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Abstract Randomly connected populations of spiking neu-
rons display a rich variety of dynamics. However, much
of the current modeling and theoretical work has focused
on two dynamical extremes: on one hand homogeneous
dynamics characterized by weak correlations between neu-
rons, and on the other hand total synchrony characterized by
large populations firing in unison. In this paper we address
the conceptual issue of how to mathematically characterize
the partially synchronous “multiple firing events” (MFEs)
which manifest in between these two dynamical extremes.
We further develop a geometric method for obtaining the
distribution of magnitudes of these MFEs by recasting the
cascading firing event process as a first-passage time prob-
lem, and deriving an analytical approximation of the first
passage time density valid for large neuron populations.
Thus, we establish a direct link between the voltage distribu-
tions of excitatory and inhibitory neurons and the number of
neurons firing in an MFE that can be easily integrated into
population–based computational methods, thereby bridg-
ing the gap between homogeneous firing regimes and total
synchrony.
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1 Introduction

The homogeneous and synchronous dynamics of biolog-
ical and model neuronal networks have received much
attention over the years (Amari 1974; Amit and Brunel
1997; Bruzsaki and Draguhn 2004; Cai et al. 2006;
Cai et al. 2004; DeVille and Peskin 2008; Eggert
and Hemmen 2001; Fusi and Mattia 1999; Gerstner
1995; 2000; Knight 1972; Newhall et al. 2010; Nykamp
and Tranchina 2000; Omurtage et al. 2000; Singer
1999; Treves 1993; Wilson and Cowan 1972; 1973),
but it is perhaps what lies in between that gives rise to
their rich dynamics. In this paper, we consider a regime
of apparent and sudden barrages of firing that are tempo-
rally localized and are separated by time spans of homo-
geneous firing (c.f. Fig. 1). These spurts of firing activ-
ity involving different groups of neurons (ranging from
a few neurons to a substantial fraction of the popula-
tion) are called multiple firing events (MFEs) (Rangan
and Young 2013a), and can not be described as either
synchronous or homogenous firing events. These events
are generally initiated by one excitatory spiking neuron
that in turn causes some subset of other neurons to fire,
reflecting the strong correlation between firing activity.
The complicated structures of MFE dynamics have not
only been observed in experimental studies of a variety of
animals, including the leech ganglia, rat hippocampus, as
well as the olfactory system of moths, the auditory cor-
tex of rats and the visual cortex of the monkey and the cat
(Churchland and et al. 2010; DeWeese and Zador 2006;
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Fig. 1 (Color online) Raster plots for excitatory (red - top half ) and
inhibitory (blue - bottom half ) neuron populations demonstrating three
regimes that the I&F model can operate in: a a homogeneous regime
with little to no correlations between spike times, SEE = SEI =
SIE = SII = 0.003, b an MFE regime with bouts of homogeneous
firing interrupted by larger synchronous events, SEE = SEI = SIE =
SII = 0.009 and c a more synchronous regime with the majority of
the network firing occurring in unison, SEE = SII = 0.009, SEI =
SIE = 0.0072. For all three, the network sizes are NE = NI = 300,
and the Poisson driving parameters are ηE = 550Hz, f E = 0.07,
ηI = 530Hz, f I = 0.07

Lampl et al. 1999; Lei et al. 2009; Mazzoni et al. 2007;
Pertermann 2009; Riffell et al. 2009a, b; Samonds et al.
2005; Yu and Ferster 2010; Yu et al. 2011), but also been
revealed in computational studies of the mammalian pri-
mary visual cortex (V1) (Cai et al. 2005; Rangan and
Young 2012; 2013b), as well as in a number of other
computational and analytical studies (Battaglia and Hansel
2011; Benayoun et al. 2010; Brunel and Hakim 1999;
Brunel 2000; Cardanobile and Rotter 2010; Hansel and
Sompolinsky 1996; Kriener et al. 2008; Renart et al. 2004;
Sun et al. 2010; Zhou et al. 2008). The generation of
MFEs in idealized spiking neuron networks reflects a strong
competition between excitatory and inhibitory populations
operating near threshold, providing a possible mechanism
underlying similar phenomena observed in real neuronal
systems (Anderson et al. 2000; Krukowski and Miller 2000;
Murthy and Humphrey 1999; Sillito 1975; Sompolinsky and
Shapley 1997; Worgotter and Koch 1991).

The inclusion of MFE dynamics into large-scale compu-
tational models has only been possible by carefully resolv-
ing each spike (as by Rangan and Cai (2007) for example).
Population based methods such as firing rate models and
master equations or Fokker-Planck equations rely heavily
upon the assumption of the network remaining homoge-
neous (Brunel and Hakim 1999; Cai et al. 2006; Cai et al.
2004; Rangan and Young 2013a). This assumption is char-
acterized by weak correlations between the individual neu-
rons’ evolution, or nearly independent spike times generated
across the network (i.e. roughly Poissonian firing statistics).

The extension of the master equation to include time cor-
related MFEs has yet to be fully addressed. The difficulty
lies in how to self-consistently incorporate the MFEs into
a master equation or Fokker-Planck equation description.
Recently, a proposal to circumvent this difficulty computa-
tionally has been given in Refs. (Rangan and Young 2013a;
Zhang et al. In preparation): stop the evolution of the mas-
ter equation when an MFE (manifested as a synchronous
event of a subset of neurons in the network) occurs, then
reshape the population distributions after counting the num-
ber of firing neurons participating in the synchronous event,
and return to evolving the master equation until next occur-
rence of an MFE. While the above procedure appears to
be straightforward, there are two questions that need to be
answered: (1) what is the stopping criteria to indicate that
an MFE occurs? and (2) how many neurons participate in
an MFE? The first question concerning the stopping criteria
depends on the probability of more than two excitatory neu-
rons firing; this question has been addressed by Zhang et al.
(In preparation). In this paper, we answer the second ques-
tion for a specific current-based integrate-and-fire (I&F)
neuronal network model by tackling the conceptual issue of
how to mathematically characterize MFEs and developing
analytical approaches to obtaining the number of neurons
firing in an MFE.

In the pulse-coupled current-based integrate-and-fire
(I&F) neuronal network model, MFEs are cascade-induced
synchronous events occurring at single moments in time;
one excitatory neuron fires, increasing the voltages of the
other neurons, causing more neurons to fire, and continu-
ing in this cascading fashion until no more neurons fire, or
all neurons in the network fire. The independent stochastic
processes driving each neuron between synchronous events
cause the neuronal voltages to diverge, thus each MFE may
include not only a different subset of the population, but
may also include entirely different numbers of neurons.
Even if all the neurons fire together once, they are not
guaranteed to repeat this total synchronous event (see Ref.
(Newhall et al. 2010) for a detailed discussion). We are
interested in the specific model parameter regime in which
the network displays dynamics of substantially sized MFEs
separated by time intervals of effectively homogeneous fir-
ings. This regime is strongly influenced by the competition
between the excitatory and inhibitory populations.

In order to mimic the I&F dynamics using a population-
based model, we seek to characterize the MFE by its
magnitude, defined as the number of neurons firing together
with the neuron(s) initiating the synchronous event, in terms
of the information available in the population-based descrip-
tion. Specifically, at the time when the stopping criteria is
met (Zhang et al. In preparation), we know the voltage dis-
tributions for the excitatory and inhibitory populations, as
well as the synaptic coupling strengths and population sizes.
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For an all-to-all coupled network of excitatory neurons, the
requirement on the individual voltage arrangements for an
MFE of a given size to occur was discussed in Ref. (Newhall
et al. 2010), but its probability distribution in terms of the
voltage distributions could only be computed practically for
small MFE sizes. To obtain the size of an MFE, here, we cir-
cumvent the “balls-in-bins” combinatorics problem in Ref.
(Newhall et al. 2010) by further developing the graphi-
cal method presented in Ref. (Rangan and Young 2013a)
which is used to describe MFE magnitudes for interacting
excitatory and inhibitory populations. We show that the dis-
tribution of the MFE size is reducible to the distribution
of first passage times of a two-dimensional stochastic pro-
cess to a moving boundary. While it is possible to write
down an explicit partial differential equation for the first
passage time distribution of an arbitrary white-noise driven
stochastic process to an arbitrary boundary, this equation
can only be solved exactly in a very few, simple, cases. In
this paper, we approximate the MFE magnitude distribution
by extending Durbin’s method for 1D passage times with
moving boundaries (Durbin and Williams 1992) to the 2D
case. The resulting analytical formula for the distribution
of MFE magnitudes can not only be easily integrated into
population-based methods, but also furnishes a conceptual
advantage by illuminating the mechanism underlying MFEs
and their dependence on the voltages distributions in differ-
ent parameter regimes of synaptic strength and population
sizes.

