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Abstract We present an efficient library-based numer-
ical method for simulating the Hodgkin–Huxley (HH)
neuronal networks. The key components in our numer-
ical method involve (i) a pre-computed high resolution
data library which contains typical neuronal trajectories
(i.e., the time-courses of membrane potential and gat-
ing variables) during the interval of an action potential
(spike), thus allowing us to avoid resolving the spikes in
detail and to use large numerical time steps for evolving
the HH neuron equations; (ii) an algorithm of spike-
spike corrections within the groups of strongly coupled
neurons to account for spike-spike interactions in a
single large time step. By using the library method, we
can evolve the HH networks using time steps one order
of magnitude larger than the typical time steps used
for resolving the trajectories without the library, while
achieving comparable resolution in statistical quantifi-
cations of the network activity, such as average firing
rate, interspike interval distribution, power spectra of
voltage traces. Moreover, our large time steps using the
library method can break the stability requirement of
standard methods (such as Runge–Kutta (RK) meth-
ods) for the original dynamics. We compare our library-
based method with RK methods, and find that our
method can capture very well phase-locked, synchro-
nous, and chaotic dynamics of HH neuronal networks.
It is important to point out that, in essence, our library-
based HH neuron solver can be viewed as a numerical
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reduction of the HH neuron to an integrate-and-fire
(I&F) neuronal representation that does not sacrifice
the gating dynamics (as normally done in the analytical
reduction to an I&F neuron).
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1 Introduction

Systems of conductance-based integrate-and-fire (I&F)
neurons have been used to simulate the dynamics and
study the properties of large scale neuronal networks
(Somers et al. 1995; Troyer et al. 1998; McLaughlin
et al. 2000; Cai et al. 2005; Rangan et al. 2005; Rangan
and Cai 2007). But the I&F model does not account
for the detailed generation of action potentials. We
consider here the more realistic Hodgkin–Huxley (HH)
model (Hodgkin and Huxley 1952; Dayan and Abbott
2001). This model of excitable membrane, originally
introduced to describe the behavior of the squid’s giant
axon, provides a useful mechanism that accounts natu-
rally for both the generation of spikes, due to voltage-
dependent membrane conductances arising from ionic
channels, and the existence of absolute refractory peri-
ods. This classical model serves as the foundation for
other neuron models with more complicated behav-
iors, such as bursting. However, the complexity of the
HH-like neuron model precludes detailed analytical
studies of its properties, hence we often resort to nu-
merical simulations to study them.
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In this paper, we focus on a library-based numerical
method for simulating the HH neuronal networks. In
general, we cannot take large time steps to solve the
HH neuron equations since they are stiff when the
neuron is spiking. But in network simulations we fre-
quently need to investigate the system’s behavior for
many different sets of parameters or to perform a statis-
tical analysis over many trial conditions. It is therefore
important to integrate the dynamics with an efficient
algorithm that allows us to use as large a time step as
possible.

Inspired by the simplicity of the I&F model, we
propose a specialized numerical method which reduces
the dynamics of the HH neuron model to an I&F-
like model. This method, referred to as the “library
method”, can overcome the time step limitation due
to the stiffness of the HH neuron model. In the tem-
poral evolution of the dynamic variables of the HH
neuron model during a single action potential (which
onsets at the threshold, say, −50 mV), a large influx
of the sodium ions produce a sharp spike of inward
current which causes the membrane potential to rise
very rapidly. During this brief period, the inward cur-
rent is so large that the HH dynamics is very stiff,
for which we need a sufficiently small time step to
resolve the dynamics numerically. After the membrane
potential reaches the peak value (near the sodium ions
equilibrium potential, 50 mV), the potassium current
drives it back down to negative values rapidly. The
time interval of an action potential can last about 3 ms
until the membrane potential drops down around its
minimum value. The neuron cannot fire again during
this period, i.e., in the absolute refractory period, which
is explicitly imposed in the I&F model. Based on
this observation, we take the following strategy. Once
the membrane potential reaches the threshold value,
we stop evolving the HH neuron model and restart the
integration after the refractory period with the reset
values of the membrane potential and other gating
variables. However, unlike in the I&F model for which
the membrane potential is fixed to be the reset value
during the refractory period, here in our method we can
recover the time-courses of the membrane potential
(as well as other dynamic gating variables) from a pre-
computed high resolution data library. By this means
we can circumvent numerical issues associated with
stiffness, and use reasonably large time steps to evolve
the HH neuron model.

We emphasize that this numerical I&F reduction
of the HH neuron using our library method involves
approximations in the spike dynamics and it is not
expected to achieve the exact same trajectory-wise

solution of the whole network evolved using the regular
method (say, Range-Kutta methods) with very small
time steps. Hence, our goal is to obtain accurate statisti-
cal information of the network—such as average firing
rate and spike time distributions with large time steps,
rather than accurate individual intracellular membrane
potential time-courses for each and every neuron in
the system over a long time. However, it should be
stressed that our numerical I&F reduction of the HH
neuron captures far more detailed dynamics (such as
gating variable dynamics), and has a far wider regime
of validity than the usual analytic I&F since it is a
dynamical reduction adapted to all possible regimes of
the HH neuron dynamics, as can be seen below.

As an I&F reduction, we need to address issues
arising from large time steps. In particular, we need
to take into account the causality of spiking events
within a single large time step via spike-spike interac-
tions. Usually, in the modified Runge–Kutta methods
(Hansel et al. 1998; Shelley and Tao 2001), when one
evolves the trajectory of each neuron in the network
for a single time step, only the spikes of the feedforward
input to the network within that time step can be used
to evolve the system since there is no information about
the synaptic spikes during this time interval (i.e., which
neurons may fire and when to fire). We can only wait
to the end of the step to consider the effect of all the
synaptic spikes if any happened during this interval.
This approach may become insufficient because the first
few of these synaptic spikes induced within a large time
step may substantially affect the rest of the network via
spike-spike interactions in such a way that the rest of
the numerically computed synaptic spikes within the
time step are spurious. As a consequence, when used
to evolve a network with strong coupling strengths,
the modified Runge–Kutta methods with interpolated
spikes need to take sufficiently small time steps to have
only O(1) number of spikes in the entire system within
a single time step. For instance, in cortical networks,
in a time interval of 0.1 ms a neuron would receive
1–5 synaptic inputs. To use a large time step, we need
to further apply the algorithm of spike-spike correc-
tions within our method for network simulations of
HH neurons. This spike-spike correction is achieved by
sorting the approximated spike times within each time
step and applying an iterated correction procedure to
account for the effects of each spike on all future spikes
within the time step. This procedure, introduced in
Rangan and Cai (2007), is similar to other event-driven
approaches (Mattia and Del Giudice 2000; Reutimann
et al. 2003; Rudolph and Destexhe 2007) and has been
successfully incorporated into a method for simulating
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large scale I&F networks (Cai et al. 2005; Rangan et al.
2005).

Extensive efforts have been made to study the im-
pact of chaos not only on other biological and physical
systems (Campbell and Rose 1983), but also on neu-
ronal systems (Mainen and Sejnowski 1995; Hansel
and Sompolinsky 1992, 1996; Kosmidis and Pakdaman
2003). Chaotic solutions have been observed in the
study of a single HH neuron with several different
types of external inputs (Aihara and Matsumoto 1986;
Guckenheimer and Oliva 2002; Lin 2006). Here we
study the issue in homogeneously all-to-all coupled HH
neuronal networks under a sinusoidal external drive.
We find three typical dynamical regimes as the synap-
tic coupling strength varies. When the HH neurons
are weakly coupled, the network is in a phase-locked
state, where each neuron fires repetitively with a train
of regularly spaced spikes locked to the feedforward
external input. When the coupling is relatively strong,
the network operates in a synchronous state. For a
moderately strong coupling between these two limits,
the network dynamics exhibits chaotic behavior, as
quantified by a positive largest Lyapunov exponent. It
turns out that there is a strong consequence of these
dynamical regimes on our numerical methods for evolv-
ing the network dynamics. In the nonchaotic dynamical
regimes, i.e., the weak coupling or strong coupling limit,
we show that there is a good numerical convergence
of the solution in the trajectory-wise sense by using
either the regular or library methods. For the chaotic
dynamical regime, i.e., an intermediate strong coupling,
our study shows that there is no numerical conver-
gence of the solution and only statistical quantifications
of the numerical results are reliable. To character-
ize the chaotic/nonchaotic regimes, we employ several
measures, such as the largest Lyapunov exponent, the
power spectrum analysis of voltage traces, the return
maps of projected spike times and the interspike inter-
val (ISI) distributions. We demonstrate that, in these
quantifications, the numerical results using the library
method are consistent with those obtained by the stan-
dard method. These results confirm that our library-
based method can capture very well the HH neuronal
network dynamics with good statistical accuracy.

The outline of the paper is as follows. We give a brief
description of the HH neuronal network model in the
following section. In Section 3, the general numerical
methods for single neurons and networks are described.
In Section 4, we provide a detailed description of
the library method, especially about how to build and
use the data library of the membrane potential and
gating variables. In Section 5, we compare numerical

results for both the standard and library methods,
which illustrate the advantage of our method. We con-
clude in Section 6.

