-
ly between the stimuli more than ∼ 95% of the time.

We also perform the swift discriminability of the
event tree analysis by using another set of very similar
stimuli I1 and I2, which now have only 1% difference
in the input rate instead of strength (for I1: ω1 =
50 Hz and FE

1 = FI
1 = 0.05 mS/cm2; and for I2: ω2 =

49.5 Hz and FE
2 = FI

2 = 0.05 mS/cm2). Figure 11 shows

the similar observations as Fig. 10 does, e.g., (i) the
discriminability increases as mmax and Tobs increase;
(ii) the network dynamics in the chaotic and nearly
synchronous regimes is sufficiently rich that the event
trees observed over a short Tobs = 256 ms can reliably
encode small differences in the stimulus.

Now we turn to the discussion of the swift discrim-
inability of the event tree analysis for the network
dynamics evolved by using the library method. First, we
repeat the test of the discriminability between two stim-
uli I1 and I2 that have only 1% difference in the input
strength, as the one used in Fig. 10. But the network
dynamics under both stimuli is evolved by using the
library method with the large time step (�t = 0.25 ms).
As shown in Fig. 12, we obtain similar results as in
Fig. 10.

Second, we repeat a test of the discriminability
between two stimuli I1 and I2 that have only 1%
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Fig. 13 Swift discriminability of the mmax-event tree (with τ =
8 ms) as a function of mmax between the stimuli I1 and I2 with
only 1% difference in the input rate. All the values of parameters

and the notations are the same as those in Fig. 11, except that we
use the library method with the large time step (�t = 0.25 ms) to
evolve the network dynamics
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difference in the input rate, as the one used in Fig. 11.
Once again, the network dynamics under both stimuli is
evolved by using the library method with the large time
step (�t = 0.25 ms). Figure 13 shows similar results as
in Fig. 11.

These tests indicate that we can employ the library
method to simulate the HH neuronal networks using a
much larger time step than the one used for resolving
the whole trajectories without the library, while still
producing stimulus-sensitive event chains. Therefore,
our library method has the potential to be an efficient
numerical method for simulating large neuronal net-
work systems, even when high order statistical struc-
tures are needed.

5 Conclusion

We have presented a comparison between our li-
brary method and a standard high-resolution numerical
method for evolving a set of HH neuronal networks.
Specifically, we have compared a high-order statistical
measurement of these systems’ dynamics encapsulated
by event chains and event trees. We have found that,
not only does our library method serve to efficiently
evolve the HH system, but our library method also
captures many low- and high-order statistics of the net-
work’s dynamics. It has been demonstrated that these
event chains and trees can potentially extract, with high
reliability, the information that simultaneously encodes
various stimuli within realistic short observation times.
The event tree analysis does not rely on specific ar-
chitectural assumptions and is applicable to both feed-
forward and strongly recurrent networks. Moreover,
we have shown that event trees of a network can
reliably capture relevant statistical information even
when the network dynamics is chaotic. It is important
to emphasize that the analysis of network dynamics
using information represented in event trees can be
extended to investigate much larger, more realistic neu-
ronal systems, such as the primary visual cortex (V1)
and provide discriminability of fine orientations within
the V1 model (Rangan et al. 2008). An idea similar to
event tree analysis has also been applied for discrimi-
nating different odors within a large-scale model of the
fly antennal lobe. We expect that our computational
methods for collecting, storing, and analyzing event
trees can be used by experimentalists to study network
mechanisms underlying biological functions by probing
the relevance and stimulus specificity of diverse subsets
of events within real networks through methods such as
multielectrode grids.

The numerical study of the network dynamics of
HH neurons in previous sections reveals three typ-
ical dynamical regimes—asynchronous, chaotic and
synchronous—ones as the synaptic coupling strength
varies from weak to strong. The regimes are charac-
terized by several tools from dynamical systems theory,
such as measuring the largest Lyapunov exponent and
analyzing the power spectrum of voltage traces. Dis-
criminability relies, particularly for fine discrimination
tasks, on the network operating with sufficiently rich
dynamics. As we have demonstrated, for the asynchro-
nous regime, both power spectra and low order event
trees cannot discriminate between fine stimulus char-
acteristics with short observation windows. However, in
the chaotic and nearly synchronous regimes, the event
trees contain sufficient information that can reveal
(over short observation windows) small differences be-
tween the stimuli which cannot be easily obtained by
analyzing the power spectrum of oscillations. We em-
phasize that the event tree analysis indeed is a sensitive
tool to differentiate high order statistics.