The remainder of the paper is organized as follows. In
Section 2, we review the Integrate-and-Fire network with
inhibitory and excitatory neurons. In Section 3, we develop
methods to compute the magnitudes of the MFEs. First, we
review the condition for the cascade to continue, and dis-
cuss the graphical interpretation of MFEs (see Ref. (Rangan
and Young 2013a)), which relates the MFE magnitude
to the intersection of a cumulative distribution function
(CDF) and a line. Next, we show how to approximate this
intersection by replacing the empirical CDF with solutions
to two stochastic differential equations, given the origi-
nal voltage distributions of the excitatory and inhibitory
neurons under an appropriate change of variables. Finally,
extending Durbin’s method, we derive a formula for the
density of the first passage time, which in turn provides the
magnitude density of MFEs. We finally discuss the validity
of our approximations in Section 4 and draw conclusions in
Section 5. Many of the mathematical details are described
in the Appendixes.

2 Integrate-and-fire network

We consider a model network of all-to-all coupled, current-
based I&F neurons consisting of NE excitatory (E) and NI

inhibitory (I) neurons. The voltage difference across the ith

neuron’s membrane of type Q ∈ {E, I } obeys the equation

dV
Q
i

dt
= −gL

(
V

Q
i − VL

)
+ I

QE
i − I

QI
i (1a)

for i = 1, . . . , NQ, whenever V
Q
i < VT for firing threshold

VT and where VL is the leakage voltage. When the volt-
age V

Q
i crosses VT , the neuron is said to generate an action

potential; a spike time t
Q
ik is recorded and V

Q
i is reset to the

reset voltage VR , and held there for a time τref, referred to
as the “refractory period”. (In all figures we use the non-
dimensional values VT = 1 and VL = VR = 0, see Cai
et al. (2005)). The spike times also generate input currents
within the last two terms in Eq. (1a). These excitatory and
inhibitory currents are given by

I
QE
i =

∑
l

f Qδ
(
t − s

Q
il

)
+
∑
j �=i

∑
k

SQEδ
(
t − tEjk

)
(1b)

and

I
QI
i =

∑
j �=i

∑
k

SQI δ(t − t Ijk) (1c)

respectively. The first term in the right hand side of Eq. (1b)
represents an external driving train of spikes, each with
strength f Q, at the times, s

Q
il , generated independently for

each neuron from a Poisson point process with rate ηQ. The
second term in the right-hand side of Eq. (1b) (the only term
in Eq. (1c)) represents the sum over all spikes generated by
the excitatory (inhibitory) population of neurons. The cur-
rent impulse is a delta function; the voltage instantaneously
jumps up by an amount f Q at each external-spike time, SQE

at each excitatory-spike time, and decreases by an amount
SQI at each inhibitory-spike time.

Equations (1) can be numerically integrated exactly using
an event-driven algorithm to determine each of the NE and
NI neuronal voltages at any instance in time (Brette et al.
2007), together with a procedure to resolve an MFE like
the one presented in Appendix A. However, for very large
populations, the dynamics (in a homogeneous regime of fir-
ing) can be well approximated by the solution to a master
equation or a Fokker-Planck equation (Brunel and Hakim
1999; Cai et al. 2004, 2006; Rangan and Young 2013a)
for the voltage distributions, ρE(v, t) and ρI (v, t), of the
excitatory and inhibitory populations, respectively. As men-
tioned previously in the Introduction (and shown in (Rangan
and Young 2013a; Zhang et al. In preparation)), the mas-
ter equation or Fokker-Planck equation can be extended to
qualitatively capture the feature of MFE dynamics. In the
MFE regime, the population has two overall modes which
we call the “MFE” mode and the “inter-MFE” mode. In the
“inter-MFE” mode, the neurons are weakly correlated or
completely independent, and the voltage distribution of neu-
rons can be well described by population equations. When
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the criteria for an MFE to occur is satisfied, the inter-MFE
mode terminates, and the MFE mode begins. Since the volt-
ages in the corresponding I&F model will instantaneously
jump up or down by a synaptic kick, the MFE mode is
conceptualized as occurring within a single instant of time.
The non-zero refractory period will ensure that a neuron
only fires once during an MFE. From the available voltage
distributions, ρE(v, t) and ρI (v, t), it is important to have
an efficient method for determining the MFE magnitude
and therefore effectively capture the features of the MFE
regime.

The focus of this paper is developing different
approaches to obtain the size of an MFE during the MFE
mode. Incidentally, in what follows, we do not present the
details of the master equation, but assume we have access
to ρE(v) and ρI (v), the distributions of neuronal voltages
at the time some excitatory neurons are about to fire and
trigger an MFE.

3 Determining MFE magnitude

As mentioned in the Introduction, many biologically real-
istic regimes include bursts of firing activity similar in
nature to MFEs. Due to the delta function impulses, the net-
work modeled by Eq. (1) can exhibit MFEs in the form of
cascade-induced synchrony (Newhall et al. 2010), in which
the external driving causes one excitatory neuron to spike,
instantaneously increasing the voltages of other neurons,
causing more excitatory (and possibly inhibitory) neurons
to fire, increasing (and possibly decreasing) the voltages of
other neurons, cascading through the network, resulting in
many neurons spiking at the exact same instant time. The
number of neurons participating in one such MFE is deter-
mined solely by the arrangement of all the voltages at the
time one excitatory neuron fires, as well as by the four
coupling strengths, SEE , SIE , SEI and SII . We therefore
seek the connection between the voltage distributions of the
excitatory and inhibitory populations at the time when the
MFE is initiated, and the distribution of MFE magnitudes
(number of spiking excitatory and inhibitory neurons in one
such event). In this section, we achieve this by calculat-
ing the distribution of MFE magnitudes in three ways: In
Section 3.1 we present the condition for the cascading firing
event to continue in terms of the set of excitatory

{
vj

}NE

j=1

and inhibitory
{
wj

}NI

j=1 neuronal voltages at the time one
excitatory neuron is about to fire, and compute the MFE
magnitude graphically from the intersection of a line and
a function of the empirical voltage CDFs. In Section 3.2
we approximate the empirical CDF by a stochastic process
depending on the voltage density distributions (not the set
of voltages themselves) and calculate the MFE magnitude

as a first passage time problem. Finally, in Section 3.3 we
approximate the solution to the first passage time problem
and obtain the distribution of MFE magnitudes in terms
of the voltage distributions, numbers of neurons, and the
coupling strengths.

3.1 Geometrical method

We will begin by describing the connection between the
cascade-mechanism responsible for an MFE and a graphical
representation of its magnitude. The connection is easiest to
understand if we consider only a population of excitatory

neurons with a set of sorted descending voltages,
{
v(j)

}NE

j=1

with v(j) ≥ v(i) for j < i, at the time one neuron fires
(v(1) ≥ VT ). The MFE will continue with a second neuron
firing if v(2) ∈ [VT − SEE, VT

)
, as all neuronal voltages are

increased by SEE when the neuron with voltage v(1) fires.
A third neuron will fire if v(3) ∈ [VT − 2SEE, VT

)
, the two

previously firing neurons cause the voltages of remaining
neurons to increase by 2SEE . Exactly mE neurons will fire
if the condition

v(j) ∈
[
VT − (j − 1)SEE, VT

)
(2)

is satisfied for j = 2 . . . mE but not for j = mE + 1. If we
define the empirical CDF to be

FE(v) =
∫ v

−∞
1

NE

NE∑
j=1

δ(z − vj )dz, (3)

then satisfying condition (2) for j = 1 to mE is equivalent
to satisfying the condition

VT − v ≤ SEENE(1 − FE(v)) (4)

for v < VT such that NE(1 − FE(v)) ≤ mE . The mag-
nitude, mE , can be determined by the value V ∗ for which
condition (4) is no longer true. This is precisely the point
V ∗ where the CDF FE(v) intersects the line

l(v) = 1 + 1

NESEE
(v − VT ). (5)

The MFE magnitude is then given by

mE = NE

[
1 − FE(V ∗)

]
.

Figure 2 demonstrates this graphical interpretation. As
the voltage configuration before the MFE changes, the
empirical CDF FE(v) will also change, as will the intersec-
tion point, V ∗ and hence the MFE magnitude, mE . Because
the underlying distribution for the excitatory voltages can
be multi-modal, (c.f. Fig. 2c), it is possible for V ∗ to be
discontinuous as a function of SEE .