2 The model

2.1 Single neurons

The dynamics of a Hodgkin–Huxley (HH) neuronal
network with N neurons is governed by

C
d
dt

Vi = −GNam3h(Vi − VNa) − GKn4(Vi − VK)

− GL(Vi − VL) + Iinput
i , (1)

dm
dt

= αm(Vi)(1 − m) − βm(Vi)m, (2)

dh
dt

= αh(Vi)(1 − h) − βh(Vi)h, (3)

dn
dt

= αn(Vi)(1 − n) − βn(Vi)n, (4)

where the index i labels the neuron in the network,
C is the cell membrane capacitance and Vi is its mem-
brane potential, m and h are the activation and inac-
tivation variables of the sodium current, respectively,
and, n is the activation variable of the potassium cur-
rent (Hodgkin and Huxley 1952; Dayan and Abbott
2001). In our network, for simplicity, all neurons are
identical. The parameters GNa, GK, and GL are the
maximum conductances for the sodium, potassium, and
leak currents, respectively, VNa, VK, and VL are the cor-
responding reversal potentials. Functional forms and
parameters values for the HH neuron equations are
given in Appendix.

In our network model, Iinput
i stands for the input

current, which is given by Iinput
i = IF

i + IS
i with

IF
i = −GF

i (t)
(
Vi(t) − VG

)
,

IS
i = −GS

i (t)
(
Vi(t) − VG

)
.

(5)

It contains two parts: the current IF
i generated by the

feedforward input and the synaptic current IS
i gen-

erated from the synaptic interactions of the neurons
within the network. Both of these currents share the
same reversal potential VG (see Appendix) for excita-
tory synapses. The terms GF

i (t) and GS
i (t) denote their

corresponding conductances which are defined below.
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2.2 Synaptic interactions

Our network model is conductance-based and synaptic
inputs are modeled as conductance changes. We say an
action potential or emission of a spike occurs at time
t if the membrane potential of a presynaptic neuron
(say the jth neuron) reaches a threshold value Vth at
that time. Then the spike triggers postsynaptic events
in all the neurons the jth neuron is connected to and
changes their conductances. On the other hand, for
the postsynaptic ith neuron, its conductance GS

i (t) is
changed by the sum of the total contributions at time
t of all spikes in the past generated by the presynaptic
neurons. The dynamics of GS

i (t) is governed by

d
dt

GS
i (t) = −GS

i (t)
σr

+ G̃S
i (t), (6)

d
dt

G̃S
i (t) = − G̃S

i (t)
σd

+
∑

j�=i

∑

k

Si, jδ
(

t − TS
j,k

)
, (7)

where G̃S
i (t) is an additional variable. The variable

GS
i (t) has an impulse response with the form of an

α-function with both a fast rise and a slow decay
timescale, σr and σd, respectively. The time TS

j,k stands
for the kth spike of neuron j prior to time t. The coef-
ficient Si, j represents the coupling strengths, which can
encode many different types of network architecture.
For the sake of simplicity, we consider an all-to-all
homogenous excitatory neuronal network, in which Si, j

is a constant S/N. However, our method can readily
be extended to a heterogeneous network or more com-
plicated cases involving both excitatory and inhibitory
neurons. The typical values or ranges of σr, σd and S can
be found in Appendix.

2.3 Feedforward inputs

The system is driven by feedforward inputs with GF
i (t)

as a continuous sinusoidal function of time t:

GF
i (t) = 1

2
Fi

(
sin

[(
ωt + i

N

)
2π

]
+ 1

)
, (8)

where ω is the oscillation angular frequency and Fi is
the peak amplitude of the feedforward input. In our
work, Fi assumes a constant F for all neurons in the ho-
mogenous network. Here, there is a phase difference of
2π/N between the feedforward input to the ith neuron
and the feedforward input to the (i + 1)th neuron. With

this continuous feedforward input, our network model
is a deterministic dynamical system.

However, in some cases, we need to consider sto-
chastic dynamics (Section 3), where we use a spike train
sampled from a Poisson process with rate equal to ω

as the feedforward input. Let TF
i,k denote the kth spike

from the feedforward input to the ith neuron. Then the
dynamics of GF

i (t) obeys equations similar to Eqs. (6)
and (7):

d
dt

GF
i (t) = −GF

i (t)
σr

+ G̃F
i (t), (9)

d
dt

G̃F
i (t) = − G̃F

i (t)
σd

+
∑

k

Fiδ
(
t − TF

i,k

)
, (10)

where we take the same rise and decay timescales σr

and σd as in Eqs. (6) and (7). Then we can combine
both of the conductances into one term Gi(t) = GF

i (t) +
GS

i (t) and its dynamics is given by

d
dt

Gi(t) = −Gi(t)
σr

+ G̃i(t), (11)

d
dt

G̃i(t) = − G̃i(t)
σd

+
∑

j�=i

∑

k

Si, jδ
(

t − TS
j,k

)

+
∑

k

Fiδ
(
t − TF

i,k

)
. (12)

We note that, both of the conductance terms GS
i (t) and

GF
i (t) in Eqs. (6) and (9) are continuous functions, but

their first derivatives are discontinuous due to the δ-
function in Eqs. (7) and (10).

3 General numerical scheme

For network modeling, we need a stable and accurate
numerical scheme to evolve the HH neuron equations
coupled with the dynamics of conductances (Eqs. (1)–
(10)) for each neuron. Since individual neurons interact
with each other through conductance changes asso-
ciated with spike times, it is also necessary to have
numerical interpolation schemes that can determine
the spike times accurately and efficiently (Hansel et al.
1998; Shelley and Tao 2001). In most of our study we
use the Runge–Kutta fourth-order scheme (RK4) with
fixed time step for integrating the system, along with a
cubic Hermite interpolation for estimating spike times.
The whole scheme is fourth-order accurate.
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Here we provide the details of the numerical method
for a single neuron. For simplicity, we use the vector Xi

to represent all the variables in the solution of the ith
neuron:

Xi(t) = (
Vi(t), mi(t), hi(t), ni(t), Gi(t), G̃i(t)

)
,

where we consider the case of a δ function for the feed-
forward input (Eqs. (9) and (10)) and use the combined
conductance term Gi(t) (Eqs. (11) and (12)). If the
continuous sinusoidal function (Eq. (8)) for GF

i (t) is
chosen instead, we certainly can use it to obtain the
feedforward input directly.

Given an initial time t0 and time step Δt, initial
values Xi(t0), and spike times TF

i,k and TS
j�=i,k from the

rest of the network, our method calculates a numeri-
cal solution of all variables Xi(t0 + Δt) as well as the
intervening spike times TS

i,k (if any occurred) for the ith
neuron as follows:

Algorithm 1 Single neuron scheme

Step 1: Input: an initial time t0, a time step Δt, a set
of spike times TF

i,k and TS
j�=i,k and associated

strengths Fi and Si, j.
Step 2: Consider the time interval [t0, t0 + Δt]. Let M

denote the total number of feedforward and
presynaptic spikes within this interval. Sort
these spikes into an increasing list of M spike
times Tsorted

m with corresponding spike strengths
Ssorted

m . In addition, we extend this notation such
that Tsorted

0 := t0, Tsorted
M+1 := t0+Δt and Ssorted

0 =
Ssorted

M+1 := 0.
Step 3: For m = 1, . . . , M + 1, advance the equations

for HH neuron model and conductances (Eqs.
(1)–(5) with (11) and (12)) from Tsorted

m−1 to
Tsorted

m using the standard RK4 scheme to ob-
tain Xi(Tsorted

m ); Then, update the conductance
G̃i(Tsorted

m ) by adding the appropriate strengths
Ssorted

m .
Step 4: If the calculated values for Vi(Tsorted

m ) are each
less than Vth, then we can accept Xi(Tsorted

M+1 ) as
the solution Xi(t0 + Δt). We update t0 ← t0 +
Δt and return to step 2 and continue.

Step 5: Otherwise, let Vi(Tsorted
m ) be the first calculated

voltage greater than Vth. We know that the
ith neuron fired somewhere during the interval
[Tsorted

m−1 , Tsorted
m ].

Step 6: In this case we use a high-order polynomial
interpolation to find an approximation of the
spike time tfire in the interval [Tsorted

m−1 , Tsorted
m ].

For example, we can use the numerical val-

ues of Vi(Tsorted
m−1 ), Vi(Tsorted

m ), d
dt Vi(Tsorted

m−1 ),
d
dt Vi(Tsorted

m ) to form a cubic polynomial. We
record tfire as the (k + 1)th postsynaptic spike
time TS

i,k+1 of the ith neuron. We update t0 ←
t0 + Δt and return to step 2 and continue.

Now we consider the general framework for simulat-
ing the network. A simple strategy, like the traditional
clock-driven approach, is to evolve the trajectory of
each neuron in the network from t0 to t0 + Δt by using
Algorithm 1, while only considering the feedforward
spikes within the time interval [t0, t0 + Δt], and the
times of all synaptic spikes during this interval being
assigned to the end of the step. In this approach we
need to take sufficiently small time steps to account for
the causality of the spiking events (Hansel et al. 1998;
Shelley and Tao 2001). As mentioned in Rangan and
Cai (2007), this approach may work well for certain sys-
tems, such as an all-to-all mean-driven weakly coupled
excitatory network, since the contribution of each spike
to the overall conductance of this system is negligible,
and the errors introduced at each step do not sub-
stantially alter the network dynamics. However, it may
fail disastrously when applied to a strongly recurrent
system with a large time step. This is because the simple
approach does not take into account the fact that the
first few of these synaptic spikes induced within a large
time step may substantially influence the trajectories
of the other spiking neurons in the network via spike-
spike interactions, which makes the computation for
the rest of the spikes within the time step incorrect.

To outperform this simple approach, we choose a
more precise strategy, similar to the event-driven ap-
proach (Mattia and Del Giudice 2000; Reutimann et al.
2003; Rudolph and Destexhe 2007). We take the spike-
spike correction procedure proposed in Rangan and
Cai (2007), which is equivalent to stepping through the
sequence of all the synaptic spikes within one time step
and computing the effect of each spike on all future
spikes. We step through this correction process until
the neuronal trajectories and spike times of neurons
converge. We refer to Rangan and Cai (2007) for the
details of this spike-spike correction algorithm and the
general coupling strategy.

