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Abstract
Early olfactory pathway responses to the presentation of an odor exhibit remarkably similar dynamical behavior across

phyla from insects to mammals, and frequently involve transitions among quiescence, collective network oscillations, and

asynchronous firing. We hypothesize that the time scales of fast excitation and fast and slow inhibition present in these

networks may be the essential element underlying this similar behavior, and design an idealized, conductance-based

integrate-and-fire model to verify this hypothesis via numerical simulations. To better understand the mathematical

structure underlying the common dynamical behavior across species, we derive a firing-rate model and use it to extract a

slow passage through a saddle-node-on-an-invariant-circle bifurcation structure. We expect this bifurcation structure to

provide new insights into the understanding of the dynamical behavior of neuronal assemblies and that a similar structure

can be found in other sensory systems.

Keywords Insect olfaction � Antennal lobe � Gamma-band oscillations � Slow firing-rate patterns � Integrate-and-fire
model � Firing-rate model � Saddle-node-on-an-invariant-circle bifurcation � Temporal binding

Introduction

Despite major differences in the details of both the olfac-

tory neuronal network architecture and its odor response

even among insects (Carcaud et al. 2016; Barbara et al.

2005; MacLeod and Laurent 1996; Ng et al. 2002; Tanaka

et al. 2009; Heinbockel et al. 1998), early olfactory path-

ways appear to share a number of universal anatomical and

functional characteristics across animal phyla ranging from

insects to mammals (Hildebrand and Shepherd 1997; Eis-

then 2002; Kay and Stopfer 2006; Laissue and Vosshall

2010). Partly due to these shared characteristics, a signifi-

cant effort has been expended on experimentally studying

insects as animal models of olfaction (Sato and Touhara

2009; Joerges et al. 1997; Christensen et al. 2000; Tanaka

et al. 2009). In particular, the antennal lobe (AL) in the

insect plays the role analogous to that of the mammalian

olfactory bulb (Kay and Stopfer 2006) as the first brain area

in which the neuronal computations involving the olfactory

stimuli take place that reformat these stimuli, before

transmitting them to further downstream brain areas

(Hildebrand and Shepherd 1997; Strausfeld and Hildebrand

1999; Eisthen 2002; Chen and Shepherd 2005; Ache and

Young 2005; Kay and Stopfer 2006; Wachowiak and

Shipley 2006). Correspondingly, a widely shared func-

tional characteristic among insects and mammals is the

frequent presence of fast, synchronized, collective oscilla-

tions in the dynamics taking place in these two analogous

areas (Kay and Stopfer 2006; Sivan and Kopell 2006; Kay

2015).

The similarities in the AL network connectivity archi-

tecture among several frequently-studied insect species

(MacLeod and Laurent 1996; Ng et al. 2002; Tanaka et al.
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2009; Heinbockel et al. 1998; Carcaud et al. 2016; Barbara

et al. 2005) and the somewhat similar manner in which

synchronized oscillations appear and disappear after the

odor presentation in most if not all of these species (Turner

et al. 2008; Tanaka et al. 2009; Laurent 1996; Stopfer et al.

1997; Heinbockel et al. 1998), hint at a possible robust,

universal, network mechanism that may underlie the tem-

poral evolution of these oscillations. In this paper, we

hypothesize one such mechanism, which is the interaction

among different time scales of excitation and inhibition in

the AL neuronal network (Wilson and Laurent 2005;

Barbara et al. 2005; Grunewald 2003). We also identify a

mathematical structure that can be used to describe this

mechanism.

As an example, we investigate this mathematical struc-

ture for the locust, which possesses a simple AL architec-

ture and its corresponding dynamics, and has been studied

especially thoroughly both experimentally and theoreti-

cally (MacLeod and Laurent 1996; Laurent and David-

owitz 1994; Laurent et al. 1996, 1993; Laurent and

Naraghi 1994; Bazhenov et al. 2001a, b; Patel et al.

2009, 2013; Sivan and Kopell 2006). The hypothesized

network architecture and dynamical scenario that emerge

from these studies are as follows: The locust AL network is

composed of excitatory projection neurons (PNs) and

inhibitory local neurons (LNs), which are believed to

communicate through fast excitatory (2–5 ms) and fast

(30–40 ms) and slow (200–300 ms) inhibitory currents

(Laurent et al. 1993; Bazhenov et al. 2001b, a). (The

presence of the slow inhibitory current in the locust AL has

been inferred indirectly (MacLeod and Laurent 1996;

Stopfer et al. 1997; MacLeod et al. 1998; Bazhenov et al.

2001b, a; Sachse and Galizia 2002; Barbara et al. 2005;

Patel et al. 2009), see, e.g., the explanation in ref. Patel

et al. (2009). The PNs generate action potentials while the

LNs generate long, 20-30 ms calcium spikes (MacLeod

and Laurent 1996; Bazhenov et al. 2001a, b). Upon

receiving the stimulus from the olfactory receptor neurons

(ORNs) that reside on the antennae, the AL network

dynamics proceed in three stages: First the network begins

generating collective oscillations with frequency � 20 Hz

(Laurent and Davidowitz 1994; Laurent et al. 1993;

Heinbockel et al. 1998), detectable from the local field

potential, which is related to the average excitatory neuron

voltage over the network (Laurent and Naraghi 1994;

Laurent et al. 1996). Second, a brief quiescent period

(Laurent et al. 2001) follows. Third, the neurons’ firing

rates modulate slowly in a manner determined by the

stimulus for about 1 second until they reach a steady state

(Wehr and Laurent 1996), and, after the odor subsides, the

excitatory neuronal firing rates again exhibit such slow

modulation while they settle back into baseline equilibrium

during the next few seconds (Mazor and Laurent 2005).

Two complementary theoretical hypotheses for odor-

encoding mechanisms have emerged from the studies

described in the previous paragraph. The first is temporal

binding (Singer and Gray 1995; von der Malsburg 1999;

Christensen et al. 2000; Lei et al. 2002), expressed by a

group of neurons that consistently participate in all the

cycles of the initial AL network oscillations within about

500 ms from the stimulus onset (Patel et al. 2013). These

oscillations appear to be generated by the interaction

between the excitation and fast inhibition, and damped by

the growing presence of slow inhibition. The second is

slow patterning, the collective time dependence of the

firing-rate trajectories traced out by the excitatory neurons

in the AL over 2–4 seconds, generated by the interplay

between the excitation and slow inhibition in the AL

(Bazhenov et al. 2001a, b; Stopfer et al. 2003). Based on

these time scales, the temporal binding mechanism takes

place during the first, collective oscillations, stage of the

dynamics, which suggests that it helps the insect detect a

brief plume of a transient odor. The slow patterning

mechanism, in turn, takes place during the third stage of the

dynamics, which suggests that it may sharpen the identi-

fication of a persistent odor (Patel et al. 2009, 2013).

To test our hypothesis that the dynamical evolution of

the locust AL dynamics emerging upon odor presentation

results primarily from the interaction among the excitatory

and two inhibitory response time-scales, in contrast to the

previous detailed Hodgkin-Huxley-type point-neuron

models (Bazhenov et al. 2001a, b; Sivan and Kopell

2004, 2006; Patel et al. 2009, 2013), we follow the parsi-

monious approach outlined in ref. Rangan et al. (2009) and

begin our modeling by employing the more idealized,

conductance-based integrate-and-fire (I&F) model (Burkitt

2006a, b). To be able to use the I&F model in the

description of the locust AL dynamics, we must choose the

rise and decay time scales of the stereotyped postsynaptic

conductance responses in such a way that they reflect both

the presynaptic input and synaptic receptor time courses.

We then proceed with our investigation in three steps: In

the first step, we find that an appropriately inhomoge-

neously-driven, sparsely-coupled I&F network reproduces

both the above-described three-stage dynamical scenario,

including its evolution time scales, as well as the dynam-

ical behavior conjectured to underlie the hypothesized

temporal binding and slow patterning odor-encoding

mechanisms. In particular, this I&F model is able to cap-

ture odor discriminability via each of these mechanisms.