We extend the above geometrical method to account for
the addition of an inhibitory population of neurons with
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Fig. 2 Geometrical method for determining the MFE magnitudes in a
population of excitatory neurons. a The histogram of NE = 10 exci-
tatory neurons when one is about to fire. b The intersection of the
empirical CDF FE(v) (black line over cyan shaded region) and the line
l(v) = 1+ 1

NESEE (v−VT ) (blue dashed line) is the point when the cas-
cading MFE terminates: for voltages above this point there are j = 7
neurons within the interval

[
VT − jSEE, VT

]
with SEE = 0.04, and

these neurons will fire in the MFE. Below this point, condition (2) is
violated. The red ticks on the x-axis indicate the voltages of the neu-
rons firing in the MFE. (c and d) Same as (a and b) but for a bimodal
distribution of voltages, NE = 128, and SEE = 0.005

voltages
{
wj

}NI

j=1 and empirical CDF

FI (w) =
∫ w

−∞
1

NI

NI∑
j=1

δ(z − wj)dz.

Inhibitory neurons impede the continuation of MFEs as each
generated spike reduces the excitatory voltages by SEI and
the other inhibitory voltages by SII . Therefore, the analo-
gous condition to Eq. (4) for the cascade to continue when
there are two populations is

VT − v ≤ SEENE (1 − FE(v)) − SEINI (1 − FI (w)),

VT − w ≤ SIENE (1 − FE(v)) − SIINI (1 − FI (w)).

(6)

The magnitude of the MFE is found from the points v = V ∗
and w = W ∗ such that for v < V ∗ and w < W ∗ the condi-
tions in Eq. (6) no longer hold. What we do next is describe
how to reduce the failure of the two conditions in Eq. (6)
as the intersection of a function of only v and the line in
Eq. (5), thereby deriving the MFE magnitude in terms of a
single intersection point as was just done for only the exci-
tatory population. We present a simple overview here; the
details are explained in Appendix B.

We first rescale the inhibitory voltages to

ŵj = VT − SEE

SIE

(
VT − wj

)
, (7)

so that the firing of one excitatory neuron will cause an
inhibitory neurons to fire if its rescaled voltage ŵj is in
the interval

[
VT − SEE, VT

]
. This allows the difference

between the two conditions in Eq. (6) to be written as the
single condition appearing in Eq. (44) in Appendix B. We
also define the empirical inhibitory voltage CDF,

F̂I (w) = lim
V→w−

∫ V

−∞
1

NI

NI∑
j=1

δ
(
z − ŵj

)
dz, (8)

associated with the transformed voltages in Eq. (7). Next,
we have two cases: If the inhibitory effect on the inhibitory
neurons is larger than on the excitatory neurons, i.e., δ =
SII SEE/SIE − SEI > 0, then we need to shift ŵj further
by defining

v̄j = vj , w̄j = ŵj − δNI

(
1 − F̂I

(
ŵj

))
. (9)

On the other hand, if the inhibitory effect on the excita-
tory neurons is larger than the inhibitory neurons, i.e., δ =
SII SEE/SIE − SEI < 0, then we shift the vj by

v̄j = vj + δNI

(
1 − F̂I

(
v̄j

))
, w̄j = ŵj . (10)

By constructing new CDFs for the transformed variables,

F̄E(v) =
∫ v

−∞
1

NE

NE∑
j=1

δ
(
z − v̄j

)
dz,

F̄I (v) =
∫ v

−∞
1

NI

NI∑
j=1

δ
(
z − w̄j

)
dz,

(11)

we have that
VT − v̄

NESEE
≤ 1 − F̄E(v̄) − α

(
1 − F̄I (v̄)

)
(12)

is equivalent to the two conditions in Eq. (6). The value

α = min
(

SII

SIE , SEI

SEE

)
NI

NE
is obtained by considering that

δ ≥ 0 implies SII

SIE > SEI

SEE , and δ < 0 implies SII

SIE < SEI

SEE .
Condition (12) is equivalent to the conditions (50) and (56)
derived in Appendix B for the two different cases of δ.

Interpreting condition (12) failing for the first time as an
intersection point, we determine the magnitude of the MFE
as

mQ = NQ

[
1 − F̄Q

(
V ∗)] , (13)

where V ∗ is the intersection point of the new function

G(v) = F̄E(v) + α
[
1 − F̄I (v)

]
, (14)

and the line l(v) in Eq. (5). Notice that each initial set of spe-
cific voltages

{
vj

}NE

j=1 and
{
wj

}NI

j=1 yields exactly one MFE
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magnitude. We can obtain the distribution of MFE magni-
tudes by repeated sampling of the sets of voltages

{
vj

}NE

j=1

and
{
wj

}NI

j=1 from some known densities ρE(v) and ρI (w),
respectively, and computing the MFE magnitude using the
above algorithm.

3.2 First passage time formulation

Having derived a method above for obtaining the magnitude
of an MFE in terms of the empirical CDFs of the excitatory
and inhibitory populations, we are now ready to reformulate
the problem of obtaining the magnitude of an MFE as a first
passage time problem. We take advantage of Donsker’s the-
orem (Donsker 1952) to approximate the empirical CDFs
in terms of rescaled Brownian Bridges.1 In this framework,
in which “time” is considered the voltage difference from
the threshold voltage VT , the intersection point of interest,
and thus the MFE magnitude, is the first passage time of a
stochastic process to a line.

Here, we first derive the theoretical CDFs for the trans-
formed voltages v̄j and w̄j defined in the previous section
in terms of “time” starting from the original probability den-
sity functions (PDFs) for the voltages of the excitatory and
inhibitory populations. (Recall from the end of Section 2 we
assume that we have access to these distributions at the time
an excitatory neuron fires.) Then, from the theoretical PDFs
we can write two stochastic differential equations (SDEs)
that approximate the possible empirical CDFs. We obtain
the MFE magnitude by simulating the SDEs and determin-
ing the first passage time. In the next section, we complete
the connection between the population voltage distributions
and the distribution of MFE magnitudes by analytically
approximating the first passage time density.

First, in the framework of time defined as t = VT − v,
we derive the theoretical PDFs for the transformed volt-
ages defined in either Eq. (9) or Eq. (10), starting from the
original theoretical PDFs for the excitatory and inhibitory
voltages, ρE(v) and ρI (w), respectively. Switching to t

and using the transformation in Eq. (7), we obtain the
transformed PDFs pE(s) = ρE(VT − s) and pI

(
t̂
) =

SIE

SEE ρI

(
VT − SIE

SEE t̂
)

. The equivalent formulas to Eqs. (9)

and (10) for transforming the variables s and t̂ are

s̄ = s, t̄ = t̂ + δNI f̂I

(
t̂
)
, if δ ≥ 0, (15a)

s̄ = s − δNI f̂I (s̄) , t̄ = t̂ , if δ < 0, (15b)

1Donsker’s theorem states that the fluctuations of an empirical CDF
about its theoretical CDF converge to Gaussian random variables with
zero mean and certain variance. The sequence of independent Gaussian
random variables can be formulated in terms of a standard Brown-
ian bridge, a continuous-time stochastic process on the unit interval,
conditioned to begin and end at zero.

where δ = SII SEE/SIE − SEI as before and where we
have defined f̂I (t) =

∫ t

0 pI (τ)dτ .
We now consider the densities for these new variables s̄

and t̄ for two cases. First, if δ ≥ 0, then we can approximate
the distributions of t̄ and s̄ as

p̄I

(
t̄
) = pI

(
g−1

(
t̄
))

g′ (g−1
(
t̄
)) and p̄E(s̄) = pE(s̄) (16)

where we have defined g(t) = t + δNI f̂I (t), and g′(t) is
the derivative with respect to t . Similarly, for the case when
δ < 0,

p̄E(s̄) = pE(g(s̄))g′(s̄) and p̄I (t̄) = pI (t̄). (17)

Finally, we define the theoretical CDFs of these transformed
densities by

f̄E(t) =
∫ t

0
p̄E(τ )dτ and f̄I (t) =

∫ t

0
p̄E(τ )dτ. (18)

One example of transforming the PDFs is shown in Fig. 3.
The original PDFs ρE(v) and ρI (w) are shown in Fig. 3a
while the transformed PDFs in Eq. (16) are shown in Fig. 3b
for one choice of coupling strengths.