Here, we demonstrate the importance of the
spike-spike correction procedure for the evolution of
networks by applying it to an all-to-all coupled test
network (Fig. 1). As shown in Fig. 1, without spike-
spike corrections, the subtle errors in the spike times
caused by the temporal binning procedure in the clock-
driven strategy (that postpones the effects of all the
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Fig. 1 (Color online) Importance of spike-spike corrections for
evolution of networks. We show the mean voltage traces and
raster plots of spike events for the general network solver (Al-
gorithm 1 with or without spike-spike corrections) when tested
on an all-to-all connected network of 100 excitatory neurons with
the coupling strength S = 0.5 mS/cm2. The network is driven by
feedforward input of a particular realization of a Poisson process
with the rate ω = 50 Hz. The realization of Poisson input is fixed
for all the cases shown here. The mean voltage trajectories of
the system over the time interval from 7090 to 7330 ms (after
the transient) are shown in the top panel. The black solid line
corresponds to the high precision solution (as approximated with
very small time step Δt = 2−16 ≈ 1.5 × 10−5 ms), the red dashed-
dotted line represents the trace computed with much larger
time step (Δt = 2−4 = 0.0625 ms) by using Algorithm 1 with
spike-spike corrections, and the blue dashed line is the solution
computed (for the same time step Δt = 0.0625 ms) by using
Algorithm 1 except without spike-spike corrections. Note that,
the result with spike-spike corrections and large time step cannot
be distinguished from the high precision solution. Below the top
panel we show the raster plots for these three tests. Clearly,
in the case without spike-spike corrections (bottom panel) the
occurrence of synchronous events is delayed after 7150 ms with
respect to the high precision result and the raster plot exhibits a
different firing pattern from the high precision result

synaptic spikes during one time step to the end of the
step) can accumulate and lead to noticeable delays in
later spike times, compared to the strategy with spike-
spike corrections. In Fig. 1, we can clearly observe that
the occurrence of synchronous events is delayed after
t = 7150 ms without spike-spike corrections.

4 Library method

4.1 Motivation

Although the general numerical scheme with the spike-
spike corrections can evolve the HH neuronal networks
quite accurately, there is still some limitation on the
time step. It is because explicit Runge–Kutta methods
have finite domains of stability, and will have stability
problems solving Eq. (1) if the conductances GF

i and
GS

i are high (i.e., the equations of the HH system are
stiff) and the time step Δt is large. Standard linearly
stable schemes like implicit Euler method tend to be
of low order accuracy when applied to smooth ODEs
(Gear 1971), and may not be very accurate if Δt is
large. Moreover, we also have three Eqs. (2) to (4)
for the gating variables m, h, n coupled with Eq. (1) to
be solved simultaneously, so the implicit method may
not be efficient since it requires extra computation for
solving the system iteratively in each step.

To overcome the time step limitation due to the stiff-
ness, we propose a specialized numerical method which
approximates the trajectories of all the neurons in the
network, and allows us to collect accurate statistical
information with much lower computational cost. This
library method, as we mentioned in the Introduction,
treats the HH neuron like an I&F neuron. When the
membrane potential V(t) reaches the threshold value
Vth, we stop evolving the HH neuron equations as-
sociated with this neuron since the total current (i.e.,
the right-hand side of Eq. (1)) becomes very large
after this moment making these equations very stiff.
Instead of resolving the spike by using a very small time
step, we recover the spike from our pre-computed high
resolution data library. Besides the potential V(t), we
also have the intermediate replica, i.e., the time courses
of the gating variables m, h, n during the spiking period.
The spike takes a certain time length like an absolute
refractory period in the I&F model. At the end of this
period, the potential V(t) drops down and the total
current returns to a sufficiently small value, which can
allow us to evolve the HH neuron equations of this
neuron using a large time step as before. Since the
values of V, m, h, n at the end of this period are not
fixed, we need to build the data library.

The main advantage of our library method is that we
can evolve the HH neuronal networks using a much
larger time step than the one used for resolving the
whole trajectories without the library, while achieving
comparable resolution in statistical quantifications. In
Section 5, the numerical results will show that we can
still obtain at least 2 or 3 digits of accuracy in the
average firing rate by using a time step about 10 times
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larger than the typical time step used by the standard
RK methods. In the following, we provide the details
on how to build the data library and apply it to our
method.

4.2 Building the library

Since the dynamics of each neuron is driven by the
feedforward input current IF and connected with other
neurons through the synaptic current IS, the input
current Iinput (i.e., the sum of IF and IS, Eq. (5)) is
the main force to drive the dynamics. Hence, we build
the library based on different neuronal trajectories of a
single neuron under different values of Iinput.

Another key point is that the data library will be used
to recover the spikes whenever a neuron fires, so the
starting point of the time-course of membrane potential
in the library is the threshold value Vth. In our library,
and in the numerical tests of network dynamics, we
take Vth = −50 mV, which is sufficiently low to keep
Eq. (1) not stiff before the spiking and allows us to use
large time steps. Meanwhile, it is also sufficiently high
that the neuron will definitely fire after its membrane
potential reaches this threshold value. If Vth is set too
low, some subthreshold potential fluctuation might be
misidentified as a spike. We can choose other threshold
values, but the library needs to be rebuilt.

The first step is to isolate a time-course of a spike. As
mentioned above, we consider a single neuron and take
the input current Iinput in Eq. (1) as constant Iinput =
−G0(Vth − VG) = 50G0 (note that VG = 0mV) and G0

is a parameter constant within a certain range from
0.15 to 1.0 mS/cm2. Then the range of input current is
from 7.5 to 50.0 μA/cm2, which can essentially cover
all typical values of Iinput of the spiking neurons at the
moments when they fire in our network simulations,
even for some special case of strong synchronization
with a very large coupling strength S up to 1.5 mS/cm2.

We choose NI different values of Iinput equally dis-
tributed in its range. With each Iinput, we evolve the
HH neuron equations of the single neuron on very fine
time step to obtain a high resolution trajectory. After
a transient, the neuron fires periodically and we isolate
one spike that starts exactly from a spike time tfire (not
the time step point tn+1 immediately after tfire) to a
later time where the potential drops down around its
minimum (Fig. 2). A technical detail we should point
out is that since the spike time tfire can rarely happen
at a precise time step point, there is always a time dif-
ference tn+1 − tfire between the numerical trajectory on
the time step points and the data of a single spike time-
course that we need. Therefore, for high accuracy it is
also necessary to interpolate the membrane potential
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Fig. 2 (Color online) Isolated time-courses of single spikes ob-
tained by applying different input currents Iinput to a single
neuron. Each curve corresponds to one spike. Shown are total
NI = 18 spikes corresponding to different Iinput ranging from 7.5
to 50.0 μA/cm2. All time-courses start exactly from the same
threshold value Vth = −50 mV and have the same time interval
Tref = 3.4375 ms. The time step δt = 2−13 ≈ 1.22 × 10−4ms is
used to obtain these solutions

in each time step due to this time shift, even though the
numerical error can be very small by using a very fine
time step δt. We used a cubic Hermite interpolation to
obtain the time-courses.

We refer to the time interval of this isolated time-
course as the absolute refractory period Tref which
should not be confused with the true refractory period
of the HH neuron and which can be interpreted as the
refractory period in the sense of the I&F neuron. In
our calculation, we fix Tref for all cases with different
input currents Iinput, therefore, the end point of spike in
each case will have different values of potential (Fig. 2).
We denote the value by Vre where the superscript -re
stands for reset value. Therefore, for each value of G0

corresponding to an input current Iinput, we thus isolate
a time-course of a spike to build the library for the
membrane potential V.

Although the neuron always fires at the same thresh-
old Vth, the gating variable may have different values
at different spike times. Therefore, in the next step,
we build the library for each gating variable. Once we
know the spike time tfire, we can also use numerical
interpolation to obtain the values of gating variables
m, h, n at that time. We denote them by mth, hth, nth,
respectively. Equations (2)–(4) show that the dynamics
of m, h, n only depend on the membrane potential V(t)
and each of them has no direct effect on the others.
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Table 1 The data structures
of Iinput, V and m in the
library

Those of h and n are similar
to that of m. We omit the
superscript -input from the
current Iinput. Note that
the output of V and m has
another dimension in time t

input:
(
m1, . . . , mk, mk+1, . . . , mNlib

)

⇓
input: output: output:
⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

I1

. . .

I j

I j+1

. . .

INI

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

⇒

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

V1

. . .

V j

V j+1

. . .

VNI

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

m1,1, . . . , m1,k, m1,k+1, . . . , m1,Nlib

. . .

m j,1, . . . , m j,k, m j,k+1, . . . , m j,Nlib

m j+1,1, . . . , m j+1,k, m j+1,k+1, . . . , m j+1,Nlib

. . .

mNI,1, . . . , mNI,k, mNI,k+1, . . . , mNI,Nlib

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

With this key fact, we can simply use the isolated time-
course of membrane potential to compute the interme-
diate replica of m, h, n individually over the time course
of Tref. In particular, this way we can obtain the reset
values mre, hre, nre at the end point of the spike for each
case of Iinput.