In this work, we further demonstrate that our library-
based HH neuronal dynamics solver is an efficient nu-
merical method for evolving the HH network dynamics.
It numerically reduces the dynamics of HH neurons
to that of I&F-like neurons by using a pre-computed
high resolution data library. This method can overcome
the stability restriction associated with firing events
and allows us to use much larger time steps to evolve
the neuronal trajectories even if the conductances are
high and the HH equations are stiff. We emphasize
that the library method can be practicable for simu-
lating large-scale neuronal networks by incorporating
a clustering procedure of firing events in networks
to take advantage of localized architectures, such as
spatial scales of strong local interactions, which are
often present in large-scale computational models—for
example, those of the V1. By using this method, we can
collect accurate statistical information with much lower
computational cost. Moreover, the numerical results
obtained by using the library method retain sufficient
high order statistics of firing events, which can also be
used in the fine discrimination tasks with the event tree
analysis.
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Appendix A: Parameter values for the
Hodgkin-Huxley equations

Parameter values or ranges and function definitions of
the Hodgkin-Huxley model are as follows (Dayan and
Abbott 2001):

GNa = 120 mS/cm2, VNa = 50 mV,

GK = 36 mS/cm2, VK = −77 mV,

GL = 0.3 mS/cm2, VL = −54.387 mV,

C = 1 μF/cm2, VE
G = 0 mV, VI

G = −80 mV,

FE = 0.05 ∼ 0.1 mS/cm2, S̃E = 0.05 ∼ 1.0 mS/cm2,

FI = 0.01 ∼ 0.05 mS/cm2, S̃I = 0.05 ∼ 1.0 mS/cm2,

σ E
r = 0.5 ms, σ E

d = 3.0 ms,

σ I
r = 0.5 ms, σ I

d = 7.0 ms,

αm(V) = 0.1(V + 40)/(1 − exp (−(V + 40)/10)),

βm(V) = 4 exp (−(V + 65)/18),

αh(V) = 0.07 exp (−(V + 65)/20),

βh(V) = 1/(1 + exp (−(35 + V)/10)),

αn(V) = 0.01(V + 55)/(1 − exp (−(V + 55)/10)),

βn(V) = 0.125 exp (−(V + 65)/80).

Appendix B: Numerical method for a single neuron

Here we provide details of the numerical method for
evolving the dynamics of a single neuron. For simplic-
ity, we use vector Xi to represent all the variables in the
solution of the ith neuron:

Xi(t) = (
Vi(t), mi(t), hi(t), ni(t), GQ

i (t), G̃Q
i (t)

)
.

Given an initial time t0 and time step �t, initial values
Xi(t0), and spike times TF

i,k and TS
j�=i,k from the other

neurons in the network, a preset threshold value Vth at
which an action potential starts, our method computes
a numerical solution of all variables Xi(t0 + �t) as well
as the intervening spike times TS

i,k (if any occurred) for
the ith neuron as follows:

Algorithm 1. (Single neuron scheme)
Step 1: Input: an initial time t0, a time step �t, a set of

spike times TF
i,k and TS

j�=i,k and associated strengths FQ
i

and S̃Q
i, j.

Step 2: Consider the time interval [t0, t0 + �t]. Let M
denote the total number of feedforward and presynaptic

spikes within this interval. Sort these spikes into an
increasing list of M spike times Tsorted

m with correspond-
ing spike strengths Ssorted,Q

m . In addition, we extend this
notation such that Tsorted

0 := t0, Tsorted
M+1 := t0 + �t and

Ssorted,Q
0 = Ssorted,Q

M+1 := 0.
Step 3: For m = 1, . . . , M + 1, advance the equa-

tions for the HH neuron model and its conductances
(Eqs. (1)–(7)) from Tsorted

m−1 to Tsorted
m using the stan-

dard RK4 scheme to obtain Xi(Tsorted
m ); Then, update

the conductance G̃Q
i (Tsorted

m ) by adding the appropriate
strengths Ssorted,Q

m .
Step 4: If the calculated values for Vi(Tsorted

m ) are
each less than Vth, then we can accept Xi(Tsorted

M+1 ) as the
solution Xi(t0 + �t). We update t0 ← t0 + �t and return
to step 2 and continue.

Step 5: Otherwise, let Vi(Tsorted
m ) be the f irst calculated

voltage greater than Vth. We know that the ith neuron
f ired somewhere during the interval [Tsorted

m−1 , Tsorted
m ].