Thus, our model confirms the presence of a robust network,

as opposed to an intrinsic neuronal, mechanism underlying

the AL dynamics.

In the second step, in search for a mathematical structure

underlying the locust AL dynamics, we embark on a pro-

gression of further idealizations. We first apply an idealized
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white odor, which is assumed to drive all excitatory and all

inhibitory neurons in the network uniformly. We then

replace sparse network coupling with all-to-all network

coupling and thus also idealize the network architecture, so

that we arrive at a network with no specific choice of either

the input signal or the network connectivity. With each of

these subsequent idealizations, we find that the three-stage

dynamical scenario not only persists but becomes more

pronounced in that the initial oscillations become better

synchronized and the quiescent period less noisy, with this

period still followed by an interval of slowly-modulated

neuronal firing rates that reach a steady state before the

odor subsides. This result points to the three-stage scenario

as forming a structurally-robust feature underlying the

locust AL network dynamics, arising from the interaction

between the fast excitation and the fast and slow inhibition.

In the third step, we idealize the model yet further by

coarse-graining the dynamics of the aggregate excitatory

and fast and slow inhibitory network conductance respon-

ses in the AL stimulated with a white odor-like input using

a four-dimensional, slow-fast firing-rate (FR) model

(Treves 1993; Shelley and McLaughlin 2002; Shelley et al.

2002; Cai et al. 2006) in order to reveal a simple mathe-

matical structure underlying the robust, three-stage sce-

nario of AL network dynamics. As expected, this FR model

again reproduces this scenario, and thus confirms the

leading underlying physiological mechanism to be the

interaction between the fast excitation and the fast and slow

inhibition. This model also lets us identify a corresponding

mathematical structure describing the three-stage scenario

as a slow passage through a saddle-node-on-an-invariant-

circle (SNIC) bifurcation.

The remainder of the paper is organized as follows. In

‘‘Methods’’ section, we present the I&F model, diagnostic

tools that we use to highlight and quantify the model’s

ability to reproduce experimentally observed dynamics,

and a heuristic derivation of the four-dimensional FR

model (with details in ‘‘Appendix 1’’). In ‘‘Odor Response

and Discriminability’’ section, we confirm that our I&F

model reproduces the three-stage dynamical scenario

observed in experiments, different slow patterns of neu-

ronal firing-rate trajectories as a result of different model

odor stimuli, and the presence of temporally-bound neu-

rons that discriminate among the odors. In ‘‘Idealizations of

I&F Model’’ section, we submit the point-neuron model to

further idealizations, in the last one of which the network is

all-to-all coupled, mean-driven, and receives a white odor

stimulus. This network allows for coarse graining and

retains the three-stage dynamical scenario. In ‘‘Bifurcation

Mechanism’’ section, we describe how the FR model

reveals the mathematical structure underlying the network

mechanism as a slow passage through a SNIC bifurcation.

Conclusions and further discussion can be found in

‘‘Discussion’’ section. The details of the FR model

derivation can be found in ‘‘Appendix 1’’. Details con-

cerning the robustness of the method we use for deter-

mining the sets of temporally-bound neurons participating

in network oscillations, which we use to discriminate

among odors, are described in ‘‘Appendix 2’’. A linearized

version of the FR model is presented in ‘‘Appendix 3’’. Its

derivation is presented in ‘‘Appendix 3.1’’ and the presence

of a unique limit cycle in this linearized model is verified in

detail in ‘‘Appendix 3.2’’.

Methods

Integrate-and-fire model

We build a model of N conductance-based, integrate-and-

fire (I&F) point neurons with two time scales for inhibitory

postsynaptic responses. The evolution of the membrane

potential of the ith neuron in the network, viðtÞ for

i ¼ 1; . . .;N, is governed by the equation

s
dviðtÞ
dt

¼ � viðtÞ � eR½ � � gEi ðtÞ viðtÞ � eE½ �

� gFi ðtÞ viðtÞ � eF½ � � gSi ðtÞ viðtÞ � eS½ �;
ð1Þ

whenever viðtÞ is below the firing threshold, VT . Here, s is
the membrane time constant, gEi ðtÞ, gFi ðtÞ, and gSi ðtÞ are the
neuron’s time-dependent excitatory, fast inhibitory, and

slow inhibitory conductances, respectively, and eR, eE, eF ,
and eS, are the reversal potentials corresponding to the

leakage, excitatory, fast inhibitory, and slow inhibitory

conductances, respectively, with eS\eF\eR\VT\eE. The
event when viðtÞ reaches the firing threshold, viðtÞ ¼ VT ,

represents the neuron firing an action potential. We do not

model this action potential explicitly, but rather reset viðtÞ
to eR, hold it there for a refractory period of 5 ms, and

update the postsynaptic conductances according to the rule

described below.

In the locust, the excitatory neurotransmitter is acetyl-

choline (Koch 1999). A detailed model of the corre-

sponding receptor response is used in refs. Bazhenov et al.

(2001b), Bazhenov et al. (2001a), Patel et al. (2009), and

Patel et al. (2013). In our idealization, and with an eye on

further coarse graining our model, we instead model the

postsynaptic excitatory-response shape using the stereo-

typical form of te�t=rE . What we do need to capture

accurately, however, is the time scale of the acetylcholine

receptor, which is still achieved using the stereotypical

form of our conductance response. Thus, we use the

excitatory conductance decay rate rE ¼ 1–2 ms, corre-

sponding to the excitatory time scale of 2–4 ms (Patel et al.

2009). (Note that in the response form te�t=r, the true
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response time is longer than the decay rate r). This

stereotyped form is widely used, for example, in the

modeling of the mammalian primary visual cortex (Somers

et al. 1995; McLaughlin et al. 2000; Burkitt 2006a), and is

similar to that generated by an AMPA receptor (Johnston

and Brown 1983).

The inhibitory neurons generate calcium-dependent

‘‘spikes’’ (Laurent et al. 1996), which, in contrast to action

potentials, are prolonged increased levels of activity, last-

ing approximately 20 ms. Nonetheless, in our I&F model

network, we give up on accurately modeling the inhibitory

neurons’ membrane potentials, and focus on capturing the

correct time scale of the postsynaptic inhibitory conduc-

tance response. We thus again model the fast inhibitory

conductances by the stereotypical form te�t=rF , adjusting

its decay rate to match the corresponding correct time scale

and therefore we take rF ¼ 4–8 ms. This amounts to a

lengthening of the time scale of the fast conductance

response as compared to the true GABAA receptor response

time of 3–5 ms (Patel et al. 2009), to account for the

duration of the calcium spike. (Again, note that the

response time scale is longer than the decay constant, rF).
As mentioned in the Introduction, the presence of a

slow, inhibitory current with a response time of several

hundred milliseconds has been inferred indirectly, as

described in ref. Patel et al. (2009). (The corresponding

GABAB receptors have been found in the honey bee and

moth (Grunewald 2003; Barbara et al. 2005; Heinbockel

et al. 1998), which have olfactory systems similar to that of

the locust.) Thus, as in refs. Bazhenov et al. (2001a),

Bazhenov et al. (2001b), Patel et al. (2009), and Patel et al.

(2013), we include a slow current in our model. To con-

form with the rest of our modeling approach, we drive this

current by a stereotyped slowly-changing, inhibitory con-

ductance response of the form ðe�t=qS � e�t=rSÞ=ðqS � rSÞ
(Troyer et al. 1998; Burkitt 2006a), with rise time scale

qS ¼ 420–500 ms and decay time scale rS ¼ 600–800 ms,

that is initiated concurrently with the fast inhibitory con-

ductance response. (A more realistic slow conductance

response is described in refs. Bazhenov et al. (2001a),

Bazhenov et al. (2001b), Patel et al. (2009), and Patel et al.