For example, in order to build the data library of
m, we equally distribute Nlib points of minput in the pa-
rameter range

[
minput

min , minput
max

]
. This range should cover

all typical values of mth of a neuron when it fires in a
HH network. Then, starting from the beginning of the
isolated time-course of the spike with a chosen value of
minput, we evolve Eq. (2) of m on the same time step δt
only for a time interval of the isolated time-course, i.e.,
Tref. We emphasize that in each time step tn+1 of RK4
scheme, the values of V(tn) and V(tn+1) are known from
the isolated time-course and m(tn) has been obtained
from previous step tn, then, we just need to compute
the value of m(tn+1) that is slaved to the potential V
due to the fact that the dynamics of m only depends
directly on V (Eq. (2)). In the end, the reset value of mre

is computed. Meanwhile, we refer to the whole trace
of m as the output moutput. By repeating this process
for all different values of minput, we can obtain a total
of Nlib sets of the intermediate replica for m as the
output.

The intermediate replica for h and n can be obtained
in the same way. After we obtain a data suite of V, m, h,
n for one case of Iinput, we repeat the whole procedure
for all the other cases of Iinput. Finally, we can get
NI suites of data libraries. In each suite, we have one
trace of V and Nlib traces of m, h, n, respectively (see
Table 1 for the data structures and Fig. 3 for the ranges
of the reset values Vre, mre, hre, nre). The total size
of the library is (3Nlib + 1)NI Nδt where Nδt = Tref/δt
is total time steps to resolve the isolated time-course
of the spike. We note that when building the library,
we make the approximation that all of V, m, h, n are
the functions of the input current Iinput. In Table 1,
for simplicity, we omit the parts of h and n since their
data structures are similar to the one of m. In summary,
since V depends on Iinput, the data structure of V is one

dimensional. But the data structures of m, h, n are two
dimensional since their reset values depend on Iinput

and their own input values.
Now we comment on the choice of NI and Nlib.

Larger values of NI and Nlib mean more cases of the
input current and more interpolation points of minput,
hinput, ninput to compute, increasing the accuracy of the
data library as well as the size of the library. In our
simulation, we take NI = 18 and Nlib = 31 with δt =
2−13ms, which can make the library sufficiently accurate
as is shown below. In terms of memory usage, the
size of the library is approximately 45 megabyte in
binary form, and it can be easily handled by current
computers.
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Fig. 3 (Color online) The ranges of the reset values Vre, mre, hre,
nre at the end of the time-course of spike versus different external
currents Iinput ranging from 7.5 to 50.0μA/cm2 (NI = 18). In the
top panel, we show the reset values Vre labeled by diamonds.
In the bottom panel, the reset values mre, hre, nre are labeled
by circles, crosses, and squares, respectively. Note that there are
Nlib = 31 data points for each type of reset value at every Iinput.
The circles of mre are so close that only one circle can be seen
at each Iinput. For the data shown, the ranges of the input values
minput ∈ [0.15, 0.3], hinput ∈ [0.25, 0.55], ninput ∈ [0.3, 0.54]
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4.3 Use of the library

Once we have the data library, we can evolve the HH
neuronal networks using a large time step Δt. Here, we
illustrate how to use the library by considering a single
neuron in the network. For brevity of notation, we omit
the index i for the time being. First, the membrane
potential V(t) and the gating variables m(t), h(t), n(t)
of this neuron evolve continuously until the potential
reaches the threshold Vth. At this point in time, the neu-
ron produces a spike which can be recovered from the
library by numerical interpolation. Usually, we simply
stop evolving the HH neuron equations (Eqs. (1)–(4))
for this neuron at this time and restart after Tref ms with
the reset values Vre, mre, hre, nre interpolated from the
library. We only recover the action potential when the
data points of membrane potential are needed for some
analysis, e.g., power spectra analysis of time-courses.
We note that during the absolute refractory period the
conductance terms GF(t) and GS(t) still evolve as usual.
Therefore, in our library method, it is straightforward
to use other models to describe the dynamics of the
conductance terms, such as 2-state kinetic models, in-
stead of the form resembling an α-function in Eqs. (11)
and (12).

We now describe how to obtain the reset values
by interpolation from the library. First we need to
calculate the input current Iinput at the spike time tfire

by: Ith = − (
GF(tfire) + GS(tfire)

)
(Vth − VG) as well as

the gating variables mth, hth, and nth by high order
interpolation consistent with the RK4 scheme. Then we
do a linear interpolation for Ith in the current/potential
(I-V) table and compute the corresponding reset value
of potential Vre. From the input data set of current we
need to find two data points Iinput

j and Iinput
j+1 between

which Ith falls, and calculate the interpolation coeffi-
cient λI which satisfies the following relationship (see
Table 1):

Ith = λI Iinput
j + (1 − λI)Iinput

j+1 , (13)

then, we evaluate the corresponding reset value of
potential:

Vre = λI Voutput
j + (1 − λI)Voutput

j+1 . (14)

For the gating variable m, given that it is between
two data points minput

k and minput
k+1 in the input data set,

we need to do a similar interpolation for mth with the
interpolation coefficient λm satisfying (see Table 1):

mth = λmminput
k + (1 − λm)minput

k+1 . (15)

Then in two output data sets moutput
j,• and moutput

j+1,• with
j coming from the relationship (13), we can compute
two interpolation values mre

j and mre
j+1 according to the

relationship (15):

mre
j = λmmoutput

j,k + (1 − λm)moutput
j,k+1 , (16)

mre
j+1 = λmmoutput

j+1,k + (1 − λm)moutput
j+1,k+1. (17)

Finally, we use the relationship (13) again to obtain the
reset value

mre = λImre
j + (1 − λI)mre

j+1. (18)

The values of hre and nre can be obtained in the same
way. Moreover, by doing the interpolation in the time
direction from the library, we can also recover the val-
ues of V(t), m(t), h(t), and n(t) for t inside the refractory
period.

We point out that occasionally the values of Ith,
mth, hth and nth may be out of their input ranges. In
this situation we may do linear extrapolation instead of
interpolation to compute their reset values.

We emphasize that there is an assumption made
for our method: once a neuron fires, its input current
Iinput keeps the same value Ith throughout the entire
time-course of the refractory period Tref. Generally,
this is not true since, from Eq. (5), we can clearly see
that the conductance terms GF(t) and GS(t) of this
neuron are changing due to both the feedforward input
and synaptic spikes from other neurons in the network
during this period. This approximation is based on the
following observations: (1) although Iinput varies during
the refractory period, the maximum of its range is
usually about 20–30 μA/cm2; (2) the intrinsic current
(i.e., the sum of ionic and leakage currents) is about
50–60 μA/cm2 at the spike time tfire; and (3) the intrin-
sic current increases very rapidly to 200–300 μA/cm2

after the spike time. From observations (1) and (2), we
perform an accurate interpolation of Iinput in the library
because the contribution of Iinput to the dynamics of the
membrane potential is comparable to the contribution
of the intrinsic current. From observation (3), the in-
trinsic current is dominant in the dynamics, therefore,
we may keep Iinput as constant during Tref. These are
the approximations underlying our library method.

We conclude this section by briefly outlining a vari-
ation, Algorithm 2, of Algorithm 1 in Section 3. Here,
Algorithm 2 uses the library to recover the spike. Given
an initial time t0 and time step Δt, initial values of each
state variable in the HH neuron equations at time t0,
and spike times TF

i,k and TS
j�=i,k from the rest of the
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network, our method calculates a numerical solution of
all variables at the next time step t0 + Δt as well as the
intervening spike times TS

i,k (if any occurred) for the ith
neuron as follows:

Algorithm 2 Library algorithm

Step 0: Pre-compute the data library of V, m, h, n for
NI different values of the constant input current
Iinput using very fine time step δt. For each Iinput,
we isolate a spike that starts exactly from Vth to
a later time (after Trefms) where the membrane
potential drops down around its minimum.
Then we use this spike (i.e., the intermediate
replica of the membrane potential) with differ-
ent values of minput, hinput, ninput as initial values
to compute the intermediate replica for m, h,
n individually. In particular, we can obtain the
reset values mre, hre, nre at the end point of the
spike. For each case of Iinput, there are Nlib data
sets of m, h, n, respectively.

Step 1: Input: the library, an initial time t0, a large time
step Δt, a set of spike times TF

i,k and TS
j�=i,k and

associated strengths Fi and Si, j.
Step 2: Consider the time interval [t0, t0 + Δt]. Let M

denote the total number of feedforward and
presynaptic spikes within this interval. Sort
these spikes into an increasing list of M spike
times Tsorted

m with corresponding spike strengths
Ssorted

m . In addition, we extend this notation
such that Tsorted

0 := t0, Tsorted
M+1 := t0 + Δt and

Ssorted
0 = Ssorted

M+1 := 0.
Step 3: For m = 1, . . . , M + 1, advance the equations

for HH neuron model and conductances
(Eqs. (1)–(5) with (11) and (12)) from Tsorted

m−1
to Tsorted

m using the standard RK4 scheme to
obtain the solution Xi

(
Tsorted

m

)
; Then, update

the conductance G̃i
(
Tsorted

m

)
by adding the ap-

propriate strengths Ssorted
m .

Step 4: If the calculated values for Vi
(
Tsorted

m

)
are each

less than Vth, then we can accept Xi
(
Tsorted

M+1

)
as

the solution Xi (t0 + Δt). We update t0 ← t0 +
Δt and return to step 2 and continue.

Step 5: Otherwise, let Vi
(
Tsorted

m

)
be the first calculated

voltage greater than Vth. We know that the
ith neuron fired somewhere during the interval[
Tsorted

m−1 , Tsorted
m

]
.

Step 6: In this case we use a high-order polynomial
interpolation to find an approximation to the
spike time tfire in the interval

[
Tsorted

m−1 , Tsorted
m

]
.

