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Improved effective linearization of nonlinear Schrödinger waves by increasing nonlinearity
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From among the waves whose dynamics are governed by the nonlinear Schrödinger equation, we find a robust,
spatiotemporally disordered family, in which waves initialized with increasing amplitudes, on average, over long
timescales, effectively evolve as ever more weakly coupled collections of plane waves. In particular, the relative
amount of energy contained in their coupling decays to zero with increasing wave amplitude.
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Linear autonomous conservative wave systems are charac-
terized by the absence of higher-harmonic generation, by the
linearity of their governing equations, and by the quadratic to-
tal energy. Nonlinear wave systems, in turn, are characterized
by pronounced generation of higher harmonics, frequently via
nonlinear coupling in the governing equations, and by the total
energy with a higher-than-quadratic nonlinearity at the lead-
ing order reflecting this coupling. Typically, the nonlinearity
attributes are expected to increase with the amplitude of the
physical variable determining the dynamics of a nonlinear
system. (See Ref. [1] for a striking example.) In this Letter, we
illustrate, on the example of the nonlinear Schrödinger (NLS)
equation [2–5],

iψt = ψxx ± 2|ψ |2ψ, (1)

that such an increase does not necessarily occur. [Hereafter,
the upper sign corresponds to the focusing NLS (FNLS) and
lower sign to the defocusing NLS (DNLS).] Instead, in a sta-
tistical sense, a robust family of spatiotemporally disordered
NLS waves exhibits properties that remain close to linear
and, in fact, some behavior becomes increasingly linear with
increased wave amplitude. Specifically, we show that such
waves behave, on average, over long times, as ever more
weakly coupled collections of plane waves and that the energy
contribution of this coupling decreases to zero with increasing
wave amplitude.

Equation (1) is a completely integrable [4], universal en-
velope equation [2], valid for describing weakly nonlinear,
modulated, single-frequency wave trains in phenomena such
as surface waves [3] and nonlinear optics [5]. We note that,
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consequently, NLS waves with exceedingly high amplitudes
have not been observed or measured experimentally. Instead,
to find a physical realization of the effect described here, we
can take advantage of the scaling symmetry,

x → λx, t → λ2t, ψ → ψ/λ, λ > 0. (2)

This symmetry leaves the NLS equation in Eq. (1) intact and
implies that increasing the wave amplitude and fixing the
spatial extent of the wave is equivalent to fixing the wave am-
plitude and increasing the spatial extent of the wave. In other
words, we arrive at the following equivalently paradoxical
statement: the farther a particular disordered NLS wave with a
fixed amplitude propagates, the more it becomes a collection
of linearly evolving plane waves in a statistical sense. Thus,
the effect we describe could perhaps be observed using data
obtained with techniques such as those developed for studying
disordered and “rogue” wave envelopes in long wave tanks
and nonlinear optics [6–10]. For example, one could try to ob-
serve it using a sequence of periodically repeating, disordered
optical signals of increasing duration, as further described in
the penultimate two paragraphs of this Letter.

For a disordered wave belonging to the family referred to in
the previous two paragraphs, on average, over long timescales,
the dynamics of any individual mode in the wave-number
space is known to be close to sinusoidal, oscillating with an ef-
fective frequency that depends on the size of the wave [10–13].
This effective frequency can be used to decompose the NLS
equation into effective linear and effective nonlinear parts, or
similarly to decompose the NLS Hamiltonian into effective
quadratic and effective superquadratic parts. In this Letter, we
show that this decomposition minimizes the sizes of the re-
spective effective nonlinear components of the NLS equation
and the superquadratic components of the Hamiltonian, as the
underlying disordered NLS waves evolve over long times. We
also show that the ratio of the effective nonlinear and linear
parts of the NLS equation approaches a finite limit, including
possibly a vanishing limit, in the limit of large amplitudes.
Furthermore, and most importantly, we show that the ratio of
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the effective superquadratic and quadratic parts of the NLS
Hamiltonian decays to zero. Therefore, for such waves, as
we increase their amplitudes, on average, over long times,
their single-mode, plane-wave components dominate, while
the nonlinear, mode-coupling components remain bounded or
even vanish in comparison. In fact, with increasing wave am-
plitudes, the energy content of the mode-coupling components
always vanishes in comparison with the energy content of
the plane-wave components for the waves belonging to this
family. Analogous results also hold for the equivalent case of
increasing spatial extent of the waves.