(2013).)

The stereotyped excitatory, fast inhibitory, and slow

inhibitory conductance responses for the ith neuron are

governed by second-order kinetics, described by the

equations

rP
dgPi ðtÞ
dt

¼ �gPi ðtÞ þ hPi ðtÞ; ð2aÞ

rE
dhEi ðtÞ
dt

¼ �hEi ðtÞ þ f odori

X

l

dðt � silÞ þ fi
X

k

dðt � cikÞ

þ SEi
NE

X

j 6¼i

pEji
X

l

dðt � tjlÞ; ð2bÞ

rF
dhFi ðtÞ
dt

¼ �hFi ðtÞ þ
SFi
NI

X

j6¼i

pFji
X

l

dðt � tjlÞ; ð2cÞ

qS
dhSi ðtÞ
dt

¼ �hSi ðtÞ þ
SSi
NI

X

j6¼i

pSji
X

l

dðt � tjlÞ; ð2dÞ

with P ¼ E, F, and S and dð�Þ the Dirac-delta function. The
synaptic strengths are encoded in the coefficients SEi , S

F
i

and SSi ; they each take one of two values depending on the

ith neuron’s type (E or I), and are scaled by the size of the

corresponding population (NE or NI) in anticipation of

future coarse graining over large networks. We keep the

ratio NE=NI ¼ 3 constant, as has been observed in the

locust AL (Leitch and Laurent 1996).

The parameters pEji , p
F
ji , and pSji are the elements of three

different network adjacency matrices: pPji ¼ 1 (recall

P ¼ E, F, and S) if the corresponding type of synaptic

connection is present from neuron j to neuron i, and pPji ¼ 0

otherwise. The network is constructed by randomly

choosing synaptic connections between pairs of neurons

with the following probabilities: pEE and pEI for excitatory

connections to excitatory and inhibitory neurons, respec-

tively, pFE and pSE (pFI and pSI ) for fast and slow inhibitory

connections to excitatory (inhibitory) neurons. Experi-

mental evidence points to the fact that the fast and slow

inhibitory receptors are colocalized (Barbara et al. 2005;

Enell et al. 2007; Corronc et al. 2002; Cayre et al. 1999),

so we take pFji ¼ pSji, and also pFQ ¼ pSQ, Q ¼ E or I, in the

rest of the paper.

The times tjl appearing in the Dirac-delta functions of

Eq. (2) represent the lth spike time of the jth neuron. At

such times, the corresponding hPi of the postsynaptic neu-

rons jump by the prescribed amounts, SPi =NQ, Q ¼ E, or I.

Equation (2) also includes external-drive spikes from

both an odor-specific source with synapse strength f odori and

a background source with synapse strength fi. We model

the presentation of an odor by driving a subset of neurons

(typically 1/3 of them) with a set of excitatory external

spikes at times sil, generated by a set of independent

Poisson processes with common rate modor and synapse

strength f odorE or f odorI , depending on the ith neuron’s type (E

or I). The external spikes drive the excitatory conductances

on both the excitatory and inhibitory neuronal populations.

It is experimentally known that both excitatory PNs and
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inhibitory LNs receive input from the olfactory receptor

neurons (Barbara et al. 2005; Kay and Stopfer 2006), so

neither f odorE nor f odorI vanishes.

The background noise drives the excitatory conduc-

tances of all neurons with spikes of strength fi, taking one

of two values, fE or fI , depending on the ith neuron’s type

(E or I). We model the arrival times of the background

spikes, cik, to each neuron with independent Poisson pro-

cesses, all with an identical rate, m.
In our simulations, as listed in Table 1, we use the fre-

quency m ¼ 4000 Hz for the excitatory background drive,

and choose the corresponding synaptic strength fE such that

the overall excitatory background-drive magnitude is

fEm ¼ 8. This leads to the membrane potentials of the

neurons in the AL network being primed just below the

firing threshold, with a possible rare firing, agreeing with

refs. Patel et al. (2009) and Perez-Orive et al. (2002).

Likewise, we use the frequency modor ¼ 6000 Hz for the

odor drive, which represents the convergent input to a PN

or LN from about 200 ORNs firing at about 30 Hz (Patel

et al. 2009). We choose the excitatory and inhibitory

strengths f odorE and f odorI of the spikes arriving from the

ORNs such that the overall excitatory and inhibitory drive

magnitudes become f odorE modor ¼ 6:9 and f odorI modor ¼ 6:6,

respectively. Together, all of these parameter choices

induce the initial network oscillations to occur at the fre-

quency of about 20 Hz. Moreover, choosing

f odorE modor [ f odorI modor ensures that the LNs are excited and

begin firing when PNs begin firing, but do not fire sooner

than most PNs would and thus suppress the PN firings

during the initial oscillatory period.

The model is normalized such that eR ¼ 0, eE ¼ 14=3,

eF ¼ �2=3, eS ¼ �9=5, and VT ¼ 1. We integrate the

model equations numerically using an algorithm developed

in ref. Shelley and Tao (2001), which employs the second-

order Runge-Kutta method for integrating the potential

equation between neuronal spikes, linear interpolation to

find the spike times and reset the membrane potential, and

an exact solution for the conductance equations.

Diagnostic tools

Here we describe the tools we use to confirm that our I&F

model captures the dynamical phenomena observed

experimentally in the AL. We use the same tools as in refs.

Mazor and Laurent (2005), Patel et al. (2009), and Patel

et al. (2013) for ease of comparison.

Power spectral density (PSD)

We use the PSD to determine the dominant frequencies at

which the model network oscillates. We also compute the

time dependence of the instantaneous power contained in

several frequency windows (Gardiner 2004; Vetterling

2002). We measure network activity as the average voltage

across all of the excitatory neurons in the network, which is

used to roughly model the local field potential (LFP)

measured experimentally (Laurent 1996; Patel et al. 2009).

We thus refer to this average excitatory neuron voltage as

the LFP of the simulation. We compute the PSD as the

magnitude of the discrete Fourier transform calculated

using MATLAB’s built-in fft routine (which is based on the

FFTW algorithm in Frigo and Johnson 1998) over a given

time window of the LFP data.

Table 1 Parameters used for most figures

Parameter Figure Number

1a, 1b, 2, 3, 4, 8 1c, 6, 7, 10

NE 75 –

NI 25 –

m 4000 Hz –

fEm 8 0.3

fIm 0 0.024

modor 6000 Hz –

f odorE modor 6.9 –

f odorI modor 6.6 –

rE 1 ms 4.5 ms

rF 4 ms 18 ms

qS 420 ms 420 ms

rS 800 ms 800 ms

SEE 6 0.363

SEI 23.62 0.45

SFE 43.75 5.0

SFI 8.75 0.003

SSE 78.75 5.0

SSI 15.75 0.003

pEE 0.13 –

pEI 0.07 –

pFE 0.15 –

pFI 0.72 –

pSE 0.15y –

pSI 0.72y –

Some parameters do not pertain to all simulations (e.g. m for Fig. 1c)
and are therefore left without a value in the table. The number

denoted by y, indicates the same network connections were used for

both fast and slow synapses, i.e., the fast and slow inhibitory receptors

are taken to be colocalized. Note coupling constants should not be

directly compared between the two columns because the FR model

(Eq. 4) assumes all-to-all coupling while the I&F model (Eq. (2)) has

connectivity generated by the indicated probabilities
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We compute the amount of power in a given frequency

band as a function of time by applying a moving time

window to the LFP data. Specifically, we move a 300 ms

time window in increments of 50 ms over the LFP and

extract the amount of power in three dominant frequency

bands: 6 to 14 Hz, 16 to 24 Hz, and 26 to 34 Hz, by

integrating the PSD over each of these frequency bands.