For example, we can use the numerical val-
ues of Vi

(
Tsorted

m−1

)
, Vi

(
Tsorted

m

)
, d

dt Vi
(
Tsorted

m−1

)
,

d
dt Vi

(
Tsorted

m

)
to form a cubic polynomial. We

record tfire as the (k + 1)th postsynaptic spike
time TS

i,k+1 of the ith neuron.
Step 7: We compute the values of Ith = −(

GF(tfire) +
GS(tfire)

)
(Vth − VG) as well as the gating vari-

ables mth, hth and nth at this time. Then, we
perform a linear interpolation to find the corre-
sponding reset values of Vre, mre, hre, nre in the
library. Meanwhile, we stop evolving Eqs. (1)–
(5) for the next Trefms, but evolve Eqs. (11)
and (12) for the conductance terms GF(t) and
GS(t) as usual. We update t0 ← min(tfire + Tref,
t + Δt) and return to step 2 and continue with
the reset values Vre, mre, hre, nre as the initial
values Vi(t0), mi(t0), hi(t0) and ni(t0) (Fig. 4).
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Fig. 4 (Color online) Illustration of the library method, espe-
cially for step 7 in Algorithm 2. Note that only the trajectories of
V(t) and h(t) are shown in the top and bottom panels, respectively,
and those of m(t) and n(t) are similar. First we use a high-order
interpolation to find the spike time tfire when V(t) reaches the
threshold Vth (the horizontal dotted line in the top panel). We
compute the values of Ith as well as the gating variables mth,
hth and nth at this time. Then we do linear interpolation to find
the corresponding reset values of Vre, mre, hre, nre in the library.
After stopping the evolution of Eqs. (1)–(5) during the refractory
period Tref, we restart it with these reset values. Equations (11)
and (12) for the conductance terms GF(t) and GS(t) are solved
as usual. By doing the interpolation in the time direction from
the library, we can also recover the values of V(t) and h(t) in the
refractory period when needed (the dashed curves). For clarity,
the size of Δt shown in the figure is actually much larger than
what is used in simulations
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5 Numerical results

5.1 Three regimes of the network

We again consider an all-to-all connected network of
100 excitatory neurons, but the feedforward input is
the continuous sinusoidal function of time t (Eq. (8))
with oscillation angular frequency ω = 50 Hz. Hence,
the entire network model is a deterministic dynami-
cal system. Other parameters are given in Appendix.
We perform simulations of this network for synaptic
coupling strength S ranging from 0.2 to 0.4 mS/cm2

with an increment of ΔS = 0.005 mS/cm2. The results
reveal three typical dynamical regimes—a state phase-
locked to the external drive, a chaotic state, and a state
exhibiting nearly synchronous activity. The systematic
scanning results will be presented in Section 5.3.

(i) Phase-locked state For small values of the coupling
strength, the current due to the synaptic spikes IS is
so weak that the dynamics of each neuron is largely
phase locked to the sinusoidal feedforward input. Each
neuron fires periodically with the ISI = 20 ms. A raster
plot of the case S = 0.2 mS/cm2 is shown in Fig. 5(a).
The spike times of any given neuron in the network
reflect the phase associated with that neuron’s feedfor-
ward input. This phase-locked state exists for 0.2 � S �
0.245 mS/cm2.
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Fig. 5 Raster plots of spike events in an all-to-all connected
network of 100 excitatory neurons driven by the continuous
sinusoidal feedforward input with oscillation angular frequency
ω = 50 Hz. The plots from top to bottom show three typical
cases with the coupling strength S = 0.2, 0.27, and 0.4 mS/cm2,
respectively

This case is also illustrated through the return map
of projected spike times and the power spectrum, av-
eraged over all neurons, of membrane potential trace
(Fig. 6(a) and (d)). To construct the return map, we
record the kth spike time TS

i,k of a chosen neuron in the
network, say the ith neuron, and project it into a time
window with the same length as the ISI. The projected
spike time T̃S

i,k is given as

T̃S
i,k = TS

i,k mod ω−1. (19)

In Fig. 6(a), we plot the return map of projected spike
times of the first neuron in the network, i.e., TS

1,k+1 ver-
sus its previous spike time TS

1,k. We see that the spike
times always stay at same location, signifying a periodic
firing. The power spectrum, averaged over all neu-
rons, of membrane potential trace, shown in Fig. 6(d),
contains peaks clearly located at integer multiples of
the fundamental frequency 50 Hz, indicating that the
membrane potential evolves periodically.

(ii) Chaotic regime For intermediate coupling
strength, in this network for 0.245� S�0.318 mS/cm2,
the statistical results for long time simulation show that
the dynamics of the network is truly chaotic since its
largest Lyapunov exponent is measured to be positive,
as will be discussed below. A raster plot of the case
S = 0.27 mS/cm2 is shown in Fig. 5(b).

As shown in Fig. 6(b), the return map of projected
spike times of the first neuron in the network is a
complicated geometric object with data points spread-
ing over it due to the fractal dimension of the attrac-
tor, which is typical of a chaotic system. The power
spectrum, averaged over all neurons, of membrane
potential trace in Fig. 6(e) exhibits a noisy signal and
broad-band nature, which is also characteristic of a
chaotic system. The spectrum contains peaks indicating
the predominant frequencies of the solution.

(iii) “Nearly synchronous” state When the coupling is
strong, S � 0.318 mS/cm2, a large proportion of neu-
rons in the network fire almost synchronously after a
few of the neurons fire in advance. This is shown in a
raster plot of the case S = 0.4 mS/cm2 in Fig. 5(c).

Moreover, the network is in a quasi-periodic phase,
as indicated by the return map of projected spike times
of the first neuron shown in Fig. 6(c), which forms a
circle map with strictly monotonic increasing branches,
i.e., no chaotic trajectories for the map (Schuster and
Just 2005). The power spectrum, averaged over all neu-
rons, of membrane potential trace of the quasi-periodic
phase (Fig. 6(f)) consists of not only the main spectrum
of the periodic motion, but also many tightly spaced
sidebands due to the relatively slow modulation.
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Fig. 6 (Color online) (Top panel): return maps of projected
spike times of the first neuron in an all-to-all connected network
of 100 excitatory neurons driven by the continuous sinusoidal
feedforward input with oscillation angular frequency ω = 50 Hz.
The plots from (a) to (c) show three cases with the coupling
strength S = 0.2, 0.27, and 0.4 mS/cm2, respectively. In each case,
we compare the results obtained from both the regular method
(blue dots) and the library method (red dots) with the same
time step (Δt = 2−5 = 0.03125 ms). In particular, for the case
S = 0.2 mS/cm2 in (a), we use circles and crosses to represent
the spike times since they all appear at the same location. The

results of both methods match each other surprisingly well. (Bot-
tom panel): The power spectrum, averaged over all neurons, of
membrane potential trace in the network with different coupling
strengths. In each plot, the blue line corresponds to the result
using the regular method with time step (Δt = 0.03125 ms); the
red line represents the spectrum computed with much larger
time step (Δt = 0.25 ms) by using the library method, and the
black line is the solution computed for the maximum time step
(Δt = 0.418 ms) with the library method. We note that the library
method with large time step can capture those dominant frequen-
cies as well as the regular method does with a small time step

We remark that both the regular method (Algo-
rithm 1 with spike-spike corrections) and the library
method (Algorithm 2 with spike-spike corrections)
were used in the numerical tests of three typical cou-
pling strengths shown above. The patterns of raster
plots exhibit similar dynamic regimes for both methods,
therefore, we only show the raster plots obtained by
using the regular method (Fig. 5). In Fig. 6, the results
from both methods are compared. As we explain about
the library method in Section 4, if the values of V(t)
in the refractory period are needed for computing the
power spectrum of membrane potential trace, we can
obtain them by appealing to the library and interpolat-
ing as necessary. We emphasize that the library method
with a large time step can achieve results as good as

those from the regular method using a small time step.
These comparison results are in excellent agreement,
which presents strong evidence for the success of our
method.

5.2 Convergence tests

To verify the accuracy of our numerical methods—
both the regular and library methods, we perform con-
vergence tests of the numerical solutions for the same
network as described in the previous section. For each
method, we obtain a high precision solution at time t =
1024 ms with a time step (Δt = 2−16 ≈ 1.5 × 10−5 ms)
which is sufficiently small so that the solutions by using
the algorithm with or without spike-spike corrections
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produce the same convergent solution. We take the
convergent solution as a representation of the high pre-
cision solution Xhigh(t). Here, for simplicity of notation,
we use a vector X(t) = [X1(t), . . . , Xi(t), . . . , XN(t)] to
represent all variables in the solution of all neurons.
The sub-vector Xi(t) stands for the solution of the ith
neuron:

Xi(t) = (
Vi(t), mi(t), hi(t), ni(t), Gi(t)

)
, (20)

where Gi(t) is the total conductance from both of the
feedforward input and synaptic input. We compare the
high precision solution Xhigh(t) with the trajectories
XΔt(t) calculated with larger time steps Δt = 2−9 →
2−4 ms. We measure the numerical error in the L2-norm
as follows:

E ≡ ∥
∥XΔt − Xhigh

∥
∥ . (21)

As shown in Fig. 7(a), the regular method can
achieve fourth-order accuracy when S = 0.2 (phase-
locked state) and 0.4 mS/cm2 (nearly synchronous
state). However, for S = 0.27 and 0.31 mS/cm2, due to
the chaotic dynamics, we cannot achieve convergence
of the numerical solutions. A similar phenomenon also
occurs when we use the library method in Fig. 7(b).