In the case of increasing amplitude, the above robust family
of disordered NLS waves is noiselike in that the waves it
contains have increasingly short-range spatial correlations,
and also short-range correlations in wave-number space [14].
In this Letter, we restrict our consideration to the spatially
periodic case with fixed period L. (In all the figures, we use
L = 2π .) For FNLS, the initial condition for disordered waves
can be prepared in the following two different ways. IC1:
We exploit the modulational instability of FNLS traveling or
standing waves, Aei[γ x+(γ 2−2A2 )t], with γ an integer multiple
of 2π/L, to small perturbations [15,16]. We assume the initial
wave in the form Aeiγ x(1 + ∑N

−N εne2π inx/L ), where N is the
largest integer such that 1 � N � AL/π and εn are com-
plex amplitudes with magnitudes |εn| uniformly distributed
in the interval [0, ε], for some small ε > 0, and phases uni-

formly distributed on [0, 2π ]. (We use ε = 10−3
√

3/2A
√

2
and γ = 0, 10, and 100.) IC2: We prepare random initial
wave forms

∑M
−M cne2π inx/L, where M is the largest integer �√

2A2L/π , and the real and imaginary parts of the coefficients
cn are drawn from the Gaussian distribution with zero mean
and variance A2/[2(2M + 1)]. These forms render a smooth
approximation to spatial white noise with the minimal wave-
length π/A2 and spatial standard deviation A for increasing
A [17]. For DNLS, we use IC2. In what is to follow, we will
loosely refer to the parameter A as the amplitude of the wave
ψ (x, t ) generated from either IC1 or IC2.

As mentioned above, one linearlike property of disordered
NLS waves is an effective dispersion relation (EDR), derived
in the small-amplitude and long-wavelength limits [11–13],
and confirmed for all amplitude and wavelength sizes us-
ing the wave-number-frequency-spectral (WFS) method by
finding a sharp peak at a unique effective frequency ωk in
the power-spectral density of the evolving mode of the wave
ψ (x, t ) with wave number k [18–21]. This EDR for NLS
waves was also measured and analyzed experimentally in
water waves [10]. Specifically, for each wave number k, the
effective frequency is given by the equation

ωk = k2 ∓ 4

L
‖ψ‖2, (3)

where ‖ψ‖2 = ∫ L/2
−L/2 |ψ (x, t )|2 dx is the (time-conserved)

squared norm of the wave ψ (x, t ). Note that ‖ψ‖/√L is the
average amplitude of the wave, and that it is ≈A for IC1 and
approaches A as it increases for IC2.

We should remark that k2 in Eq. (3) is the frequency ob-
tained from the corresponding linear dispersion relation of
the Schrödinger equation for a free particle. In other words,

under the influence of the quadratic self-interaction poten-
tial, a noisy NLS wave effectively evolves as it would under
the linear Schrödinger dynamics for a free particle, but with
an additional, linearly increasing temporal phase due to the
wave-number-independent effective frequency shift �ωψ =
∓4‖ψ‖2/L, obtained from Eq. (3). The results in this Letter
give strong evidence that this picture improves, statistically,
with increasing wave amplitude.

To obtain the results presented in this Letter, we have per-
formed well-resolved numerical simulations of the governing
NLS equation in Eq. (1). Our approach uses fully coupled,
sixth-order accurate Runge-Kutta time stepping with spec-
trally accurate spatial derivatives computed via fast Fourier
transform [22]. We have used great care to ensure that the sim-
ulations are fully resolved, and thus the results are insensitive
to numerical considerations. In particular, we have compared
our results to those from similarly resolved calculations us-
ing a fourth-order accurate Runge-Kutta scheme, as well as
to more coarsely resolved simulations from the fourth- and
sixth-order schemes, and the results we present are essentially
unchanged. Furthermore, the simulation results presented here
preserve the first three NLS conserved quantities [4] to five
digits of relative precision. [The first two of these quantities
are the wave norm ‖ψ‖ and the Hamiltonian H in Eq. (5)
below.]

The amplitudes A, norms ‖ψ‖ of the waves, and end times
of the time intervals over which we evolved the waves used in
producing all the figures are displayed in Table I. Note that the
end times we use scale as O(1/A2) with the wave amplitude,
A, as suggested by the scaling in Eq. (2). Our results, in
particular those presented in Figs. 3 and 5, have converged
to their respective limits by these listed end times.