We then average this total power of the PSD within each

frequency band over 20 simulations of the dynamics. The

error of this sample mean is computed as the sample

standard deviation divided by the square-root of the num-

ber of simulations,
ffiffiffiffiffi
20

p
in this case. In each simulation, we

vary the realization of the external drive to the network but

hold the network architecture fixed.

Binding index (BI)

The value of the BI, introduced in ref. Patel et al. (2013), is

used to determine odor-specific triplets of excitatory neu-

rons (PNs) that with high probability fire together during

each cycle in the initial oscillatory phase of the network

dynamics. The binding index is defined as

BIi;j;k ¼ minðPj;kji;Pi;jjk;Pi;kjjÞ;

where Pj;kji is the conditional probability that excitatory

neurons j and k spike, given that excitatory neuron i spikes.

Numerically, Pj;kji is calculated by creating a 20 ms win-

dow around each spike time of neuron i and determining if

neurons j and k both spike within that window. The number

of times this occurs divided by the total number of times

neuron i spikes is our estimate of the conditional proba-

bility Pj;kji. For a given i, j, k triplet (order non-specific), if

BIi;j;k � b, where b is a specified threshold, then we con-

sider the triplet temporally bound.

Principal component analysis (PCA)

We use PCA (Jolliffe 2002) to visualize the dynamics of

the entire network in a reduced three-dimensional space,

highlighting the odor-specific trajectory that the I&F

dynamics traverse after odor presentation. (Cf. refs. Mazor

and Laurent (2005) and Patel et al. (2009).) For a fixed

network structure, we created three odors by stimulating

three different subsets of 1/3 of the neurons. For each odor,

we ran 50 realizations of the dynamics and sorted the firing

times of each of the PNs into 50 ms bins. We applied

MATLAB’s PCA function to this trial-averaged matrix of

spike-count data to extract the first three dominant

components.

Firing-rate model

To better understand the mathematical structure underlying

the dynamics of the I&F model, we derive a firing-rate

(FR) model for the idealized case of an all-to-all coupled

AL neuronal network driven by the ‘‘white-odor’’ stimulus,

i.e., a stimulus that drives all the neurons at an equal rate

and with equal strength. In this FR model, we replace the

detailed neuronal voltages and spike trains generated using

the I&F model by the time-dependent neuronal firing rates,

mEðtÞ and mIðtÞ, for the typical excitatory and inhibitory

neurons, respectively. Thus, we reduce the dynamics to

those of two populations of statistically equivalent neurons,

such that all the neurons in a population are equally driven

when an odor is presented, i.e., there is a uniform external-

drive term for each population in the FR model.

The FR model becomes a closed set of equations via the

realization that the population firing rates, mEðtÞ and mIðtÞ,
drive the typical neuronal conductances, gEQðtÞ, gFQðtÞ and

gSQðtÞ, where Q ¼ E or I stands for the excitatory or inhi-

bitory population, respectively, while these conductances

feed back into the equations for the firing rates. The FR

model can be reduced further by observing that the con-

ductances gPE and gPI , P ¼ E, F, or S, are not independent,

but are instead connected via the relations

gEQ ¼ fQmþ SEQg
E; ð3aÞ

gFQ ¼ SFQg
F ; ð3bÞ

gSQ ¼ SSQg
S; ð3cÞ

hQ ¼ SSQh; ð3dÞ

in which we refer to the common quantities gE, gF , and gS

as the effective conductance variables. The resulting FR

model is a system describing these effective conductances,

given by the equations

rE
dgE

dt
¼ �gE þ mEðtÞ; ð4aÞ

rF
dgF

dt
¼ �gF þ mIðtÞ; ð4bÞ

rS
dgS

dt
¼ �gS þ h; ð4cÞ

qS
dh

dt
¼ �hþ mIðtÞ; ð4dÞ

where the firing rates mE and mI are expressed in terms of

the effective conductances as

mQðtÞ ¼
1þ fQmþ SEQg

E þ SFQg
F þ SSQg

S

s ln MQ½ � ; ð5aÞ
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MQ ¼
fQmðeE � eRÞ þ

P
P2fE;F;Sg S

P
Qg

PðeP � eRÞ

DeR þ fQmDeE þ
P

P2fE;F;Sg S
P
Qg

PDeP
n oþ ; ð5bÞ

with Q ¼ E or I. Here, fxgþ ¼ x if x[ 0, and zero

otherwise, and

DeZ ¼ eZ � VT for Z 2 fR;E;F; Sg: ð6Þ

The conditions for which the firing rates in Eqs. (5) do not

vanish are given by the inequalitites

DeR þ fQmDeE þ
X

P2fE;F;Sg
SPQg

PDeP [ 0; Q ¼ E or I:

ð7Þ

When the denominator of the expression MQ in Eq. (5b)

vanishes, the corresponding firing rate, mQðtÞ in Eq. (5a), is
set to zero.

Results

We first demonstrate that our I&F model is capable of

accurately capturing the firing patterns observed in insect

olfaction (Laurent 1996; Mazor and Laurent 2005; Frie-

drich and Laurent 2001). In ‘‘Odor Response and Dis-

criminability’’ section we show our model network’s

ability to discriminate among different odors in a manner

consistent with the two neural-code mechanisms conjec-

tured in detailed models (Bazhenov et al. 2001b, a; Patel

et al. 2009, 2013), as discussed in the Introduction. Then,

in ‘‘Idealizations of I&F Model’’ section, we focus on the

robust underlying feature of the dynamics — a three-stage

progression of activity characterized by 20 Hz oscillations,

followed by quiescence, and then followed by slow pat-

terning, being preserved through a sequence of idealiza-

tions ending with an all-to-all coupled I&F network driven

by a ‘‘white-odor’’ stimulus. Finally, in ‘‘Bifurcation

Mechanism’’ section, we show that the FR model resulting

from coarse graining this last, most idealized I&F network

model still preserves the three-stage dynamical progres-

sion. Moreover, we find this progression in the FR model to

be the result of an underlying SNIC bifurcation.

Odor response and discriminability

While the I&F model does not represent the true time

course of the inhibitory calcium spikes, it is nonetheless

designed to accurately capture the dynamics of the network

conductances and firing patterns of the inhibitory neurons.

Therefore, as we demonstrate computationally in this sec-

tion, it indeed captures the network firing-pattern behavior

observed experimentally in insect olfaction (Laurent 1996;

Mazor and Laurent 2005). In particular, our model exci-

tatory and fast-inhibitory currents produce the initial 20 Hz

oscillations in the local field potential. During this initial

oscillatory stage, we also find odor-specific, temporally-

bound PNs, which may be used in odor identification (Patel

et al. 2013). These initial dynamics are followed by a short

quiescent period, and that is followed by slow, odor-

specific patterning of the neuronal firing rates (Bazhenov

et al. 2001a, b; Patel et al. 2009). Both of these last two

stages of dynamics are at least in part induced by the

model’s slow inhibitory currents.

Our model reproduces these three stages as shown in the

the raster plot of Fig. 1a when presented with an odor at

time 500 ms. When an odor is presented to a subset of

neurons in the model, their voltages are driven towards

threshold, with the bulk of the excitatory neurons reaching

it slightly ahead of the bulk of the inhibitory neurons when

the stimulus drives the excitatory neurons harder than the

inhibitory neurons (f odorE [ f odorI ), and also because the time

scale of the excitatory response is faster than that of the

inhibitory response (rE\rF). The initial excitatory firing

recruits other neurons into a synchronous firing event, in

which the inhibitory neurons fire, shutting down for a time

all neuronal activity due to the elevated values of the fast

inhibitory conductances before the firing resumes again.