We note that in the library method, we recover the
trajectories of a neuron by linear interpolation from
the library whenever this neuron is in the refractory
period. Therefore, there is a numerical error associated
with the interpolation and the accuracy of the library.
Fortunately, the number of spikes is finite and much
smaller than the total number of time steps (a ratio of
1 : 103 ∼ 105). Moreover, since we use a cubic Hermite
interpolation for estimating the spike times, the full
method can still be fourth-order accurate in some cases.
For the case S = 0.4 mS/cm2, where the network is in a
nearly synchronous state, it occurs that almost all of the
neurons are out of the refractory period at t = 1024 ms
(Fig. 5(c)), which allows most of the solution values to
be computed from the regular numerical integration at
this moment, not by interpolation from the library. So
in this situation we can achieve fourth-order accuracy.
In the other case S = 0.2 mS/cm2, where the network
is in the phase-locked regime, there are always some
neurons in the refractory period (Fig. 5(a)). Hence, we
need to do interpolation from the library for part of
the solution values, which introduces extra numerical
error. When the time step is small (Δt � 2−6 ms, i.e.,
log10(Δt) � −1.8), this type of numerical error is dom-
inant and the convergence cannot be achieved as the
time step becomes smaller. That is why the curve of
numerical errors for S = 0.2 mS/cm2 becomes flat when
Δt is less than 2−6ms (Fig. 7(b)).
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Fig. 7 Comparison of accuracy between (a) the regular method
and (b) the library method. The convergence tests are performed
on the same network as the one in Fig. 6 by using the RK4 scheme
in both methods with a final time of t = 1024 ms. In each plot we
show four cases with the coupling strength S = 0.2 (circles), 0.27
(crosses), 0.31 (pluses) and 0.4 mS/cm2 (squares), respectively

In summary, both the regular and library methods
can achieve numerical convergence for the networks
within the phase-locked and nearly synchronous re-
gimes. For the chaotic regime, there is no convergence
of the solutions.

5.3 Lyapunov exponent

A useful tool for characterizing chaos in a dynamical
system is the set of Lyapunov exponents, in particular,
the largest one, which measures the rate of exponen-
tial divergence or convergence from perturbed initial
states of the system. The chaotic dynamics is signified
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by a positive largest Lyapunov exponent. Generally,
the largest Lyapunov exponent λ can be obtained by
following two nearby trajectories X(t) and X′(t) and
calculating their average logarithmic rate of separation:

λ = lim
t→∞ lim

ε→0

1

t
ln

‖Z(t)‖
‖Z0‖ , (22)

where Z(t) = X(t) − X′(t), ‖Z0‖ = ε and Z(0) = Z0 is
the initial separation. However, for a chaotic system, at
least one Lyapunov exponent is positive which implies
that ‖Z(t)‖ is unbounded as t → ∞. Therefore, a prac-
tical approach to avoid overflow is to scale back one of
the trajectories, say X′(t), to the vicinity of the other
X(t) along the direction of separation whenever they
become too far apart. We refer to this step as renor-
malization. In our study we calculate the divergence of
nearby trajectories with finite time steps τ , and after
each step we renormalize ‖Z(nτ)‖ to a fixed ε and take
the average of separation rate after sufficiently long
time to obtain λ via:

Z(τ )=Z(0) exp(λ1τ);

Z(2τ)=Z(τ )
ε

‖Z(τ )‖ exp(λ2τ); . . . .

Z(kτ)=Z((k − 1)τ )
ε

‖Z((k − 1)τ )‖ exp(λkτ); . . . . (23)

and

λ = lim
n→∞

1

n

n∑

k=1

λk = lim
n→∞

1

nτ

n∑

k=1

ln
‖Z(kτ)‖

ε
. (24)

The details of this algorithm and how to choose a
suitable value of ε can be found in Parker and Chua
(1989) and Schuster and Just (2005).

We remark that traditionally the Lyapunov expo-
nent is defined for a smooth dynamical system. Here,
we use an extension of the notion of the Lyapunov
exponents, which employs only continuous dynamical
variables (Sun et al., submitted). Hence, the additional
variable of the synaptic conductance term G̃S

i is ex-
cluded because it is discontinuous due to the δ-function
in Eq. (7), i.e., we only consider:

Xi(t) = (
Vi(t), mi(t), hi(t), ni(t), GS

i (t)
)
. (25)

In addition, in measurement of the largest Lyapunov
exponent, we make the network an autonomous sys-
tem by replacing the phase term ωt in the sinusoidal
feedforward input (Eq. (8)) with a single variable p and
including it into the solution vector X(t) = [X1(t), . . . ,

Xi(t), . . . , XN(t), p]. Its dynamics is described by an
additional equation

dp
dt

= ω. (26)

More details about the calculation of Lyapunov expo-
nents for different types of networks will be published
elsewhere (Sun et al., submitted).

The largest Lyapunov exponents obtained by us-
ing both the regular and library methods for coupling
strength S ranging from 0.2 to 0.4 mS/cm2 over a long
time interval of T = 216 = 65536 ms are shown in Fig. 8.
The regular method reveals that there is a chaotic
regime of the network in 0.245 � S � 0.318 mS/cm2

since the largest Lyapunov exponent is positive at
most of data points in this range. The left part (0.2 �
S � 0.245 mS/cm2) and the right part (0.318 � S �
0.4 mS/cm2) correspond to the phase-locked state and
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Fig. 8 (a): Largest Lyapunov exponent of the network versus
the coupling strengths S. The squares correspond to the result
using the regular method with time step (Δt = 0.03125 ms);
the circles represent the one computed with much larger time
step (Δt = 0.25 ms) by using the library method, and the
crosses are the solution computed for the maximum time step
(Δt = 0.418 ms) with the library method. (b): A fine scanning
result on [0.24, 0.25] mS/cm2. (c): A fine scanning result on
[0.312, 0.322] mS/cm2. We note that the library method with
large time steps can capture the chaotic regime as well as the
regular method does with a small time step. The total run time for
following the trajectories is sufficiently long (65536 ms) in order
to obtain convergent results for the largest Lyapunov exponent
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nearly synchronous state, respectively. For these non-
chaotic systems, the largest Lyapunov exponent is zero
since the system is autonomous. As seen in Fig. 8, the
library method can capture the chaotic regime well and
the boundaries of the parameters that separate chaotic
and nonchaotic regimes are consistent with the result of
the regular method, although the values of the largest
Lyapunov exponent in the chaotic regime are different
between two methods.

In summary, the library method can capture the
chaotic dynamics well, even when using a much larger
time step compared to the regular method. This suc-
cess of simulating chaotic dynamics presents strong
evidence for the robustness of this numerical I&F re-
duction of HH neurons to study statistical long time
dynamics of HH neuronal networks.

5.4 Firing rate and ISI distribution tests

In many applications, it is not necessary to resolve
every single trajectory of all neurons in the system.
For example, many real experiments (Koch 1999) only
record the statistical properties of subpopulation of
neurons (or the entire system), such as firing rate and
ISI distributions. For example, an experiment involving
firing rate statistics may only be concerned with the
ISI distribution aggregated for many neurons in the
system over a long time. To numerically model these
experiments, we only need to obtain an accurate ISI
distribution. In this case, the statistical properties of the
network can be accurately resolved with much less com-
putational effort by using the library method (with a
large time step) than it would take to accurately resolve
every neuronal trajectory with the regular method.

To further demonstrate the accuracy of the library
method, we compare the statistical results of firing rate
and ISI distribution with those obtained by the regular

�Fig. 9 (a): Average firing rate versus the coupling strength S.
The squares correspond to the result using the regular method
with time step (Δt = 0.03125 ms); the circles represent the one
computed with much larger time step (Δt = 0.25 ms) by using the
library method, and the crosses are the solution computed for the
maximum time step (Δt = 0.418 ms) with the library method. (b):
The relative error in the average firing rate between the library
method on maximum time step (Δt = 0.418 ms) and the regular
method on small time step (Δt = 0.03125 ms) versus S. (c): The
ISI histograms computed with Δt = 0.03125 ms using the regular
method versus S. Note that the probability density is represented
by different gray scales as shown on the right of the figure.
(d): The ISI histograms computed with Δt = 0.418 ms using the
library method versus S. Note that we take the logarithm of the
ISI histograms in (c) and (d) for clarity. The ISI data is binned
into 0.1 ms time bins. The total run time is 65536 ms

method. Figure 9(a) shows the average firing rate R,
which is the number of firing events per neuron per
second, for different values of coupling strength S in
the test network as before. In the phase-locked regime
(0.2 � S � 0.245 mS/cm2), the firing rate stays exactly
at the same value 50 spikes/s due to the fact that
the dynamics of each neuron is phase locked to the
sinusoidal feedforward input with oscillation angular
frequency ω = 50 Hz. Once the network enters the
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chaotic regime 0.245 � S � 0.318 mS/cm2, the firing
rate abruptly drops down to about 45 spikes/s and
stays around there until S ≈ 0.265 mS/cm2, then grows
as S increases. When the network becomes nearly
synchronous (0.318 � S � 0.4 mS/cm2), the firing rate
again abruptly changes to about 53 spikes/s and then
increases slowly.

Figure 9(b) shows the relative error in the aver-
age firing rate between the library method for large
time steps (Δt = 0.418 ms) and the regular method for
small time steps (Δt = 0.03125 ms), which is defined as
follows:

ER = (Rregular − Rlibrary)/Rregular. (27)

The library method can achieve more than 2 digits of
accuracy using time steps 10 times larger than those
used by the regular method for all values of S.