What we have so far is a way to transform from the
PDFs of the excitatory and inhibitory population voltages to
the theoretical CDFs of the transformed voltages. Note that
the MFE is determined by the intersection of a combina-
tion of the empirical CDFs and the line in Eq. (5). We now
use Donsker’s Theorem (Donsker 1952) to approximate the
possible empirical distributions, F̃Q(t), selected at random
from the theoretical distributions in Eq. (18), as

F̃Q(t) ≈ f̄Q(t) + 1√
NQ

B
(
f̄Q(t)

)
(19)

for Q ∈ {E, I }, where B(·) is a standard Brownian bridge
on the unit interval starting and ending at zero. The approx-
imation (19) will be valid when NE, NI � 1. A single
stochastic trajectory, φQ(t) = 1√

NQ

B
(
f̄Q(t)

)
, solves the

stochastic differential equation

dφQ(t) = −φQ(t)p̄Q(t)

1 − f̄Q(t)
dt +

√
p̄Q(t)

NQ

dWQ(t) (20)

with φQ(0) = 0, and where dWQ(t) is standard white noise
in time.

We must also know how many neurons initiate the MFE,
as the population-based description does not include any
neurons with voltages over the threshold. If precisely k

excitatory neurons fire to initiate the MFE, then the MFE
magnitudes are derived from the first intersection point of

Ḡ(t) = γ (f̄E(t) + φE(t)) − α(f̄I (t) + φI (t)) + k

NE

(21)

with the line

l̄(t) = 1

NESEE
t, (22)
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where γ = 1 − k/NE and α = min
(

SII

SIE , SEI

SEE

)
NI

NE
, as

before. Note that Ḡ(t) is different from the direct transfor-
mation of G(v) (Eq. 14) to either set of variables defined in
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Fig. 3 a The original densities ρE(v) and ρI (v). b The transformed
densities p̄E(t) and p̄I (t) defined in Eq. (16) for the case when SEE =
0.009, SIE = 0.0072, SEI = 0.0057, SII = 0.0072 and NE = NI =
128. c A sample trajectory of the SDE (black line) for the densities
shown in (b) intersecting the surface A in the 3D space (x, y, t)

Eq. (15) in that Ḡ(t) also takes into account the k excitatory
neurons that initiate the MFE.

Finally, we determine the magnitudes of the MFE by
finding the first point in time when Ḡ(t) in Eq. (21) crosses
the line l̄(t) in Eq. (22), or equivalently in three-dimensional
space, the first time, t∗, that the joint stochastic process
(φE(t), φI (t), t) exits the region bounded by the surface A
given by the algebraic constraint that Ḡ(t) = l̄(t) for points
(x, y, t):

−γ (x + f̄E(t)) + α(y + f̄I (t)) + 1

NESEE
t = k

NE

. (23)

Figure 3c shows an example trajectory crossing this surface.
Given this intersection point, t∗, the magnitudes of the MFE
are

mE = k + [NE − k]
(
f̄E(t∗) + φE(t∗)

)
,

mI = NI

(
f̄I (t

∗) + φI (t
∗)
)
.

(24)

Using the above formulation, we can numerically deter-
mine the distribution of MFE magnitudes as follows: First,
take the theoretical PDFs ρE(v) and ρI (w) and transform
them to p̄E(t) and p̄I (t) using either Eq. (16) or Eq. (17)
and then calculate the CDFs f̄E(t) and f̄I (t) defined in
Eq. (18). Next, using these transformed PDFs and CDFs,
simulate stochastic trajectories using Eq. (20), and deter-
mine the intersection point of (φE(t), φI (t), t) with the
surface A in Eq. (23). Last, compute the MFE magnitudes in
Eq. (24). The distribution of MFE magnitudes is obtained by
repeatedly simulating the stochastic trajectories and deter-
mining the intersection points. Next, in Section 3.3, we
devote ourselves to deriving an analytical formula for this
MFE magnitude distribution.

3.3 Analytical formula for the distribution of MFE
magnitudes

In Section 3.2, we reduced the problem of obtaining the
MFE magnitude to one of finding the first exit time
(or first passage time) of the joint stochastic process
(φE(t), φI (t), t) out of the region bounded by the surface
A. This can also be thought of as a 2D stochastic pro-
cess (φE(t), φI (t)) hitting a moving boundary. Durbin’s
method of approximating first passage time distributions
of 1D stochastic trajectories to moving boundaries (Durbin
1985; Durbin and Williams 1992) depends on the distance
between the surface and the starting point of the trajectory
and the distribution of the stochastic trajectory as a function
of time. We employ a similar technique by first transform-
ing the 2D stochastic process to an isotropic 2D stochastic
process with the same diffusion in any direction. This allows
us to decompose the process into the directions perpendic-
ular and parallel to the surface A. The problem reduces to
a 1D passage time of the perpendicular component to the
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boundary. Here, we briefly describe how to obtain the two
term approximation of this first passage time density; details
appear in Appendix C.

We begin by conditioning on some additional informa-
tion to determine the first passage time density pT (t) of
the process (φE(t), φI (t), t) to the surface A in Eq. (23).
First we include the location a = (aE, aI ) on the boundary
that the process hits, and write pT (t) in terms of the joint
distribution p(t, a) for first hitting the point a at time t as

pT (t) =
∫

A|t
p(t, a)da, (25)

where the integration is over A|t , i.e., all points on the sur-
face at time t . Then, we condition on the process being at
the point x at some intermediate time s. In order to have a
first passage time t and hit a, the trajectory must first get
to x at time s without hitting the boundary A and then pro-
ceed to have a first passage time t to the point a. In terms of
distributions, we may write

p(t, a) =
∫

	(s)

p(t, a|s, x)g(s, x)dx, (26)

where p(t, a|s, x) is the first passage time density to a at
time t given the trajectory starts at the point x at time s,
g(s, x) is the density of the process at x at time s given that it
did not cross A previously, and the integration is over 	(s).
	(s) represents all points at time s in the (x, y) plane with
the boundary ∂	 = A.

To derive an expression for p(t, a|s, x) we consider
two independent processes: one moves perpendicular to the
boundary A which controls the time the boundary is hit, and
one moves parallel to the boundary which controls at which
point the boundary is hit. This is possible if we consider s

sufficiently close to t (i.e., t − s  1). Over the small time
interval [s, t] we approximate the joint process (φE, φI ) by

two component Brownian motion,
(
φ̂E, φ̂I

)
(constant drift

and diffusion coefficients) that solves Eq. (20) with frozen
coefficients at time s, and consider hitting the boundary,
Âa(t). Âa(t) is a plane tangent to the surface A at the point

a at time t . To decompose
(
φ̂E, φ̂I

)
into independent par-

allel and perpendicular to Âa(t) components, we must first
transform it into isotropic Brownian motion (same diffusion
in all directions) with the transformation matrix

β =
⎛
⎝
√

p̄E(s)
NE

0

0
√

p̄I (s)
NI

⎞
⎠ ,

and then decompose it into the directions perpendicular to
Âa(t) given by vector

n⊥ = 1

η
[−γ, α]

and parallel to Âa(t) given by vector

n‖ = 1

η
[α, γ ],

where

η =
[
−γ , α, αp̄I (t) − γ p̄E(t) + 1

NESEE

]
(27)

is the three component normal of Âa(t). Now, we approxi-
mate p(t, a|s, x) as

p(t, a|s, x) ≈ f (t, a|s, x)

× Âa(t)|s − x
t − s

· n⊥
∣∣β−1n‖

∣∣
|βn⊥|

|β|
|n⊥|

∣∣n‖
∣∣ ,

(28)

following Durbin by adjusting the density, f (t, a|s, x), of
the process starting at x at time s to be at the boundary point
a at time t by the probability for the parallel component
of the isotropic Brownian motion to hit the boundary and
the probability for the perpendicular component to reach the
point a. In (28) Âa(t)|s are points on the tangent boundary
Âa(t) at the time s. Using approximation (28) in the limit as
s → t , Eq. (26) remains exact and can be expressed as

p(t, a) = lim
s→t−

f (t, a)

t − s

×
∫

∂	(s)

(
Âa(t)|s − x

) · uζ(t)g(s, x)dx, (29)

where we have defined u = [−γ, α]/√γ 2 + α2, and ζ(t) =√
1 + 1/ν2

n(t) so that

uζ(t) = n⊥
∣∣β−1n‖

∣∣
|βn⊥|

|β|
|n⊥|

∣∣n‖
∣∣

and the quantity

νn(t) =
√

γ 2 + α2

αp̄I (t) − γ p̄E(t) + 1/
(
NESEE

) (30)

can be thought of as the speed at which the boundary
propagates in the normal direction.