This is the basic principle underlying the pyramidal-in-

terneuronal network gamma (PING) like oscillation

(Whittington et al. 2000; Borgers and Kopell 2005).
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Fig. 1 a Raster plot of excitatory (red, index 1 ! NE ¼ 75) and

inhibitory (blue, index 76 ! NE þ NI ¼ 100) populations. b The

average per-neuron firing rate over 10 ms bins of the firing pattern in

panel a for the excitatory (red solid line) and inhibitory (blue dotted

line) populations. c The evolution of the FR model in Eqs. (4) and (5),

showing mE (red solid line) for the excitatory and mI (blue dotted

line) for the inhibitory population firing rate. Parameters for all panels

can be found in Table 1
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While these oscillations take place, the slow inhibitory

conductances are also building up. However, their slowly-

rising nature results in the effects of the slow inhibition

building up over several synchronous PING-like firing

events. At the conclusion of that build-up, almost all of the

firing is shut down by the slow inhibitory currents. Sub-

sequently, as the excitatory membrane potentials recover,

the network settles into a new regime of firing, which

involves all three conductances. The three main stages of

the above I&F model dynamics are similarly captured by

the FR model in Eqs. (4) and (5), as shown in Fig. 1c.

The synchronization of network oscillations due to the

interaction of the excitation and fast inhibition, and the

subsequent desynchronization due to the interaction

between the fast excitation and slow inhibition, were

already studied using the quadratic I&F model in ref.

Martinez and Montejo (2008). Here, we use our I&F model

network to also reproduce the types of network dynamics

conjectured to underlie the two odor-encoding mechanisms

described in the Introduction (Bazhenov et al. 2001a, b;

Stopfer et al. 2003; Patel et al. 2009, 2013), and exhibit

odor discriminability.

Thus, to further explore the 20 Hz oscillations, at least

initially exhibited by both our I&F and FR models, we

compute the I&F network LFP as the average voltage

across all excitatory neurons, shown in Fig. 2a for the first

500 ms of time after odor onset. The PSD of this 500 ms

LFP window is shown in Fig. 2b, exhibiting the peak fre-

quency near 20 Hz. In Fig. 2c we show how the power in

this 20 Hz peak changes as the dynamics evolve in time.

As described in ‘‘Diagnostic Tools’’ section, we move a

300 ms time window across the LFP in 50 ms steps,

computing the PSD of the 300 ms long window at each

step. We integrate the power within each prescribed fre-

quency band, 6–14 Hz, 16–24 Hz, and 26–34 Hz, for each

window location. Finally, we average this power over 20

realizations and plot the average PSD power versus the

center of the time window in which it was calculated,

shown in Fig. 2c. The results indicate that the 20 Hz net-

work oscillations are strongest during the initial 0.5 sec-

onds of odor presentation, followed by a clear decrease in

all activity between 1 and 2 seconds, before activity,

characterized by oscillations in the LFP with a broad peak

around 10 Hz in the associated PSD, resumes.

Within the initial oscillatory stage, we find temporally-

bound neurons specific to the set of odor-driven neurons.

Such bound neurons have been proposed in ref. Patel et al.

(2013) as a possible mechanism of encoding the odor. The

temporally-bound neurons fire together with high proba-

bility during each oscillation cycle. To identify these

neurons, following ref. Patel et al. (2013), we compute the

binding index (BI), a measure for triplets of excitatory

neurons that equals 1 if these neurons always fire together

and never independently, and zero if they always fire

independently. We classify temporally-bound neurons as

those belonging to triplets with BIi;j;k � b, where b ¼ 0:65.

This value is chosen in agreement with the results in ref.

Patel et al. (2013).

In Fig. 3, we display the raster plots of the network

response to three different model odor stimuli, each rep-

resented by the stimulation of a different 1/3 of the neurons

in the network. The spike times of the bound neurons are

indicated by the colored symbols within these raster plots,

while the black dots represent the spike times of the

unbound neurons. Of particular interest are the neurons that

participate in the collective oscillations and become tem-

porally-bound due to the network dynamics and are not

driven directly by the stimuli arriving from the ORNs, as

these are believed to be involved in the early recognition of

the odor (Patel et al. 2013). They are indicated by open

symbols. The neurons that participate in the collective

oscillations due to the direct stimulus arriving from the

excited ORNs are indicated by stars.

From Fig. 3, we can glean the data displayed in Table 2.

These data show that each model odor in our network

induces the oscillations of about 30 temporally-bound

model neurons that are not directly driven by the ORNs, of

which about a half are shared with another odor and the

other half are not. Thus sufficient numbers of such neurons

exist so that they can be used to discriminate between pairs

of odors. Moreover, for each odor, at least one indirectly-

driven, temporally-bound neuron belongs to the set of the

temporally-bound neurons oscillating due to that particular

odor and no other, and is thus associated uniquely to that

odor. This shows that the set of the temporally-bound

neurons for each odor in our model also provides a unique

odor identifier. (The robustness of the binding-index-

threshold choice in light of these results, in particular, the

robustness of our choice of b ¼ 0:65, is discussed in

‘‘Appendix 2’’).

At longer time scales, after the initial oscillatory phase,

our I&F model also reproduces the experimental results in

ref. Mazor and Laurent (2005), in that our model shows

slow neuronal firing-rate patterns that differ among pre-

sentations of different odors (Bazhenov et al. 2001b, a;

Patel et al. 2009). A means of visualizing the different

network responses to different odors is to plot reduced-

dimensional firing-rate trajectories of the network. First,

the single-neuron simulation-averaged spike counts in

50 ms bins, shown in Fig. 4a–c for the three different odors

also used to produce Fig. 3, already display differences.

These differences are enhanced by considering the PCA

decomposition of the high-dimensional firing-rate trajec-

tory for the entire set of excitatory neurons in the network.

Using the binned spike counts of these excitatory model
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neurons, averaged over 50 simulations, as the excitatory

network trajectory, we see in Fig. 4d–f that the first three

components of the PCA decomposition already discrimi-

nate among different odors. These reduced trajectories

follow different transients to a stationary point over the first

second of odor presentation. The trajectories then remain

near this stationary point, corresponding to the lull in firing,

until about 1.75 seconds after the odor onset. Then, the

stationary point begins to drift until, at 3 seconds, the odor

is turned off and the trajectories return directly to zero (not

shown). The fact that these firing-rate trajectories dis-

criminate among odors along their entire time course

highlights the contribution of the quiescent period and slow

patterning to the odor discrimination at times between

about 1000 ms and 4000 ms (Mazor and Laurent 2005;

Bazhenov et al. 2001b, a; Patel et al. 2009).

Idealizations of I&F model

We now turn our focus away from the details of the

response to, and discrimination of, specific odors, and

instead focus on the progression of the dynamics through

three stages of behavior: 20 Hz oscillations, followed by

quiescence, and then followed by slow patterning. We are

interested in determining if there is a simple, robust

structure underlying this progression, drawing from the

observation that the above three stages appear robust under

the presentations of different odors and their different

realizations. Here, we first test the robustness of this neu-

ronal activity by making the I&F model progressively more

idealized through the removal of the structure in the net-

work drive and architecture. We find that these idealiza-

tions still maintain the three-stage dynamical scenario in

the I&F model network. Thus, we are led to believe that

there exists a robust underlying network mechanism

responsible for this scenario, and that a robust bifurcation

structure can be employed to describe this mechanism.