In Fig. 1, for three families of disordered NLS waves
with increasing amplitudes, we confirm excellent agreement
in the scatter plots of the frequency shifts �ωψ obtained from
Eq. (3) versus the corresponding shifts �̃ωψ obtained using
WFS analysis.

In the next two paragraphs, we present the main results
of this Letter. We begin by verifying that the choice of the
frequency given by the EDR in Eq. (3) minimizes the effective
nonlinear portion of the NLS wave evolution equation. To
carry out this minimization, for each mode with wave number
k, we assume a trial renormalized frequency, k2 ∓ 4β‖ψ‖2/L,
obtained via renormalizing the linear frequency k2 by adding
to it the product of the frequency shift �ωψ from Eq. (3) with
the minimization parameter β. Equivalently, we rewrite the
right-hand side of the NLS in Eq. (1) as

iψt =
(

ψxx ± 4β

L
‖ψ‖2ψ

)
±

(
2|ψ |2ψ − 4β

L
‖ψ‖2ψ

)
≡ Lβ + Nβ, (4)

where Lβ and Nβ are the trial renormalized linear and non-
linear terms. In Fig. 2, for increasing values of the wave norm
‖ψ‖, we display the β values that minimize the time-averaged
size of the trial renormalized nonlinear term 〈‖Nβ‖2〉t , which
represents the size of the (formal) nonlinearity. We see that
these β values approach β = 1, for which the trial renor-
malized frequency becomes the true effective frequency ωk

in Eq. (3). In Fig. 3, we display the dependence of the ratio
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TABLE I. Parameter values used to generate the waves presented in the figures. Note that the end times are inversely proportional to the
square of the amplitude A, as mentioned in the text. In particular, for IC1, the end times are ∼4000/A2, and for IC2, they are ∼900/A2.

IC1
Amplitude A 3.2 6.4 12.7 25.5 50.9 101.8 203.6 407.3 814.6
Norm ‖ψ‖ 8.0 16.0 31.9 63.8 127.6 255.2 510.5 1020.9 2041.9
End Time 128π 32π 8π 2π π/2 π/8 π/32 π/128 π/512

IC2
Amplitude A 1.5 2.1 3.0 4.2 6.0 8.5 12.0 17.0 24.0
Norm ‖ψ‖ 4.2 5.6 7.6 11.4 15.3 21.4 30.3 42.6 60.3
End Times 128π 64π 32π 16π 8π 4π 2π π π/2

〈‖N1‖2〉t/〈‖L1‖2〉t between the time-averaged norms of the
effective nonlinear and linear terms in the evolution of the
NLS wave as a function of the wave norm ‖ψ‖. For FNLS
waves prepared using IC1, we see that this ratio saturates near
the value 0.57 for large ‖ψ‖, and does so for all three values of
the wave number γ used in our simulations. It therefore does
not grow indefinitely with the size of the nonlinearity. For both
FNLS and DNLS waves prepared using IC2, in turn, this ratio
decays to zero, so that the effective linear term dominates in
the large-amplitude limit.

Finally, we consider the Hamiltonian [23]

H = ‖ψx‖2 ∓ ‖ψ2‖2, (5)

from which the NLS in Eq. (1) is derived via the formula
iψt = δH/δψ∗, where δ denotes the variational derivative and
∗ denotes complex conjugation. We split this Hamiltonian into
its trial renormalized quadratic and superquadratic parts,

H =
(

‖ψx‖2 ∓ 2β

L
‖ψ‖4

)
∓

(
‖ψ2‖2 − 2β

L
‖ψ‖4

)
≡ Hq

β + Hs
β, (6)

where the trial renormalized quadratic part Hq
β of the Hamil-

tonian H generates the renormalized linear term Lβ in the
evolution of the wave ψ in Eq. (4) and the trial renormalized
superquadratic part Hs

β of the Hamiltonian H generates the
trial renormalized nonlinear term Nβ . In Fig. 4, for increasing
values of the wave norm ‖ψ‖, we display the β values for

FIG. 1. Scatter plot of the frequency shift �ωψ , predicted by the
EDR in Eq. (3), vs the corresponding frequency shift �̃ωψ , obtained
using the WFS method, for increasing values of the wave norm.