Step 6: In this case we use a high-order polynomial
interpolation to f ind an approximation of the spike time
tfire in the interval [Tsorted

m−1 , Tsorted
m ]. For example, we

can use the numerical values of Vi(Tsorted
m−1 ), Vi(Tsorted

m ),
d
dt Vi(Tsorted

m−1 ), d
dt Vi(Tsorted

m ) to form a cubic polynomial.
We record tfire as the (k + 1)th postsynaptic spike time
TS

i,k+1 of the ith neuron. We update t0 ← t0 + �t and
return to step 2 and continue.

Appendix C: The library-based numerical method

Here, we briefly outline Algorithm 2, which uses the
library to recover the spike. Given an initial time t0 and
time step �t, initial values Xi(t0), and spike times TF

i,k

and TS
j�=i,k from the other neurons in the network, our

method calculates a numerical solution of all variables
Xi(t0 + �t) as well as the intervening spike times TS

i,k (if
any occurred) for the ith neuron as follows.

In order to build the data library, we choose NI

different values of Iinput equally distributed in its range
from 7.5 to 50.0 μA/cm2, which can essentially cover
all typical values of Iinput of the spiking neurons at the
moments when they f ire in our network simulations. We
also equally distribute Nlib points of minput, hinput, ninput

in their parameter ranges, respectively. These ranges
should cover all typical values of m, h, n of a neuron
when it fires in the HH network.

Algorithm 2. (Library algorithm)
Step 0: Pre-compute the data library of V, m, h, n

for NI dif ferent values of the constant input current
Iinput using very f ine time step δt. For each Iinput, we
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isolate an action potential form that starts exactly from
Vth to a later time (after Tref ms) where the membrane
potential drops down around its minimum. Then we use
this action potential form (i.e., the intermediate replica
of the membrane potential) with dif ferent values of
minput, hinput, ninput as initial values to compute the inter-
mediate replica for m, h, n individually. In particular,
we can obtain the reset values mre, hre, nre at the end
point where the form of the action potential terminates.
For each case of Iinput, there are Nlib data sets of m, h, n,
respectively.

Step 1: Input: the library, an initial time t0, a large time
step �t, a set of spike times TF

i,k and TS
j�=i,k and associated

strengths FQ
i and S̃Q

i, j.
Step 2: Consider the time interval [t0, t0 + �t]. Let M

denote the total number of feedforward and presynaptic
spikes within this interval. Sort these spikes into an
increasing list of M spike times Tsorted

m with correspond-
ing spike strengths Ssorted,Q

m . In addition, we extend this
notation such that Tsorted

0 := t0, Tsorted
M+1 := t0 + �t and

Ssorted,Q
0 = Ssorted,Q

M+1 := 0.
Step 3: For m = 1, . . . , M + 1, advance the equa-

tions for the HH neuron model and its conductances
(Eqs. (1)–(7)) from Tsorted

m−1 to Tsorted
m using the stan-

dard RK4 scheme to obtain Xi(Tsorted
m ); Then, update

the conductance G̃Q
i (Tsorted

m ) by adding the appropriate
strengths Ssorted,Q

m .
Step 4: If the calculated values for Vi(Tsorted

m ) are
each less than Vth, then we can accept Xi(Tsorted

M+1 ) as the
solution Xi(t0 + �t). We update t0 ← t0 + �t and return
to step 2 and continue.

Step 5: Otherwise, let Vi(Tsorted
m ) be the f irst calculated

voltage greater than Vth. We know that the ith neuron
f ired somewhere during the interval [Tsorted

m−1 , Tsorted
m ].

Step 6: In this case we use a high-order polynomial
interpolation to f ind an approximation to the spike time
tfire in the interval [Tsorted

m−1 , Tsorted
m ]. For example, we

can use the numerical values of Vi(Tsorted
m−1 ), Vi(Tsorted

m ),
d
dt Vi(Tsorted

m−1 ), d
dt Vi(Tsorted

m ) to form a cubic polynomial.
We record tfire as the (k + 1)th postsynaptic spike time
TS

i,k+1 of the ith neuron.

Step 7: We compute the values of Ith =
− ∑

Q GQ
i (tfire)× (Vth − VQ

G), as well as the gating
variables mth, hth and nth at this time. Then, we perform
a linear interpolation to f ind the corresponding reset
values of Vre, mre, hre, nre in the library. Meanwhile,
we stop evolving Eqs. (1)–(5) for the next Tref ms, but
evolve Eqs. (6) and (7) for the conductance terms GQ

i (t)
and G̃Q

i (t) as usual. We update t0 ← min(tfire + Tref,
t + �t) and return to step 2 and continue with the reset
values Vre, mre, hre, nre as the initial values Vi(t0), mi(t0),
hi(t0) and ni(t0).