Raster plots in the left column of Fig. 5 show network

activity for different variants of our I&F model network. In

each case, we consider an increasingly idealized version of

the model and bring its structure closer to what can be

coarse grained to the FR model, whose dynamics are dis-

cussed below in ‘‘Bifurcation Mechanism’’ section. In

contrast to the case shown in Figs. 1 and 2, in which the

network is sparse and the stimulus is presented to a subset

of the neurons, in the cases shown in Fig. 5, all neurons

receive statistically equivalent, ‘‘white odor’’ input. (The

reason we call this odor ‘‘white’’ is because it contains all

possible odors in the same way as white noise contains all

frequencies.) Presenting a white odor eliminates the ques-

tion of discrimination among odors, and allows the entire

network to participate in each of the initial 20 Hz syn-

chronous firing events. As listed in Table 3, the network in

Fig. 5a is more fluctuation-driven (m ¼ 6 kHz) than the

network in Fig. 5b, which is more mean-driven (m ¼ 12

kHz), while both are still sparse with the same connectivity

architecture. In other words, the (uniform Poisson) afferent

firing rate to the neurons in the latter network is increased

as compared to that in the former network, whereas the

strengths of the synapses, f odorE or f odorI , transmitting the

stimulus from the olfactory receptor neurons in the form of

the external drive to the AL neurons, are decreased, so that

the products of the rates and strengths remain constant. (In

this way, the statistical effect of the drive becomes closer to

that of the constant drive employed in the FR model.) We

see that, with each of these two idealizations, namely,

dropping the inhomogeneity and reducing the fluctuations

in the drive, the regularity of the firing events increases and

Table 2 Quantities related to

temporally-bound, indirectly-

driven neurons during initial

network oscillations

characterized by a Binding

Index threshold of b ¼ 0:65

Number of bound, indirectly-driven neurons present:

Odor 1 35

Odor 2 31

Odor 3 33

Number of shared bound, indirectly-driven neurons between an odor pair:

Odor 1 and Odor 2 15

Odor 1 and Odor 3 15

Odor 2 and Odor 3 15

Percentage of unique bound, indirectly-driven neurons for each odor in a pair-wise comparison:

Odor 1 and Odor 2 57.1% for Odor 1; 51.6% for Odor 2

Odor 1 and Odor 3 57.1% for Odor 1; 54.5% for Odor 3

Odor 2 and Odor 3 51.6% for Odor 2; 54.5% for Odor 3

Neuron numbers for bound, indirectly-driven neurons present in only one of the three odors:

Odor 1 #33, 41, 43, 45 and 59

Odor 2 #73

Odor 3 #2, 3 and 14
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a larger portion of the network participates in every

oscillation cycle. The network in Fig. 5c is all-to-all con-

nected and mean-driven, and so the most idealized. It

produces the clearest oscillations, with no neurons firing

outside of the synchronous events, and will be used for

coarse-graining to the FR model.

The discussion in the previous paragraph describes the

sequence of four idealizations of both the network archi-

tecture and the form of the odor drive, which are reflected

in the network dynamics depicted in Figs. 1, 2, and 5:

sparse connectivity and ORN drive stimulating a specific

subset of neurons; sparse connectivity and equally strong

(white-odor), fluctuation-driven input to all neurons, sparse

connectivity and white-odor, mean-driven input to all

neurons; and all-to-all connectivity and white-odor, mean-

driven input to all neurons. Despite the clear differences in

network dynamics among these four types of networks with

increasingly idealized properties, as displayed in Fig. 1 and

the left column of 5, the three prominent stages of network

dynamics remain, as illustrated in the corresponding

moving-window-averaged PSD plots, shown in the right

columns of Figs. 2 and 5. In all the four cases shown in

these figures, the power in the frequency interval centered

at 20 Hz is strongest during the first 0.5 seconds of odor

presentation. The second stage of suppressed activity is

seen in all cases beginning around 1 second into the sim-

ulation. By 2 to 3 seconds, the third stage of activity,

characterized by slower oscillations, emerges. During this

stage, the moving-window-averaged PSD plots indicate a

shift towards power in the frequency interval centered at

10 Hz, with the average values of the PSD centered at

20 Hz being lower than those immediately after odor onset.

The results obtained in this section clearly indicate that

the three-stage dynamical scenario consisting of � 20 Hz

oscillations, quiescence, and slower oscillations or asyn-

chrony represents a robust feature of the AL network

dynamics and persists under a sequence of increasing

idealizations. As this scenario is also present in the results

of detailed simulations using Hodgkin-Huxley type models

(Bazhenov et al. 2001a, b; Patel et al. 2009, 2013), we

conclude that it is generated by an underlying robust net-

work mechanism. We conjecture this mechanism to be yet

more basic, and stem solely from the interaction among the

fast excitation and fast and slow inhibition in the AL net-

work. Therefore, in the next section, we move from our

most idealized, all-to-all connected I&F network model,

driven by a ‘‘white odor’’ stimulus, to a minimalistic FR

model that only considers this interaction in the context of

two homogeneous neuronal populations, excitatory and

inhibitory. Using this FR model, we are able to describe the

underlying bifurcation structure associated with the robust

dynamical scenario established in this section.

Bifurcation mechanism

In this section, we describe how the three dynamical stages

of time evolution exhibited by the results of numerical

simulations displayed in Fig. 1—oscillations followed by

quiescence, followed by slower oscillations—can be

explained by a bifurcation structure that follows the

amount of slow inhibitory conductance present in the FR

model in Eqs. (4) and (5). We have justified the relevance

of this FR model as a coarse-grained version of the I&F

model by the gradual idealization of cases in Figs. 1, 2,

and 5, where we show that the three stages of the dynamics

persist as the I&F network model transitions through the

parameter regimes used in the heuristic derivation of the

FR model. By comparing the dynamics of the effective fast

conductances, gE and gF , for fixed values of the effective

slow conductance, gS, to those of the intact FR model in

Eqs. (4) and (5), where all three effective conductances are

time-dependent, we show in this section that the underlying

Table 3 Parameters used for raster plots in Fig. 5

Parameter Raster Plot Panel

a b c

NE 75 75 75

NI 25 25 25

m 6 kHz 12 kHz 12 kHz

fEm 13.8 13.8 15

fIm 11.4 10.32 12

rE 1 ms 1 ms 1 ms

rF 4 ms 4 ms 4 ms

qS 500 ms 500 ms 500 ms

rS 600 ms 600 ms 600 ms

SEE=NE 0.06 0.1 0.1

SEI =NE 0.2 0.3 0.3

SFE=NI 1.5 0.4 0.2

SFI =NI 0.35 2.0 1.0

SSE=NI 3.0 1.2 0.07

SSI =NI 0.7 6.0 0.35

pEE 0.1 0.1 1.0

pEI 0.1 0.1 1.0

pFE 0.15 0.15 1.0

pFI 0.25 0.25 1.0

pSE 0.15 0.15 1.0

pSI 0.25 0.25 1.0

In all panels, all neurons receive the odor input at the given rate, and

no background stimulus. The same network structure is utilized for

both the slow and fast inhibitory connections; the corresponding

synaptic receptors are colocalized
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bifurcation structure for these three stages is a slow passage

through a SNIC bifurcation (Strogatz 2000; Izhikevich

2007; Ermentrout and Kopell 1986), with the bifurcation

parameter gS.

Oscillations in the FR model in Eqs. (4) and (5) appear

to result from the presence of a modulated limit-cycle-like

object in the gE-gF variables. An attracting limit cycle can

indeed be found numerically by holding the slow effective

conductance, gS, constant (thus eliminating the need for the

auxiliary variable h), and evolving the remaining two-di-

mensional system. We computed such limit cycles for fixed

values of gS lying in an interval, and they are shown in

Fig. 6 as the colored trajectories. These limit-cycle tra-

jectories form a cylindrical object which exists until the

bifurcation point in gS is reached, and then the two-di-

mensional dynamics change to approaching a stable fixed

point. In Fig. 6, overlaid on this cylindrical object is a

trajectory of the intact FR model given by Eqs. (4) and (5)

of the same type as the trajectory whose dynamics are

shown in Fig. 1c. As the slow effective conductance vari-

able, gS, increases after the stimulus onset, this trajectory

moves up along the set of limit cycles until it passes the

bifurcation point. All the firing is suppressed while this

trajectory remains near the line gE ¼ gF ¼ 0. At this time,

the slow effective conductance variable, gS, starts to decay,

and this decay moves the system back towards and past the

bifurcation point. The trajectory settles near a limit cycle

whose location is controlled by small changes in the value

of gS.