So far, we have described how to obtain p(t, a) in
Eq. (29) as an adjustment to the density f (t, a), for the
process at (t, a). By writing Eq. (29) as

p(t, a) = lim
s→t−

f (t, a)

t − s
E

[(
Âa(t)|s − x

)
· uζ(t)|cross (t, a)

]

− lim
s→t−

f (t, a)

t − s
E

[(
Âa(t)|s − x

)
· uζ(t)|cross (t, a),

first crossing (r, b),

where r < t
]

(31)

and defining q(t, a) = p(t, a)/f (t, a) we arrive at an inte-
gral equation for q(t, a). We approximate its solution with
two terms and obtain

p(t, a) ≈ (q0(t, a) − q1(t, a)) f (t, a), (32)
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Fig. 4 Distribution of the
intersection point t for the three
methods in Section 3 starting
from the same voltage
distributions, ρE(v) and ρI (v)

shown in Fig. 3a, and initiated
by k = 2 neurons (the excitatory
and inhibitory MFE magnitudes
are given in Eq. (35) in terms of
t∗, a value selected from the
shown distribution). a SEE =
SII = SIE = SEI = 0.009, and
NE = NI = 300, b SEE =
SII = SIE = SEI = 0.008, and
NE = NI = 2000, c
SEE = SIE = 0.009,
SII = SEI = 0.0072,
NE = NI = 300, and (d)
SEE = 0.009, SII =
0.0072, SIE = SEI = 0.0081,
NE = NI = 128
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for the density of the first passage time to the point a(t) =
(aE(t), aI (t)) on the surface A, with

q0(t, a) =
(√

1 + ν2
n(t) − ζ(t)√

γ 2 + α2

×
[
α

aI (t)p̄I (t)

f̄I (t)
− γ

aE(t)p̄E(t)

f̄E(t)

])

and with

q1(t, a) =
∫ t

0

∫

∂	(r)

q0(r, b)f (r, b|t, a)

×
(
−
√

1 + ν2
n(t) +

[
α

(aI (t) − bI (r)) p̄I (t)

f̄I (t) − f̄I (r)

−γ
(aE(t) − bE (r)) p̄E(t)

f̄E(t) − f̄E(r)

]
ζ(t)√

γ 2 + α2

)
dbdr,

where νn(t) is given in Eq. (30), α = NI

NE
min

{
SII

SIE , SEI

SEE

}

and γ = 1 − k/NE as before. The point b(r) =
(bE(r), bI (r)) is another point on the surface ∂	 = A at
time r ≤ t , i.e., both a(t) and b(r) satisfy the condition to lie
on the surface given in Eq. (23).The density of the process
at point a at time t is

f (t, a) = 1

2π
√

σE(t)σI (t)
exp

(
− a2

E(t)

2σE(t)
− a2

I (t)

2σI (t)

)

(33)

where σE(t) = f̄E (t) (1 − f̄E (t)) /(NE − k) and σI (t) =
f̄I (t)

(
1 − f̄I (t)

)
/NI and the density of process at the point

a at time t given that it was previously at the point b at time
r and did not cross the surface A before time r is

f (r, b|t, a) = f̄E(t)f̄I (t)

2π
√

σE(r, t)σI (r, t)

× exp

(
−
[
bEf̄E(t) − aEf̄E(r)

]2
2σE(r, t)

−
[
bI f̄I (t) − aI f̄I (r)

]2
2σI (r, t)

)
(34)

where σE(r, t) = f̄E(r)(f̄E(t) − f̄E(r))/(NE − k) and
σI (r, t) = f̄I (r)(f̄I (t) − f̄I (r)) /NI . These two distribu-
tions are derived in Appendix D.

Recall that these formulas all involve the densities of
the transformed variables s̄ and t̄ defined in Section 3.2.
From the original voltage densities, ρE(v) and ρI (v)

at the time the MFE is initiated, the transformed PDFs
ρ̄Q(t) must be calculated using Eq. (16) if δ ≥ 0 (recall
δ = SII SEE/SIE − SEI ) or Eq. (17) if δ < 0, then the
transformed CDFs f̄Q(t) calculated from Eq. (18). The final
step is to select t∗ from Eq. (25) with p(t, a) approximated
by Eq. (32) and compute the MFE magnitudes using

mE = k + (NE − k)
(
a∗E + f̄E(t∗)

)

mI = NI f̄I (t
∗),

(35)

where a∗E is drawing from the density p(t∗,a) after fixing t∗.
The MFE magnitude density is computed by selecting

many values of t∗ from the distribution in Eq. (25) and then
determining the magnitude of the MFE from Eq. (35). As
we discuss in the next section, the density computed in this
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Fig. 5 Distribution of MFE
magnitudes computed by
resolving the I&F dynamics as
in Ref. (Rangan and Young
2013a), and by selecting random
times from the distribution in
Eq. (25) to use in Eq. (35) for
the same two cases shown in
Fig. 4c and d: Left corresponds
to Fig. 4c and right corresponds
to Fig. 4d. The panels show the
distributions of MFE
magnitudes for the excitatory
population (upper graph) and
for the inhibitory population
(lower graph), respectively
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manner is in excellent agreement with the density computed
using an appropriate method for the original I&F dynam-
ics, such as the one presented in Appendix A or the one
by Rangan and Young (2013a).

4 Validity of approximations

In Section 3 we discussed three methods for determining the
density of MFE magnitudes in term of the original voltage
densities of the excitatory and inhibitory neurons. We now
discuss the error introduced in each method, and present
the numerically obtained distributions in order to examine
the propagation of the error through the entire procedure.
In the end, we find excellent agreement between the distri-
bution obtained by using the I&F dynamics (as described
by Rangan and Young (2013a)) and the single formula (25)
obtained in Section 3.3.

First, we point out that resolving an MFE with I&F
dynamics is indistinguishable from resolving it with the
geometric method using the true empirical CDFs in Sec-
tion 3.1 when using the same set of voltages. Their respec-
tive distributions will only vary from the true MFE dis-
tribution due to statical error. This can be seen in Fig. 4,
where the MFE magnitude distribution is shown in terms
of the intersection point in the transformed variable t .
The red solid line corresponding to the intersection points
obtained from the I&F dynamics is nearly indistinguishable
from the black dot-dash line corresponding to the geomet-
rically obtained intersection points in all four parameter
cases.

The first approximation occurs in Section 3.2 when the
empirical CDFs are replaced by approximations constructed
by adding white noise driven stochastic processes to the the-
oretical CDFs. The result of Donsker’s Theorem (Donsker
1952) is that the convergence is inversely proportional to
the square-root of the number of points forming the empir-
ical distribution; i.e. the number of neurons NE or NI in

this case. The upper panels in Fig. 4 display results with
NE = NI = 300 and 2000, respectively.

The most pronounced impact of the different fluctuations
in the empirical CDFs can be seen for small MFE magni-
tudes (small values of t), when comparing the I&F dynamics
(red solid line) and the intersection of the SDE generated
empirical CDFs (blue dashed line) in Fig. 4. These early exit
times (the peaks close to t = 0 in Fig. 4) are governed by
the fluctuations of the empirical CDFs, and thus we expect a
discrepancy here in contrast to the later exit times (the peaks
near to t = 0.3 in Fig. 4) which are governed by the mean
of the process (i.e. the theoretical CDFs themselves). As we
increase the number, k, of neurons initiating the MFE, the
accuracy of the distribution created from the approximate
empirical CDFs is improved since the boundary starts fur-
ther away from the initial conditions, making early crossing
less likely. In effect, we remove the part of the distribu-
tion that cannot be accurately resolved by the approximate
empirical CDFs.

The other approximation we introduce is the analytical
formula itself, approximating the first passage time distri-
bution of the stochastic Brownian Bridge process to the
moving boundary derived in Section 3.3. The distribution in
Eq. (25), constructed from the two term approximation (32),
which in turn is derived in a similar manner to that of
Durbin (Durbin and Williams 1992), and thus we expect to
have similar convergence. The error of this approximation
can be seen in Fig. 4 by comparing the simulated SDE exit
time distribution (blue dashed line) to the analytical formula
(25) (green dashed line).