Appendix D: More details on discriminability

Here we provide details of several definitions we used
in Section 3.2. Although the occurrence count rate n
takes only discrete values as shown in the x-axis of
Fig. 6, it is more convenient to treat n as a continuous
variable for the following discussion. Given a single
sample Tobs observation of the network dynamics, our
discrimination task is to determine a possible candidate
stimulus by using the two distributions P1(n) and P2(n)

of an event chain. A simple procedure is to obtain
the occurrence rate n of the event chain in the sample
observation and compare it to a threshold number z.
If n > z, we report I1; otherwise we report I2. Figure 6
shows that if we choose z to lie somewhere between
the two distributions, say, the location where P1(z) =
P2(z), this procedure can give the correct answer when
the two distributions are fairly well separated, but will
have difficulty discriminating the stimuli if their distrib-
utions merge together. This difficulty is clearly related
to the degree to which the two distributions overlap.

First, we show how to define and calculate the hit
rate A. The probability that the procedure will make
the correct choice (called a hit) under the stimulus I1 is
the conditional probability that n > z given the stimu-
lus I1 was presented, α := P(n > z|I1) = ∫ ∞

z P1(n)dn.
The probability that it will give the answer I1 when
the stimulus was actually I2 (called a false alarm)
is similarly β := P(n > z|I2) = ∫ ∞

z P2(n)dn. These two
probabilities completely determine the performance of
the discrimination procedure because the probabilities
for the other two cases (choosing I2 when the correct
answer is I1, choosing I2 when the correct answer
is I2) are 1 − α = ∫ z

0 P1(n)dn and 1 − β = ∫ z
0 P2(n)dn,

respectively. Therefore, by applying this procedure to
all different independent single samples in which the
two stimuli I1 and I2 occur with equal probability,
the overall probability of making a correct choice with
the even chain {σ j1 → . . . → σ jm}, i.e., the hit rate is
given by

A = 1

2
(α + 1 − β) = 1

2

(∫ ∞

z
P1(n)dn +

∫ z

0
P2(n)dn

)

= 1

2

∫ ∞

0
max

(
P1(n), P2(n)

)
dn,

and the false alarm rate is

B = 1 − A = 1

2
(1 − α + β)

= 1

2

∫ ∞

0
min

(
P1(n), P2(n)

)
dn.

With A and B in hand, we measure the separation
between the two distributions by using the information
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ratio, which is defined as Iσ j1 →...→σ jm

I1,I2
≡ A/B. The in-

formation ratio is equal to one if the two distributions
totally overlap (i.e., A = B = 1

2 ), and it approaches to
+∞ when the two distributions are totally separated
(i.e., A = 1, B = 0). Therefore, when we classify the
stimulus by using the occurrence count of every event
chain within an event tree, the “vote" of each con-
tributing event chain for either stimulus I1 or I2 is

weighted with the factor log
(

Iσ j1 →...→σ jm

I1,I2

)
. Then the

weighted votes across the entire event tree are summed
up to determine the candidate stimulus underlying the
sample observation. This is similar to the concept of
entropy in the information theory. For instance, if there
are total Nc event chains within an event tree and the
vote of each chain Ci is denoted by vi, which takes either
value +1 for stimulus I1 or −1 for I2, the summed vote
vs is given by

vs =
Nc∑

i=1

vi log
(

ICi
I1,I2

)
.

We choose I1 if vs > 0, otherwise we choose I2. If the
two distributions of an event chain Ci totally merge, its

vote is void because its weight log
(

ICi
I1,I2

)
= 0. Thus,

the final choice is made by the votes with relatively
significant weights.

Finally, we apply the above procedure with the in-
formation of the entire tree to all different independent
single samples. In a similar way as defining the hit rate
above, the discriminability of the event tree is defined
as the percentage of sample observations that were cor-
rectly classified under our voting procedure (choosing
I1 when the correct answer is I1, choosing I2 when
the correct answer is I2). The formula is given by D =
Ncorrect/Nsample where Nsample is the total number of
sample observations and Ncorrect is the number of times
of making correct choices. In Figs. 10–13 in Section 4.2,
we present the results by showing the discriminability
as a function of mmax.
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