In Fig. 9(c) and (d), we plot the logarithm of the ISI
histograms by using the regular method with small time
steps (Δt = 0.03125 ms) and the library method with
large time steps (Δt = 0.418 ms), respectively. The ISI
data is binned into 0.1 ms time bins. Both of the results
are consistent with each other except at a few points of
S inside the chaotic regime. When the network is in the
phase-locked regime (0.2 � S � 0.245 mS/cm2), the ISI
stays exactly at the same value 20 ms. In the nearly
synchronous state (0.318 � S � 0.4 mS/cm2), the ISI
spreads over one band from about 15 to 20 ms. In
the chaotic regime (0.245 � S � 0.318 mS/cm2), the ISI
distribution exhibits complicated structures of multiple
bands, reflecting the chaotic nature of the dynamics.

5.5 Extensions of network simulations

To extend the applications of the library method, we
test another two models. In the first one, we consider an
all-to-all connected network of 100 excitatory neurons,
which is driven by a feedforward input (Eqs. (9) and
(10)) of a particular realization of a Poisson process
with the rate ω = 50 Hz, like the model used in Fig. 1.
We find that the library method performs well in cap-
turing the different dynamic regimes and computing the
average firing rate. The library method can achieve not
only more than 2 digits of accuracy in the average firing
rate using time steps 10 times larger than those used by
the regular method, but also good agreement between
the largest Lyapunov exponents obtained by using the
regular and library methods. In Fig. 10, we show the
systematic scanning results between two methods for
the model with the coupling strength S ranging from
0.025 to 1.0 mS/cm2 over a long time interval of
T = 65536 ms. The results also reveal three typical
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Fig. 10 The comparison results of an all-to-all connected net-
work of 100 excitatory neurons driven by the feedforward input
of a particular realization of a Poisson process with the rate
ω = 50 Hz. (a): Largest Lyapunov exponent versus the coupling
strengths S. The squares correspond to the result using the
regular method with time step (Δt = 0.03125 ms); the circles
represent the one computed with much larger time step (Δt =
0.25 ms) by using the library method, and the crosses are the
solution computed for the maximum time step (Δt = 0.37 ms)
with the library method. We note that the library method with
large time steps can capture the chaotic regime as well as the
regular method does with a small time step. (b): Average firing
rate versus the coupling strength S. (c): The relative error in the
average firing rate between the library method on maximum time
step (Δt = 0.37 ms) and the regular method on small time step
(Δt = 0.03125 ms) versus S. The total run time is 65536 ms

dynamical regimes—an asynchronous, a chaotic, and a
synchronous regime. The chaotic regime of the network
exists in 0.262 � S � 0.395 mS/cm2 in the sense that the
largest Lyapunov exponent is positive in this range. The
left part (0.025 � S � 0.262 mS/cm2) and the right part
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(0.395 � S � 1.0 mS/cm2) correspond to the asynchro-
nous state and synchronous state, respectively.

In the second extension test, we incorporate in-
hibitory neurons into the network. For each neuron, its
input current term Iinput

i is given by

Iinput
i = −

∑

Q

GQ
i (t)

(
Vi(t) − VQ

G

)
, (28)

where GQ
i (t) are the conductances with the index Q

running over the types of conductances used, i.e., in-
hibitory and excitatory, and VQ

G are their corresponding
reversal potentials (see Appendix). The dynamics of
GQ

i (t) are governed by

d
dt

GQ
i (t) = −GQ

i (t)

σ Q
r

+ G̃Q
i (t), (29)

d
dt

G̃Q
i (t) = − G̃Q

i (t)

σ Q
d

+
∑

j�=i

∑

k

SQ
i, jδ

(
t − TS

j,k

)

+
∑

k

FQ
i δ

(
t − TF

i,k

)
, (30)

which are similar to Eqs. (11) and (12). Here, we con-
sider an all-to-all connected network of 80 excitatory
neurons and 20 inhibitory neurons. The stochastic feed-
forward input is generated by a particular realization of
a Poisson process with the input rate ω = 50 Hz and
other parameters are given in Appendix.

In particular, we fix the coupling strength for in-
hibitory (excitatory) synapses onto excitatory (in-
hibitory) neurons SEI = SIE = 0.1 mS/cm2 and vary
the recurrent excitatory coupling strength SEE ranging
from 0.025 to 1.0mS/cm2 to perform two systematic
scanning tests for two different values of recurrent
inhibitory coupling strength SII = 0.1 and 0.2 mS/cm2,
respectively. We find again that there is a chaotic
regime in both tests (Figs. 11 and 12). As shown in
Fig. 11(a), for the case of SII = 0.1 mS/cm2, the chaotic
regime exists in 0.224 � SEE � 0.447 mS/cm2 since the
largest Lyapunov exponent is positive in this range;
but for SII = 0.2 mS/cm2 shown in Fig. 12(a), the
chaotic regime exists for 0.025 � SEE � 0.411 mS/cm2.
We note that the library method performs well in
capturing the different dynamic regimes. The average
firing rates for both cases are monotonically increas-
ing as SEE increases (Figs. 11(b) and 12(b)). Again,
the library method can achieve more than 2 digits of
accuracy in the average firing rate using time steps 10
times larger than those used by the regular method
(Figs. 11(c) and 12(c)).
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Fig. 11 The comparison results of an all-to-all connected net-
work of 80 excitatory neurons and 20 inhibitory neurons driven
by the feedforward input of a particular realization of a Poisson
process with the rate ω = 50 Hz. The value of recurrent inhibitory
coupling strength SII = 0.1 mS/cm2. (a): Largest Lyapunov expo-
nent versus the coupling strengths SEE. The squares correspond
to the result using the regular method with time step (Δt =
0.03125 ms); the circles represent the one computed with much
larger time step (Δt = 0.25 ms) by using the library method, and
the crosses are the solution computed for the maximum time step
(Δt = 0.37 ms) with the library method. (b): Average firing rate
versus the coupling strength SEE. (c): The relative error in the
average firing rate between the library method on maximum time
step (Δt = 0.37 ms) and the regular method on small time step
(Δt = 0.03125 ms) versus SEE. The total run time is 65536 ms

5.6 Type II dynamics of individual HH neurons

Since our numerical I&F reduction of the HH neuron
keeps the original HH dynamics (including gating vari-
able dynamics) below the threshold and uses the inter-
mediate replica for the action potentials, we can still
capture some type II dynamical property of individual
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Fig. 12 The comparison results of the same network as the
one in Fig. 11. The only difference is SII = 0.2 mS/cm2. (a):
Largest Lyapunov exponent versus the coupling strengths SEE.
(b): Average firing rate versus the coupling strength SEE. (c):
The relative error in the average firing rate between the library
method on maximum time step (Δt = 0.37 ms) and the regular
method on small time step (Δt = 0.03125 ms) versus SEE. The
total run time is 65536 ms

HH neurons, such as the phase advance and delay pat-
tern in the phase-resetting curve (PRC) (Winfree 2001).
The PRC describes the phase shift of the oscillation in
response to a perturbing pulse of variable amplitude
at each phase of the oscillation and can reveal useful
information about the complex dynamical mechanisms
underlying the periodic activity with hidden variables
not accessible to observation (Galan et al. 2005). The
perturbation is assumed to be sufficiently weak that its
effect on the amplitude and intrinsic period is negli-
gible. For the repetitively firing neurons (on a stable
limit cycle), a small current pulse delays or advances the

next spike without changing its shape or average firing
frequency.

The PRC can be calculated by studying how the time
of the next spike is shifted as a function of the pulse
time t relative to the previous spike:

Δ(φ, I0) = T − T ′(φ, I0)

T
, (31)

where T is the natural period, T ′(φ) is the time of the
spike given a stimulus at time t after the last spike,
and φ = 2π t

T ∈ [0, 2π) is the instantaneous phase. The
parameter I0 is the magnitude of the current pulse.

In Fig. 13(a) and (b), we show the PRC by using
both of the regular method and the library method
under a current pulse with magnitude I0 = 0.2 μA/cm2

for a short duration 0.5 ms and a longer duration
4.0 ms, respectively. The pulse is superimposed on the
constant current I = 7.5 μA/cm2. We note that the
library method with a large time step (Δt = 0.25 ms)
can produce the PRC as accurate as that from the reg-
ular method using a small time step (Δt = 0.03125 ms).
Moreover, as shown in Fig. 13, the PRC can be positive
over certain phases and negative over others since a
small positive perturbation of the membrane potential
may delay or advance the next spike in a type II neuron,
depending on the phase at which the pulse is delivered.
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Fig. 13 (a): The PRC under a current pulse for a short dura-
tion 0.5 ms. (b): The PRC under a current pulse for a longer
duration 4.0 ms. The pulse with magnitude I0 = 0.2 μA/cm2 is
superimposed on the constant current I = 7.5 μA/cm2. The solid
line corresponds to the result using the regular method with time
step (Δt = 0.03125 ms) and the dashed line represents the one
computed with much larger time step (Δt = 0.25 ms) by using the
library method
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We point out that there is another type-II behavior in
a single HH neuron—as a function of a constant input
current I, the HH model undergoes a sudden jump
from the fixed point solution (the membrane potential
at rest) to repetitive firing with nonzero frequency at
I = IH due to a subcritical Hopf bifurcation (Rinzel and
Ermentrout 1998). As shown in Fig. 14(a), the library
method with a large time step can capture this feature
as well as the regular method does using a smaller time
step.