Finally, we investigate the validity of the analyti-
cal formula in approximating the true distribution of
MFE magnitudes. For the parameters used in Figs. 4c
and d, we compute the MFE magnitudes according
to Eq. (35) in order to construct the MFE mag-
nitude distributions. These distributions for both the
number of excitatory and inhibitory neurons participat-
ing in the MFE agrees well with the corresponding
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distributions obtained by resolving the original I&F dynam-
ics (according to the method discussed in Ref. (Rangan
and Young 2013a)) as shown in Fig. 5. As a result,
the analytical formula (25) is a rather good approxima-
tion, capturing the bimodal nature of the MFE magnitude
distributions.

5 Conclusions

Based on the cascade-induced synchrony in pulse-coupled
I&F neuronal network models, we have explored how to
obtain the distribution of the number of neurons firing
together as part of a multiple firing event (MFE) from
the voltage distributions of the excitatory and inhibitory
populations. For population-based modeling (e.g., master
equations or Fokker-Planck equations), this distribution pro-
vides a way to simulate dynamics in biologically relevant
regimes which do not display homogeneous firing statistics.
The method proposed in Ref. (Zhang et al. In preparation)
involves stopping the evolution of the master equation, and
then selecting the number of neurons to participate in an
MFE. The analytical formula presented in this paper for the
MFE magnitude distribution could be used in this step to
improve computational efficiency.

The analytical formula for the MFE magnitude distribu-
tion accurately captures the bimodal nature of MFE sizes,
revealing the strong competition between the excitatory
and inhibitory neurons. Fluctuations in the distribution of
neuronal voltages near threshold voltage can cause a very
small sized MFE, or, if enough excitatory neurons fire ini-
tially, then a large sized MFE can ensue, involving a large
fraction of both populations. It is these larger MFEs that
characterize partial synchrony, and we are able to accurately
capture these with the analytical formula. Further analy-
sis of the analytical formula could provide more insight
into the mechanism responsible for synchrony and pro-
vide a way to characterize partial synchrony as a function
of coupling strengths as well as network size and voltage
distributions.

The method we present in this paper is devised to capture
the instantaneous MFEs produced by a current-based I&F
model with infinitely-fast synaptic time-scales. These tech-
niques can also be used to approximate the types of MFEs
which manifest in spiking network models with nonzero
synaptic rise and decay times. In this latter case the MFEs
will not be instantaneous, but will still occur relatively
quickly–typically lasting only 2–3 ms when the synaptic
decay time-scales are 2–4 ms (see Ref. (Rangan and Young
2012) for some examples of these dynamic structures). How
accurately these rapid transients will be captured by Eq. (32)
depends on the ratio r = τE/τI between the excitatory and
inhibitory synaptic time-scales. When we derive Eq. (32)

we assume that, while τE and τI both go to zero, τI < τE ,
thus giving the inhibitory synapses the potential to stifle
excitation. When dealing with non-instantaneous synapses,
if r ∼ 1 we have a similar situation: the inhibitory
firing events also have an opportunity to interfere with
the excitatory cascade, and we expect Eq. (32) to be
qualitatively accurate. However, when r  1 we
would expect Eq. (32) to underestimate the magni-
tude of the MFEs; synaptic excitation may transpire
too quickly for inhibition to play a role, and the
MFEs magnitude would be comparable to the all-excita-
tory case.

One of the limitations of our methodology is that we
strongly rely on the assumption that our network is all-to-
all coupled. Our approach does not directly generalize to
more complicated network topologies; when the connectiv-
ity graph is nonuniform the simple picture painted in Fig. 2
breaks down.

Nevertheless, our work does illuminate how realistic syn-
chronous burst sizes can be created by the competition
between excitatory and inhibitory populations as opposed
to complex network topology. We look forward to investi-
gating how well this method describes other more realistic
models and experimental data in future work.
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Appendixes

Appendix A: Firing events in I&F networks

In order to accurately simulate the dynamics of (1), we need
to resolve the neurons’ firing sequence correctly despite
the fact that all neurons fire during the same instance of
time in a single MFE. The algorithm used must produce an
MFE magnitude consistent with the cascade condition (6)
in Sec. 3.1. We present one such algorithm here in which
the voltages of the remaining neurons are updated based on
the neuron with the highest voltage first. We also empha-
size that neurons having fired previously in an MFE do
not receive input from neurons firing after it within the
same MFE, because the neurons have a short refractory
period, thus neurons can never fire more than once in an
MFE.

To resolve the firing sequence of an MFE, we start
from the sets

{
vj

}NE

j=1 and
{
wj

}NI

j=1 of the excitatory and
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inhibitory neuronal voltages at the time one excitatory volt-
age is above threshold, indicating that this neuron is about
to fire. Then, the following algorithm is used:

1. Find the kE excitatory and kI inhibitory voltages within
the sets

{
vj

}
and

{
wj

}
that are above the threshold, VT .

2. If both kE and kI are zero, stop; the MFE has ended.
Otherwise, find the neuron with largest voltage, Vmax,
out of the kE excitatory and kI inhibitory voltages above
the threshold.

3. The neuron with voltage Vmax fires; it is reset to VR . If it
is type E (I), it is removed from the list

{
vj

} ({wj }
)

and
the remaining voltages of neurons that have not fired
are updated by adding SEE to (subtracting SEI from)
the voltages in {vj } and adding SIE to (subtracting SII

from) the voltages in
{
wj

}
.

4. If either set
{
vj

}
or
{
wj

}
is non-empty, return to Step

1. Otherwise, stop.

The MFE magnitudes for the excitatory and inhibitory pop-
ulations are obtained by subtracting the number of neurons
that did not fire in the MFE from the total numbers of
neurons in the two populations,

mE = NE − #
{
vj

}
and mI = NI − #

{
wj

}
, (36)

where # denotes the number of elements in the set. Note that
the sets in Eq. (36) only include the voltages of non-firing
neurons, as detailed in Step 3 of the algorithm.

Appendix B: Derivation of the geometric method

Starting from condition (6) in the main text, we describe
here how to obtain a single condition, and therefore the
MFE magnitude described by the single intersection point
of G(v) defined in Eq. (14) and the line l(v) in Eq. (5). From
the last points v < VT and w < VT where condition (6) is
satisfied,

VT −v = NESEE (1−FE(v)) −NIS
EI (1 − FI (w)), (37)

VT −w = NESIE (1 − FE(v)) −NIS
II (1 − FI (w)), (38)

we have

VT − v

NESEE
= 1 − FE(v) − NI

NE

SEI

SEE
(1 − FI (w)), (39)

VT − w

NESIE
= 1 − FE(v) − NIS

II

NESIE
(1 − FI (w)). (40)

Subtracting Eq. (40) from Eq. (39) we have

VT − v

NESEE
=VT − w

NESIE
+ NIS

II

NESIE
(1 − FI (w))

− NI

NE

SEI

SEE
(1 − FI (w)),

which can be written as

v = VT − (VT − w)
SEE

SIE
− δNI (1 − FI (w)), (41)

where δ = SII SEE/SIE − SEI . The first two terms on the
RHS suggest the transformation of the inhibitory voltages
defined in Eq. (7) in the main text,

ŵ = VT − (VT − w)
SEE

SIE
. (42)

This, together with the fact that one can show the empirical
CDF

FI (w) =
∫ w

−∞
1

NI

NI∑
j=1

δ
(
ω′ − wj

)
dω′

=
∫ ŵ

−∞
1

NI

NI∑
j=1

δ
(
z − ŵj

)
dz ≡ F̂I (ŵ)

(43)

allows Eq. (41) to be written as

v = ŵ − δNI

(
1 − F̂I (ŵ)

)
. (44)

Next, we must consider the two cases of δ > 0 and δ < 0
separately.

Case 1 If δ > 0, we further transform ŵ by

w̄ = ŵ − δNI

(
1 − F̂I (ŵ)

)
, (45)

appearing as Eq. (9) in the main text. Then, Eq. (44) is
simply

v = w̄ (46)

and we substitute this into Eq. (39), together with Eq. (43)
to obtain

VT − w̄

NESEE
= 1 − FE(w̄) − NI

NE

SEI

SEE

(
1 − F̂I (ŵ)

)
. (47)

What we want to do next is replace the function of ŵ by
a function of w̄. Suppose we can invert the transformation

w̄ = ŵ − δNI

(
1 − F̂I (ŵ)

)
to obtain

ŵ = h(w̄).

(Note that h−1(x) = x − δNI (1 − F̂I (x)), we have[
h−1(x)

]′ = 1+F̂ ′
I (x) > 0. Therefore, the transformation h

is a monotonic increasing map and has only one root.) Then
we have

F̂I (ŵ) =
∫ ŵ

−∞
1

NI

NI∑
j=1

δ
(
z − h(w̄j )

)
dz.