We further investigate the bifurcation with the slow

effective conductance variable, gS, held constant, which

reduces the four-dimensional FR model in Eqs. (4) and (5)

to a two-dimensional system for the fast effective con-

ductances, gE and gF , with the slow effective conductance,

gS, as a parameter. Different dynamical regimes of this
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Fig. 3 Raster plots of the excitatory neurons in a network to which

three different odors are presented, generated by stimulating a

different 1/3 of the neurons in the network. Temporally-bound

neurons are those with binding index, BIi;j;k � 0:65. In all panels,

black dots represent unbound neurons, stars represent temporally-

bound neurons directly driven by the odor, and open symbols

represent temporally bound neurons not directly driven by the odor.

Parameters for all panels are found in Table 1
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Fig. 2 a The network LFP over a window of 500 ms starting from

odor onset. b The PSD for the time period indicated in a, showing a

peak near 20 Hz. c The window-averaged value of the PSD within the

ranges of 6 to 14 Hz, 16 to 24 Hz, and 26 to 34 Hz, averaged over 20

simulations, as a time window of length 300 ms is moved across the

LFP time course in 50 ms steps. The shaded region indicates the error

of the presented sample mean. The parameters used to generate the

LFP are the same as those in Fig. 1a, which can be found in Table 1
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two-dimensional system are summarized in the phase

portraits shown in Fig. 7.

Figure 7a shows the attracting limit cycle surrounding a

source, with no other fixed point in the first quadrant of the

gE-gF-plane of the fast effective conductances. (Note that

the first quadrant in the gE-gF-plane minus the source can

easily be shown to be a trapping region, within which at

least one limit cycle must exist by the Poincaré-Bendixson

theorem.) As the slow effective conductance, gS, increases,

this limit cycle approaches both the gE and gF axes. As

shown in Fig. 7b, the limit cycle first reaches these axes at

the origin, and its dynamics stop there. The origin becomes

a degenerate saddle point, with a homoclinic orbit con-

necting this point to itself, which replaces the limit cycle.

When gS is increased further, we see in Fig. 7c that this

degenerate saddle point becomes a true saddle, moves

away from the origin along the positive gE-axis, and the

origin becomes a sink. A pair of heteroclinic orbits connect

the newly-created saddle and sink, lying close to where

pieces of the limit cycle existed before the bifurcation.

Thus, we see that the reduced, two-dimensional FR model

undergoes a SNIC bifurcation, with increasing frozen

effective slow conductance, gS, as the bifurcation

parameter.

In ‘‘Appendix 3’’, we verify the existence of a unique

limit cycle in gE-gF-plane for the linearized version of

Eq. (4), using an alternative, semi-analytical, approach.

The above-described bifurcation structure explains the

transition of the I&F model dynamics through the three

stages of evolution described in ‘‘Odor Response and

Discriminability’’ section. To demonstrate this claim, in the

I&F network, we compute the trajectory of network-aver-

aged effective conductances based on definitions analogous

to those given by Eqs. (3), and show that it closely

resembles the corresponding dynamical trajectory of the

FR network. Specifically, we consider the quantities
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Fig. 4 Network dynamics

corresponding to the

presentation of three different

odors, generated by stimulating

a different 1/3 of the neurons in

the network. a–c The averaged

spike count of 50 simulations

binned into 50 ms bins for three

different excitatory neurons

when presented with the

different odors. d–f The first 3

components of PCA

decomposition for the

presentation of the three

different odors for the length of

time in milliseconds since odor

onset indicated. Computed

using parameters in Table 1
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�gE ¼ 1

N

XN

i¼1

gEi � fim� f odori modor

SEi p
E
i

; ð8aÞ

�gF ¼ 1

N

XN

i¼1

gFi
SFi p

F
i

; ð8bÞ

�gS ¼ 1

N

XN

i¼1

gSi
SSi p

S
i

; ð8cÞ

where the connection probabilities, pEi , p
F
i , and pSi , and

coupling strengths, SEi , S
F
i , and SSi , are described in the

paragraphs below Eqs. (2). (They are also the same as in

assumption (iii) in ‘‘Appendix 1’’.) The trajectory of these

network-averaged conductance variables, generated using

the I&F model dynamics shown in Fig. 1a (with parame-

ters given in Table 1), is plotted in Fig. 8. This trajectory

highlights how the three-stage dynamical scenario in

Fig. 1a can be viewed as underpinned by a slow passage

through the SNIC bifurcation described above.

As we see in Fig. 8, initially, the value of the slow

inhibitory network-averaged conductance, �gS, is near zero,

while the values of the excitatory and fast inhibitory net-

work-averaged conductances, �gE and �gF , respectively,

change in a cyclical manner. This behavior roughly cor-

responds to the initial oscillatory dynamics of the FR

model, during which the slow inhibitory effective con-

ductance has a slow rise time and the system operates in a

regime corresponding to the presence of the limit cycle in

the fast-variable system with frozen slow effective con-

ductance, gS. Then, the slow network-averaged conduc-

tance rises and the activity of the fast network-averaged

conductances decreases as the trajectory passes near the

bifurcation point corresponding to the bifurcation point in

the FR model and the network firing is greatly reduced,

similarly to the corresponding FR model dynamics. Sub-

sequently, the slow network-averaged inhibitory conduc-

tance, �gS, decreases and the activity of the fast network-

averaged conductances, �gE and �gF , again increases, but the

values of the later two remain below their initial activity
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(c)

(a)

(b)

near 30Hz
near 20Hz
near 10Hz

Fig. 5 Raster plots (first

column) and the total power

near 10, 20, and 30 Hz for a

moving time-window length of

300 ms over the LFP (second

column), displaying the three

stages of network behavior for

various types of network

architecture, receptor locations,

stimulus structure, and stimulus-

drive properties. The shaded

region indicates the error of the

presented sample mean. a
Sparse excitatory and inhibitory

network connections. All

neurons driven equally by the

odor. b Sparse excitatory and

inhibitory network connections

and more mean-driven input to

all neurons. c An all-to-all

connected network. Computed

using parameters in Table 3

0
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0.2

0.004

0.006

0.008

gS

0.01

gF

0.1 0.3

gE

0.20.10 0

Fig. 6 The colored tube depicts a collection of limit cycles in the gE-

gF-plane of the nonlinear system in Eqs. (4) and (5) with gS held

constant, ranging from 0 to 0.07. The solid black line represents the

full evolution of the system given by Eqs. (4) and (5). Parameters are

listed in Table 1
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levels. We also see that the trajectory in Fig. 8 is subject to

fluctuations present in the simulations, which are absent

from the FR model.

Note that in the two-dimensional model in which the

slow effective conductance, gS, is held frozen as a

parameter, increasing the constant gS value has the same

effect as decreasing the values of the external drives fEm
and fIm. The suppressed firing state is equivalent to the

system receiving little or no external drive, as one might

expect.

Discussion

In summary, for the early olfactory system dynamics in the

locust, we have identified a plausible basic underlying

network mechanism, which is the interaction among fast

excitation and fast and slow inhibition. We have found a

highly idealized description of this interaction consisting of

a four-component, slow–fast FR model, which reproduces

the neuronal network dynamics corresponding to odor

detection as a slow passage through a SNIC bifurcation.

The geometric framework on which this bifurcation takes

place consists of a cylinder of modulated fast limit cycles,

which, after the bifurcation, turn into attracting modulated

equilibria. The modulation consists of a drift along the

slow conductances. By tracing, during the simulations of

the least-idealized I&F network discussed in ‘‘Odor

Response and Discriminability’’ section, the collective,

network-wide conductance variables analogous to the

effective conductances we use in the FR model, we pro-

vide, in Fig. 8, strong numerical evidence for the identified

network mechanism and the associated bifurcation

structure.