which the time-averaged trial renormalized superquadratic
part of the Hamiltonian, 〈|Hs

β |〉t , is minimized. We again find
that this part is minimal as β approaches β = 1, which is when
the mode with wave number k oscillates with the effective
linear frequency ωk in Eq. (3). In Fig. 5, we then display
the dependence of the time-averaged ratio 〈|Hs

1 |〉t/〈|Hq
1 |〉t be-

tween the sizes of the effective superquadratic and quadratic
parts of the Hamiltonian H in Eq. (6) as a function of the
wave norm ‖ψ‖. We see that this ratio decays to zero for
large ‖ψ‖ for all the cases we considered. In other words, for
large nonlinearities, the effective superquadratic part of the
Hamiltonian becomes negligible as compared to its effective
quadratic part.

The discussion in the above two paragraphs confirms that a
highly nonlinear and disordered NLS wave effectively evolves
as a collection of weakly coupled plane waves governed by
the EDR in Eq. (3), as discussed in Refs. [11–13], but now
for a range of NLS wave amplitudes. We reemphasize that the
main result of this Letter consists of demonstrating that the
relative energy contained in this coupling decreases to zero
with increasing nonlinearity. Moreover, for waves prepared
using IC2, the strength of this coupling decreases to zero even
when measured by the relative size of the effective nonlinear
versus linear terms in the NLS equation itself. We should
reiterate that the same results, with obvious modifications,

FIG. 2. The values of the renormalization parameter β that mini-
mize the time-averaged norm of the trial renormalized nonlinear term
Nβ in the NLS for increasing norms of the NLS waves.
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FIG. 3. Ratio between the time-averaged norms of the effective
nonlinear and linear NLS terms for waves with increasing norms.
The values of the wave norms are listed in Table I.

also hold in the case when the wave amplitude A is held fixed
and the spatial period L is increased instead.

Curiously, for an ensemble of initial conditions IC2 with
a given amplitude A, we can explicitly estimate the sizes of
the effective linear and nonlinear terms, ‖L1‖2 and ‖N1‖2 in
Eq. (4) with β = 1, using properties of the Gaussian distri-
bution. We find ‖L1‖2 ∼ O(A10) and ‖N1‖2 ∼ O(A6). Their
ratio scales as ∼O(A−4), which agrees with the asymptotic
slope of the data in Fig. 3. Likewise, for the effective quadratic
and superquadratic terms, |Hq

1 | and |Hs
1 | in the Hamiltonian in

Eq. (6) with β = 1, we find the estimates |Hq
1 | ∼ O(A6) and

|Hs
1 | ∼ O(A3), and so their ratio scales as ∼O(A−3), which

agrees with the asymptotic slope of the data in Fig. 5. We
remark that the scaling of the superquadratic term |Hs

1 | cru-
cially depends on the form of the EDR in Eq. (3), which
induces a nontrivial cancellation of terms scaling as ∼O(A4).

FIG. 4. The values of the renormalization parameter β that mini-
mize the time-averaged size of the trial renormalized superquadratic
part of the NLS Hamiltonian Hs

β for increasing norms of the NLS
waves.

FIG. 5. Ratio between the time-averaged sizes of the effective
superquadratic and quadratic parts of the NLS Hamiltonian for waves
with increasing norms. The values of the wave norms are listed in
Table I.

The not-at-all-obvious fact that these scalings of the initial
conditions effectively persist when the resulting waves evolve
under the NLS dynamics suggests that, statistically, the form
of the evolving wave indeed remains the same as IC2, just
with the phases of the individual plane waves evolving lin-
early according to the EDR in Eq. (3). In other words, our
simulations suggest that a wave emerging from an initial wave
of the form IC2 statistically samples other realizations of IC2
with the same parameters.

The concept of the EDR stems from the earlier concept
of the nonlinear frequency shift [24]. It has been well stud-
ied both experimentally and theoretically [25–34], including
for the NLS equation [11–13], and is important for the un-
derstanding of wave-wave interactions and energy transfer
in turbulent dispersive-wave systems. Methods for deriving
EDRs analytically are described in these works, and the
procedure most frequently used to compute it numerically
is the WFS method [18–21]. In general, one should expect
an EDR to only hold approximately, and increasingly less
so with the increasing wave amplitude. We reiterate that, in
this Letter, in turn, we have presented a particularly striking,
counterintuitive example, in which the EDR not only holds
but even improves and becomes “exact” in the limit of large
amplitudes of certain NLS waves in the manner described
above.