Changing the integration to the variable y defined by y =
h−1(z), we have

F̂I (ŵ) =
∫ w̄

−∞
1

NI

NI∑
j=1

δ
(
h(y) − h(w̄j )

)
h′(y)dy. (48)
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Taylor expanding h(y) and only keeping the linear term, we
have h(y)−h(w̄) = C0(y−w̄) and h′(y) = C0, resulting in

F̂I (ŵ) ≈
∫ w̄

−∞
1

NI

NI∑
j=1

δ (C0(y − w̄)) C0dy

= C0

|C0|
∫ w̄

−∞
1

NI

NI∑
j=1

δ(y − w̄)dy ≡ F̄I (w̄). (49)

Substituting Eq. (49) into Eq. (47), we have

VT − w̄

NESEE
= 1 − FE(w̄) − NIS

EI

NESEE

(
1 − F̄I (w̄)

)
, (50)

corresponding to Eq. (12) in the main text, where we defined
v̄ = v so that F̄E(v) = FE(v). Solving this for w̄ is
equivalent to finding the intersection point between the line
l(v) = 1 + 1

NESEE (v − VT ) and the function

G(v) = FE(v) + NI

NE

SEI

SEE

(
1 − F̄I (v)

)
for δ ≥ 0.

Case 2 If δ < 0, then w̄ defined in Eq. (45) may be larger
than VT , which we would like to avoid. Rather, we solve
Eq. (44) for ŵ,

ŵ = v + δNI

(
1 − F̂I (ŵ)

)
(51)

and transform v to (Eq. (10) in the main text)

v̄ = v + δNI

(
1 − F̂I (ŵ)

)
(52)

so that Eq. (51) becomes

v̄ = ŵ. (53)

Using Eq. (53) to rewrite Eq. (52) in terms of v̄ and solving
for v gives

v = v̄ − δNI

(
1 − F̂I (v̄)

)
. (54)

Using Eq. (54) and that FI (w) = F̂I (ŵ), Eq. (40) becomes

VT − v̄

NESEE
= 1 − FE(v) − NIS

II

NESIE

(
1 − F̂I (v̄)

)
, (55)

corresponding to Eq. (12) in the main text, where we defined
w̄ = ŵ, so that F̄I (v) = F̂I (v).

Now, what we want to do is replace the function of v by
a function of v̄. If we denote Eq. (54) by

v = g(v̄),

then change the integration variable in

FE(v) =
∫ v

−∞
1

NE

NE∑
j=1

δ(z − vj )dz

to y using z = g(y) and vj = g(v̄j ), we have that

FE(v) =
∫ v̄

−∞
1

NE

NE∑
j=1

δ
(
g(y) − g(v̄j )

)
g′(y)dy

≈
∫ v̄

−∞
1

NE

NE∑
j=1

δ
(
y − v̄j

)
dy ≡ F̄E(v̄)

following the same argument used to derive Eq. (49). Now,
Eq. (55) becomes

VT − v̄

NESEE
= 1 − F̄E(v̄) − NI

NE

SII

SIE

(
1 − F̂I (v̄)

)
. (56)

Solving this for v̄ is equivalent to finding the intersection
point between the line l(v) = 1 + 1

NESEE (v − VT ) and the
function

G(v) = F̄E(v) + NI

NE

SII

SIE

(
1 − F̂I (v)

)
for δ < 0.

Combining these two cases, we arrive at the MFE mag-
nitude defined via the intersection of the function G(v)

defined in Eq. (14) in the main text, and the line l(v) defined
in Eq. (5) in the main text.

Appendix C: Analytical formula of first passage time

In this appendix, we explain how to reformulate the pas-
sage of a generic 2-dimensional anisotropic Brownian
motion across a moving boundary to the viewpoint of one-
dimensional Brownian motion as used in Durbin’s papers
(Durbin 1985; Durbin and Williams 1992).

We define x = (x, y) to be two-dimensional anisotropic
brownian motion with linear drift, given by the solution to

dx = αxdt + βxdWX
t

dy = αydt + βydWY
t

with initial starting point x(0) = 0 for simplicity. If βx �=
βy , then we define the isotropic version of this process via
z = (x̂, ŷ), with x̂ = x/βx , ŷ = y/βy , or z = β−1x, with

β =
[

βx 0
0 βy

]
.

We will also define

β̄ =
⎡
⎣

βx 0 0
0 βy 0
0 0 1

⎤
⎦ .

We consider the first crossing density of x to a linear
boundary A described by the normal constraint

η̄ · (x, y, t) = k

where η̄ = [
η̄x, η̄y, η̄t

]ᵀ is the unit normal to A in (x, y, t)

space and k is the constant ‘offset’ of the linear plane (i.e.,
the distance between A and the origin (0, 0, 0)). We also
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define η⊥ = [
η̄x, η̄y

]ᵀ (not a unit vector) to be the pro-
jection of η̄ onto the x, y plane. So we know the process
(x (t), y(t)) crosses A when

η̄ · (x (t), y(t), t) = k

or where

(β̄η̄) · (x̂, ŷ, t
) = k

or when

βη⊥
|βη⊥| · (x̂, ŷ) = k − η̄t t

|βη⊥| .

That is, x crosses A when z crosses β̄−1A (i.e., the boundary
perpendicular to β̄η̄). Now z is isotropic brownian motion
(plus a linear drift), so z can be described in terms of z⊥ and
z‖, the directions parallel and perpendicular to η⊥. Each of
the processes z⊥ and z‖ are given by independent brownian
motion (plus a linear drift). So the probability of z hitting
the rescaled boundary β̄−1A at time t is just the probability
of z⊥ reaching the moving (scalar) boundary

[
β̄−1A

]
⊥ =

(k − η̄t t) / |βη⊥| at time t . That is to say

P(x crosses A at time t) = P(z crosses β̄−1A at time t)

= P
(
z⊥ crosses

[
β̄−1A

]
⊥

at time t
)

.

According to Durbin (1985), this probability is simply

P
(
z⊥ crosses

[
β̄−1A

]
⊥ at time t

)

=
[
distance of z⊥ to

[
β̄−1A

]
⊥ at time 0

] 1

t

×
[
density of z⊥ on

[
β̄−1A

]
⊥ at time t

]

= k

|βη⊥|
1

t
·
[
density of z⊥ on

[
β̄−1A

]
⊥ at time t

]
.

Now if z crosses at time t at a particular point
β̄−1a(t), then two things must happen. First, z⊥ must equal[
β̄−1a(t)

]
⊥ which is also (k − η̄t t) / |βη⊥| at time t . Sec-

ond, z‖ must equal
[
β̄−1a(t)

]
‖ at time t , where

[
β̄−1a(t)

]
is

the component of a(t) perpendicular to η⊥. Thus, the proba-
bility that the process z crosses at time t at a particular point
β̄−1a(t) on β̄−1A is given by

P(t , z crosses at β̄−1a (t))

= P
(
z⊥ crosses

[
β̄−1A

]
⊥ at time t

)

×P
(
z‖ is equal to [β̄−1a(t)]‖ at time t

)
.

Now, as we discussed above,

P
(
z⊥ crosses [β̄−1A]⊥ at time t

)

= k

|βη⊥|
1

t
·
[
density of z⊥ on [β̄−1a(t)]⊥ at time t

]
.

For the second term, we have

P

(
z‖ is equal to

[
β̄−1a (t)

]
‖ at time t

)

=
[
density of z‖ on [β̄−1a(t)]‖ at time t

]
,

and together, since z⊥ and z‖ are independent,

P(t , z crosses at β̄−1a (t))

= k

|βη⊥|
1

t
·
[
density of z on

[
β̄−1a(t)

]
at time t

]
.

As we discussed above, if z crosses at time t at a point
β̄−1a(t), then x crosses at time t at a (t). However, the
density p

(
t , z crosses at β̄−1a(t)

)
is not equivalent to the

density p (t , x crosses at a(t)). Rather, we have

P
(
t , z crosses the line-segment
[
β̄−1a(t), β̄−1(a

(
t) + δ · η̄‖

)])

= P
(
t , x crosses the line-segment

[
a(t), a(t) + δ · η̄‖

])
,

where η̄‖ =
[−η̄y, η̄x, 0

]ᵀ, and η‖ =
[−η̄y, η̄x

]ᵀ (not a unit
vector) lies along A and lies in the x-y plane, and is perpen-
dicular to η⊥. Comparing the lengths of these line segments,
we see that length

∣∣β̄−1a(t), β̄−1(a
(
t) + δ · η̄‖

)∣∣ = δ ·∣∣β−1η‖
∣∣ and length

∣∣a(t), a(t) + δ · η̄‖
∣∣ = δ · ∣∣η‖

∣∣ . Using
this relationship we can conclude the density

p
(
t , z crosses at β̄−1a(t)

) ∣∣β−1η‖
∣∣

∣∣η‖
∣∣

= p(t , x crosses at a(t)).