Moreover, just below the Hopf bifurcation, there is a
coexistence of a stable fixed point with a stable limit
cycle and their basins of attraction being separated
by an unstable limit cycle. The stable and unstable
limit cycles are created via a saddle-node bifurcation at
I = IS < IH (Rinzel and Ermentrout 1998). As demon-
strated in Roa et al. (2007), if the fixed point at zero
current is perturbed by the application of a constant
current near but below the critical current IS, a number
of spikes may appear before the HH neuron returns
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Fig. 14 (a): The firing rate versus the input current Iinput. Both
of the regular and the library methods can capture the Hopf
bifurcation. (b): The number of spikes during the transient period
(see text). Note that the difference in the label of y-axis between
(a) and (b). The solid line with squares corresponds to the result
using the regular method with time step (Δt = 0.03125 ms) and
the dashed line with circles represents the one computed with
much larger time step (Δt = 0.25 ms) by using the library method.
The total run time is 16384 ms

to the new resting state, as shown in Fig. 14(b). The
number of spikes in the transient depends on how
close the current is to IS. The slow passage effect may
exhibit very long transients in response to the perturbed
current. However, since our library is built with the
data obtained in the dynamic regime of stable repetitive
firing, it is difficult for the library method to capture
this transient effect near the saddle-node bifurcation,
as evidenced in Fig. 14(b).

5.7 Computational efficiency

To demonstrate the efficiency of library method, we
compare the maximum time steps allowed for different
schemes in both the regular method and the library
method before the schemes become unstable numer-
ically. Table 2 shows these maximum time steps for
simulating the network driven by the continuous sinu-
soidal feedforward input in Section 5.1 with the strong
coupling strength S = 0.4 mS/cm2. In each method
(regular or library), the maximum time steps for Euler
and RK2 schemes are almost same. We use a linear
interpolation to find the spike times with both schemes.
RK4 scheme with a cubic Hermite interpolation for
estimating spike times can allow a larger maximum time
step than Euler and RK2 schemes. We emphasize that
the large time steps using the library method can break
the stability requirement of the regular method. As
shown in Table 2, the maximum step for the regular
method is Δt = 0.094 ms. At the time step resolution
used in the library method, such as the maximum step
Δt = 0.418 ms, the regular method becomes unstable
and fails to run due to the stability requirement.

The advantage of library method is that it allows
one to use much larger maximum time steps (4 times
larger), in comparison with the regular method. More-
over, as we show in Fig. 6 (the return map and the
power spectrum) and Fig. 9 (average firing rate and
ISI histograms), the library method can achieve more
than 2 digits accuracy with maximum time step Δt =
0.418 ms (10 times larger) as the results of the regular
method on Δt = 0.03125 ms. In Figs. 8, 10–12, it is
also demonstrated that the library method can robustly
capture the chaotic dynamics using a large time step.

Table 2 Maximum time step (ms) allowed for different methods

Method Regular method Library method

Euler 7.40 × 10−2 3.10 × 10−1

RK2 7.50 × 10−2 3.19 × 10−1

RK4 9.40 × 10−2 4.18 × 10−1
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We run the code on a Linux platform using an Intel
Pentium IV 2.3 MHz processor. For the systematic
scanning test shown in Figs. 8 and 9, it takes the li-
brary method about 5 hours to run all of 41 points of
the synaptic coupling strength S, ranging from 0.2 to
0.4mS/cm2 with the maximum time step Δt = 0.418 ms,
whereas the regular method with Δt = 0.03125 ms re-
quires nearly 26 h to resolve the computation or nearly
15 h with the maximum time step Δt = 0.094 ms. Note
that when we use large time steps to run the code, it
requires extra computation to take into account the
causality of spiking events within a single time step
via the spike-spike correction (Rangan and Cai 2007).
Therefore, the computational speed is not increased
linearly as we increase the time step. However, we
emphasize that the library method can achieve more
than 2 digits accuracy with more than 5 times computa-
tional speedup compared to the regular method as we
show above.

We make further comments about computational
efficiency. First, we comment on the comparison be-
tween our library method and the higher order im-
plicit methods. In Fig. 2 we have an observation: for
the action potential profile we isolated in the time
interval Tref = 3.4375 ms, it requires at least 7 to 10
data points to resolve the spike. This means that even
we choose any implicit method, it still needs the time
step to be sufficiently small to resolve the spike, say
about 0.35 to 0.5 ms. But this time step is comparable
to the maximum time step with the library method
(Δt = 0.418 ms). Moreover, in principle, the explicit
RK scheme employed in our library method should be
faster than the implicit method in one time step because
the implicit method requires computing the Jacobian
of the dynamical equations of the entire system and
solving them iteratively. If the implicit method is cho-
sen with adaptive time steps, it may work well for a
single neuron or a few neurons. However, we empha-
size that since here we deal with network simulations,
neurons may fire randomly over time and it is difficult
to make adaptive time steps suitable for all neurons’
trajectories at the same time since they are usually at
different dynamical states. Second, it is quite involved
to incorporate the spike-spike correction algorithm for
handling the causality of spiking events in one time step
into the implicit method.

Finally we address the issue of whether we can use a
simpler library method, which ignores the difference in
the reset values induced by the different values of the
input current and uses fixed values for each of the reset
values Vre, mre, hre, nre. For simplicity, we take a data
set of Vre = −72 mV, mre = 0.05, hre = 0.15, nre = 0.65.
With these fixed “naive” reset values, we perform the

same systematic scanning test as the one in Figs. 8 and 9.
As shown in Fig. 15(a), the borders between the chaotic
regime and the other two regimes are mismatched,
respectively, between the naive library method and
the regular method. There is obvious disagreement in
the average firing rate shown in Fig. 15(b) between the
naive library method and the regular method. More-
over, by comparing Fig. 15(c) with Fig. 9(b), we find
that the accuracy in the average firing rate changed
from 2 digits to only 1 digit in most of the chaotic regime
and from 3 digits to 2 digits in the nearly synchronous
regime. On the other hand, we emphasize that it does
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Fig. 15 The comparison results of the same network as the one
in Fig. 8 between the naive library method (see text) and the
regular method. All the parameters and the labels are the same
as in Fig. 8. (a): Largest Lyapunov exponent versus the coupling
strengths S. (b): Average firing rate versus the coupling strength
S. (c): The relative error in the average firing rate between the
naive library method using maximum time step (Δt = 0.418 ms)
and the regular method using small time step (Δt = 0.03125 ms)
versus S. The total run time is 65536 ms
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not cost much more computation for our method using
the elaborate data library than the naive library method
because we only need to perform extra computation
(e.g. the linear interpolations) to obtain the reset values
from the data library. The number of operations for
using the library only depends on the total number of
spikes during the network simulation, instead of the
total number of time steps. Therefore, there is a clear
advantage to use our data library to keep the difference
in the reset values to obtain more accurate results.

6 Conclusion

We have presented a new method that reduces the
dynamics of HH neurons to that of I&F neurons nu-
merically. Our method not only retains most of the
detailed properties of the original HH neurons in a
network, but also is more efficient than fully resolving
the HH equations. We overcome the stability restric-
tion associated with firing events by using a pre-
computed high resolution data library. This allows us
to use much larger time steps for evolving the neuronal
trajectories even if the conductances are high and the
HH equations are stiff. By using this method, we can
collect accurate statistical information with much lower
computational cost.

We remark that the idea of our library method can
be extended to more complicated HH-type equations
which may contain more ionic channel currents. We can
also build the intermediate replica for these channel
gating variables into the library and use them with
the same interpolation technique during the refractory
period.

The results presented in this article have been ob-
tained for networks of N = 100 neurons, but increasing
the size of the network does not change our conclu-
sions. In addition to deterministic models using the
continuous type of feedforward input as shown in last
section, our method performs well when we use sto-
chastic feedforward inputs and add inhibitory neurons
into the network.

We emphasize that the library method can be used
to describe the chaotic regime of network dynamics,
as signified by a positive largest Lyapunov exponent.
Moreover, there is no numerical convergence for both
the regular and library methods in this chaotic regime.

When we use the method to simulate the neuronal
network, we also employ the spike-spike corrections
procedure (Rangan and Cai 2007), which allows us
to accurately estimate spiking sequences for strongly
coupled neurons without the usual time step restriction
imposed by synaptic interactions in modified Runge–

Kutta methods (Hansel et al. 1998; Shelley and Tao
2001).

Finally, we mention that the library method can
be practicable for simulating large-scale neuronal net-
works by incorporating a clustering procedure of firing
events in networks to take advantage of localized
architectures, such as spatial scales of strong local in-
teractions, which are often present in large-scale com-
putational models—for example, those of the primary
visual cortex (Rangan and Cai 2007).
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Appendix: Parameter values for the Hodgkin–Huxley
equations

Parameter values or ranges and function definitions of
the Hodgkin–Huxley model are as follows (Dayan and
Abbott 2001):

GNa = 120 mS/cm2, VNa = 50 mV,

GK = 36 mS/cm2, VK = −77 mV,

GL = 0.3 mS/cm2, VL = −54.387 mV,

C = 1 μF/cm2, VE
G = 0 mV, VI

G = −80 mV,

FE = 0.05 ∼ 0.1 mS/cm2, SE = 0.05 ∼ 1.0 mS/cm2,

FI = 0.01 ∼ 0.05 mS/cm2, SI = 0.05 ∼ 1.0 mS/cm2,

σ E
r = 0.5 ms, σ E

d = 3.0 ms,

σ I
r = 0.5 ms, σ I

d = 7.0 ms,

αm(V) = 0.1(V + 40)/(1 − exp (−(V + 40)/10)),

βm(V) = 4 exp (−(V + 65)/18),

αh(V) = 0.07 exp (−(V + 65)/20),

βh(V) = 1/(1 + exp (−(35 + V)/10)),

αn(V) = 0.01(V + 55)/(1 − exp (−(V + 55)/10)),

βn(V) = 0.125 exp (−(V + 65)/80).
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