We should not, however, be misled into believing that
high-amplitude solutions could transform the NLS into a
genuinely linear system. The crucial missing property is lin-
ear superposition. Namely, unless two high-amplitude NLS
waves, as well as all their linear combinations, share the
same norm, which is impossible, they do not even share the
same EDR and so the two waves and each of their linear
superpositions approximately satisfy three different effective
linear equations. The nonlinearity of the NLS waves is also
clearly reflected in the dependence of the effective frequency,
ωk in Eq. (3), on the wave norm ‖ψ‖. Nevertheless, as op-
posed to a repeatable experiment in which initial waves can

L012009-4



IMPROVED EFFECTIVE LINEARIZATION OF NONLINEAR … PHYSICAL REVIEW RESEARCH 4, L012009 (2022)

be created at will, an observation of a single wave cannot be
used to verify linear superposition. In fact, any observed wave
evolving as a sum of (effectively) decoupled plane waves
without generating harmonics appears linear. For example,
from the WFS method [18–21] alone, one cannot discern
whether the system that gave rise to the observed waves was
linear or nonlinear. Our results thus lead to the paradoxical
conclusion that at large amplitudes, two effectively linear NLS
waves may add nonlinearly to a third effectively linear NLS
wave.

Finally, we briefly discuss whether the linearization phe-
nomenon described here could, in principle, be measured in
an optical system. For example, let us consider a standard
monomode optical fiber in the transparency window for the
wavelength λ = 1.55 μm. Since the roles of x and t are re-
versed for the NLS in fiber optics [35], a potential experiment
would inject a time-periodic signal containing quasirandom
noise in the sense of IC1 or IC2 into one end of the fiber,
and read the propagated signal at the opposite end. To keep
the signal intensity bounded, one would use the symmetry in
Eq. (2) and study the wave envelope ψ (Ax, A2t )/A injected
as the appropriately scaled IC1 or IC2, where A is the am-
plitude parameter in Table I and ψ the wave corresponding
to that amplitude. Ensemble averaging would replace the
time averaging employed in this Letter. Using the parame-
ters listed in Ref. [35], we conclude that for IC1, injected
signals with characteristic power ≈0.3 Watt and temporal pe-
riods ≈15 × A picoseconds would cover all the corresponding
values of the parameter A listed in Table I. Our simulation
time of ≈4000/A2 would translate to a required propagation
length of ≈8000 kilometers. Likewise, for IC2, the same
characteristic power and the temporal periods ≈30 × A pi-
coseconds would again cover all the corresponding values of
A in Table I. Moreover, in this case, the smallest pulse width
involved, ≈30/A picoseconds, would still exceed ≈1 picosec-
ond, so that the NLS description would remain valid even for
the largest value of A we have considered. Our simulation
time of ≈900/A2 would translate to a required propagation
length of ≈9000 kilometers. Both propagation lengths are

comparable to those of transoceanic optical communication
lines.

The main limiting obstacle is losses, which are about 2.5%
per kilometer. The dispersion-loss-compensation technique
used in transoceanic lines results in on-average FNLS-like
waves [36–38]. If the phenomenon described here is suf-
ficiently robust, it therefore could be measured, at least
in principle, using such lines, and checking this robust-
ness using the corresponding dispersion-loss-compensation
equations will be a subject of our future work. If the phe-
nomenon described here is not sufficiently robust to survive
the current dispersion-loss-compensation techniques, then
distributed amplification, such as exclusively using fibers
doped with the rare earth element erbium [35], or higher
nonlinearity of the fiber material [39–43] might help restore
it. In the more distant future, an experiment may perhaps
take advantage of highly nonlinear exotic materials [44].
Additionally, the factors of ≈4000 and ≈900 in our compu-
tational times were chosen arbitrarily, in order to facilitate
time averaging. Since an experiment would have to use en-
semble averaging instead, these factors might be reduced,
resulting in shorter propagation lengths. Nevertheless, the
losses appear to present a technical rather than fundamental
obstacle to the measurability of the improved linearization
phenomenon discussed in this Letter. It is, however, im-
portant to note that our required computational times of
O(1/A2) translate to O(1) propagation distances for the signal
regardless of the prefactor. Longer required computational
times would have led to the effect not being measurable in
principle.
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