This in turn implies that the probability that the process x
crosses A at time t at a particular point a(t) on A is given
by the density

p(t, x crosses at a) =
∣∣β−1η‖

∣∣
∣∣η‖
∣∣

k

|βη⊥|
1

t

×
[
density of z on [β̄−1a(t)] at time t

]
.

Finally, since

[
density of z on

[
β̄−1a (t)

]
at time t

]
|β|−1

= [
density of x on a(t) at time t

]
,

where |β| is the determinant of β. The density

p(t, x crosses at a) =
∣∣β−1η‖

∣∣
∣∣η‖
∣∣

k

|βη⊥|
1

t

× |β| [density of x on a(t) at time t
]
.
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Using the language described in Section 3.3, the above can
be written as

p(t, a|0, x (0)) = 1

t − 0

(
Âa(t)|0 − x(0)

) · η⊥

×
∣∣β−1η‖

∣∣
|β · η⊥|

|β|
|η⊥|

∣∣η‖
∣∣f (t, a|0, x (0)) ,

leading to

p(t, a) = lim
s→t−

f (t, a)

t − s

∫

∂	(s)

(
Âa(t)|s − x

) · n⊥

×
∣∣β−1n‖

∣∣
|βn⊥|

|β|
|n⊥|

∣∣n‖
∣∣g (s, x|t, a) dx, (57)

where f (t, a|0, x (0)) is a (unconditioned) density for the
process x at t, a, see details in Appendix B.

We can now fill in the geometry for the specific problem
at hand. The points (x, y) on the surface A at time t was
given in Eq. (23) and comes from the constraint of Ḡ(t) =
l̄(t). The vector

η =
[
−γ , α, αp̄I (t) − γ p̄E(t) + 1

NESEE

]

is normal to the surface in 3D space at the point (x, y, t).
The 2-component normal to A, restricted to the x-y plane, is

n⊥ = 1

|η|η⊥ = 1

|η| [−γ , α],

and the 2-component vector perpendicular to n⊥ is

n‖ = 1

|η|η‖ =
1

|η| [α, γ ]

where |η| is the length of the vector η. One can also think
of A as a line parallel to −γ x + αy in the x-y plane, with a
time dependent offset of k/NE+γ f̄E(t)−αf̄I (t)− 1

NESEE t .

So, around any point (a(t), t) = (
ax, ay, t

)
on A , the point

Âa(t)|s = a − u νn(t)(t − s)

is on the linearized boundary tangent to A at the point a(t).
The factor

νn(t) =
√

γ 2 + α2

(
αρ̄I (t) − γ ρ̄E(t) + 1

NESEE

)−1

(58)

can be thought of as the speed at which the boundary prop-
agates in the normal direction, as s (and hence t − s)
changes and the unit vector in the x-y plane u = [−γ,α]√

γ 2+α2
is

perpendicular to Â and therefore parallel to n⊥. Therefore,

Âa(t)|s − a
t − s

= −u νn(t).

We now change variables to the n⊥ and n‖ directions by
first changing to variables in which the stochastic processes

(φE(t), φI (t)) obeys isotropic Brownian motion in 2D. This
is done with the matrix

β =
⎛
⎝
√

p̄E(t)
NE

0

0
√

p̄I (t)
NI

⎞
⎠

and requires the change of variables term given by

n⊥
∣∣β−1n‖

∣∣
|βn⊥|

|β|
|n⊥|

∣∣n‖
∣∣ = u

√
1 + 1/ν2

n = u ζ ,

where ζ = √
1 + 1/ν2

n .
Using the definition l(s, x|t, a) = (

Âa(t)|s − x
)·u ζ , we

can calculate the density of crossing at time t and position a
on A via

p(t, a)

= lim
s→t−

f (t, a)

t − s
E(l (s, x|t, a)| first crossing at t, a)

= lim
s→t−

f (t, a)

t − s
E(l (s, x|t, a)| some crossing at t, a)

− lim
s→t−

f (t, a)

t − s
E(l (s, x|t, a)| crossing at t, a

and a first crossing at (r, b) where r < t) . (59)

In the above expression the term f (t, a) refers to the
unconditioned density of the process (φE, φI , t) at time
t and position a (presumed to lie on A). The first term
in the sum is straightforward, the second term is a little
trickier. Note that the conditional first passage density at
time r to point b given that the process also crosses the
point a at time t can be written as q(r, b)f (r, b|t, a) =
q (r, b) f (r, b, t, a)/f (t, a), where q(r, b) is defined via
p(r, b) = q(r, b)f (r, b). Following Durbin’s method, we
achieve the analytical formula (32) by taking the first two
terms of Eq. (59) in the main text.

Appendix D: Probability density of stochastic process

In this appendix, we derive the distributions f (t, a) in
Eq. (33) and f (r, b|t, a) in Eq. (34) in the main text. Recall
that f̄E(t) and f̄I (t) are the smooth CDFs for the trans-
formed voltage variables, defined in Eq. (18). These define
the stochastic processes φE(t) and φI (t) in Eq. (20).

The distribution f (t, a) refers to the probability of
observing the unconstrained process (φE, φI ) at a (t) at time
t . In other words, f (t, a) is the probability that

φ(t) =
[

φE(t)

φI (t)

]
= a(t) =

[
aE(t)

aI (t)

]

at time t , without assuming anything about how φ crosses
A. This probability is given by:

f (t, a) = P(φE (t) = aE (t)) P (φI (t) = aI (t)) ,
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where each component of φ evolves independently. Now of
course the probability that φQ(t) = aQ(t) at the time t is
the same as the probability that φ̄Q (τ) = aQ(t) at time
τ = fQ(t). This in turn is the same as

√
NQ times the prob-

ability P
(
Bτ = √

NQaQ

)
, the probability that a standard

brownian bridge (connecting (0, 0) to (1, 0)) reaches the
value

√
NQaQ(t) at time τ = fQ (t). According to Durbin

and Williams (1992), this probability is given by

P
(
Bτ = √

NQaQ

)
= 1√

2πτ (1 − τ)
exp

(
−1

2

NQaQ
2

τ (1 − τ)

)

therefore f (t, a) is precisely Eq. (33) in the main text.
In a similar vein the distribution f (r, b|t, a) is the con-

ditional distribution of the process φ at r, b, given that the
point t, a is reached. Using logic similar to the above, this is
given by

f (r, b|t, a) = P (φE(r) = bE(r) | φE(t) = aE(t))

×P (φI (r) = bI (r) | φI (t) = aI (t))

= P
(
φ̄E(f̄E(r)) = bE(r) | φ̄E(f̄E(t)) = aE(t)

)

×P
(
φ̄I (f̄I (r)) = bI (r) | φ̄I (f̄I (t)) = aI (t)

)

= √
NEP

(
BfE(r) =

√
NEbE | BfE(t) =

√
NEaE

)

×√NIP
(
BfI (r) =

√
NIbI | BfI (t) =

√
NIaI

)
.

Note that Bτ conditioned to hit
√

NQaQ at time fQ(t) is just
a brownian bridge connecting (0, 0) to (fQ

(
t),
√

NQaQ

)
.

One can think of this new brownian bridge as a rescaled
version of a standard brownian bridge:

P(Br = x | Bt = a | B1 = 0) = P(Br = x | Bt = a)

= P

(
Br − a

r

t
= x − a

r

t
| Bt − a

t

t
= 0

)

= P
(
Br/t = x − a

r

t
| B1 = 0

)

= 1√
2π r

t

(
1 − r

t

) exp

(
−1

2

[
x − a r

t

]
2

r
t

(
1 − r

t

)
)

.

Then

P
(
BfQ(r) =

√
NQbQ | BfQ(t) =

√
NQaQ

)

= fQ(t)√
2πfQ(r)

(
fQ(t) − fQ(r)

)

exp

(
−1

2

NQ

[
bQfQ(t) − aQfQ(r)

]
2

fQ(r)(fQ(t) − fQ(r))

)

and formula (34) for f (r, b|t, a) in the main text follows.
In the computation of MFE magnitude, we must simply
account for not selecting the k neurons that initiate the MFE,
so we replace NE by NE − k.
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