As stated in the Introduction, we are primarily interested

in the basic mechanism governing the dynamics of early

olfactory pathways. Specifically, we would like to under-

stand whether, underneath the structural differences of

early olfactory systems among species, there lie in fact

some similarities that can be uncovered by model simula-

tion, reduction, and theoretical analysis. The details of the

network connectivity architecture in the antennal lobe (AL)

of the frequently-studied insect species mentioned in the
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Fig. 7 For the nonlinear system in Eqs. (4) and (5) with gS held

constant, the phase-portraits are shown for three values of constant gS.
a Before the bifurcation point, b at the bifurcation point and c after

the bifurcation point. The limit cycle in panel a has turned into a pair

of heteroclinic orbits between the saddle and the sink as shown in

panel c. Parameters in Table 1

Fig. 8 Similarly to Fig. 6, we plot the time evolution of the network-

averaged effective conductances �gE; �gF , and �gS given by Eqs. (8) for

the N ¼ 100 neurons in the I&F model, simulated via Eqs. (1)

and (2). Parameters in Table 1. Red: initial oscillations after odor

onset, 500 ms to 700 ms, Blue: quiescent period, 700 ms to 1900 ms,

Yellow: slow oscillations, after 1900 ms
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Introduction increase in complexity from the locust

(MacLeod and Laurent 1996) through the fruit fly (Ng

et al. 2002; Tanaka et al. 2009) and sphynx moth (Hein-

bockel et al. 1998) to the honey bee (Carcaud et al. 2016;

Barbara et al. 2005). For example, glomeruli, densely

connected subnetworks of neurons that receive input from

one or a very small number of ORN types, feature much

more prominently in these other insects, and so their

existence and role cannot effectively be neglected in the

AL modeling as it has been for the locust (Gascuel and

Masson 1991; Kay and Stopfer 2006). Their inclusion

brings additional structure to the model network architec-

ture, perhaps one resembling ‘‘small world’’ connectivity

(Watts and Strogatz 1998), with the glomeruli modeled by

densely connected clusters that are loosely connected to

one-another (Rangan 2012; Lei et al. 2016). Yet further

degrees of network complexity arise from sources such as

dual inhibitory networks (GABA and glutamatergic) and

segregated antennal nerve tracts in the honey bee (Carcaud

et al. 2016) and cockroach (Watanabe et al. 2017), or

separate pathways for pheromone detection in the sphinx

moth (Lei et al. 2004). Correspondingly, the AL network

oscillations seem the least prominent in the fruit fly (Turner

et al. 2008; Tanaka et al. 2009) and are more prominents in

the locust (Laurent 1996), honey bee (Stopfer et al. 1997),

and sphinx moth (Heinbockel et al. 1998). These differ-

ences in details notwithstanding, developing new models

for different insects and coarse graining them (or some

existing ones (Rangan 2012; Lei et al. 2016)), should

reveal a hierarchy of idealizations, in which the common

structural underpinnings should, as we hope, be easy to

discern, hypothesize, and single out for their robustness.

On a yet broader scale, again as mentioned in the

Introduction, early olfaction is similar even across different

phyla (Hildebrand and Shepherd 1997). For example,

glomeruli (Hildebrand and Shepherd 1997; Kay and

Stopfer 2006) and collective network oscillations are pre-

sent in the dynamics within early olfaction pathways in

vertebrates and molluscs (Kashiwadani et al. 1999; Rojas-

Lı́bano and Kay 2008; Kay et al. 2009; Kay 2015) and so it

would be of interest to explore further parallels between the

mechanisms and structures we describe and propose here

and their possible analogs present in the olfactory systems

in other phyla. Idealized modeling of olfactory systems

across animal phyla, again followed by coarse graining,

may thus enable us to formulate hypotheses of possible yet

more general common structural underpinnings and plau-

sible physiological mechanisms of early olfaction that

would supplement the wealth of common features brought

out by the experimental data. The interplay among the fast

and slow scales in the dynamics, as well as the onset and

extinction of synchronous oscillations, point to a possible

underlying idealized bifurcation structure consisting of

slowly-modulated periodic solutions and fixed points, that

is, a structure closely related to the one described in this

paper. Investigating its possible presence will be the task of

future work.
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Appendix

Appendix 1: Firing-rate model derivation

In this appendix, we present the details of obtaining the FR

model, Eqs. (4) and (5) and the inequality (7) presented in

‘‘Firing-Rate Model’’ section, starting from the I&F model

in Eqs. (1) and (2) driven by a ‘‘white-odor’’ stimulus. We,

in fact, derive the FR model for a slightly more general

connectivity architecture than the all-to-all coupled net-

work, discussed in ‘‘Firing-Rate Model’’ section, namely,

unstructured, uniform random connectivity as assumed for

the most general version of the I&F model in ‘‘Integrate-

and-Fire Model’’ section.

We heuristically derive the FR model by employing the

following assumptions:

(i) We assume that the excitatory and fast inhibitory

conductances rise instantaneously compared to the

slow inhibitory conductance.

(ii) We consider the mean-driven regime, in which

both network-generated and external-drive spikes
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are small and arrive at high rates. Sums over

incoming spike trains in Eqs. (2) are thus replaced

by continuous functions representing the incoming

firing rates, since they produce the same conduc-

tance dynamics.

(iii) Individual synaptic connections are replaced by

the corresponding connection probabilities, pEi , p
F
i ,

and pSi , where each probability takes one of the

corresponding two values, pPQ, P ¼ E, F, and S,

Q ¼ E or I, depending on the ith neuron’s type, as

described in the second paragraph below Eqs. (2).

In this way, firing rates are scaled by the average

number of synaptic connections. Together with the

coupling strengths, SEi , SFi , and SSi , where each

coupling strength likewise takes one of the corre-

sponding two values, SPQ, P ¼ E, F, and S, Q ¼ E

or I, the network-drive terms in Eqs. (2) become

SEi p
E
i mEðtÞ, SFi p

F
i mIðtÞ, and SSi p

S
i mIðtÞ,

respectively.

(iv) We assume that the per-neuron firing rates, mEðtÞ
and mIðtÞ, vary slowly in comparison to changes in

the membrane potential and further assume that

the total conductance is high, allowing us to treat

the voltage in Eq. (1) as a constant coefficient

differential equation. We can then directly solve

for mEðtÞ and mIðtÞ as the multiplicative inverses

of the time for the corresponding voltage solutions

to reach threshold from reset.

(v) We neglect the refractory period.

Using Assumption (i), we can adiabatically eliminate the

auxiliary variables hEi ðtÞ and hFi ðtÞ in Eqs. (2b) and (2c),

allowing the incoming spikes to cause instantaneous jumps

in the fast conductances, gEi ðtÞ and gFi ðtÞ, respectively. In
other words, we describe the dynamics of the fast con-

ductance variables themselves using only first-order

kinetics in contrast to Eqs. (2) in the I&F model which use

second-order kinetics. We thus replace Eqs. (2) with the

equations

rE
dgEi ðtÞ
dt

¼ �gEi ðtÞ þ f odori

X

l

dðt � silÞ þ fi
X

k

dðt � cikÞ

þ SEi
NE

X

j6¼i

pEji
X

l

dðt � tjlÞ;

ð9aÞ

rF
dgFi ðtÞ
dt

¼ �gFi ðtÞ þ
SFi
NI

X

j6¼i

pFji
X

l

dðt � tjlÞ; ð9bÞ

rS
dgSi ðtÞ
dt

¼ �gSi ðtÞ þ hSi ðtÞ; ð9cÞ

qS
dhSi ðtÞ
dt

¼ �hSi ðtÞ þ
SSi
NI

X

j6¼i

pSji
X

l

dðt � tjlÞ; ð9dÞ

where all variables and parameters are defined for Eqs. (2)

in ‘‘Integrate-and-Fire Model’’ section. Consequently, we

must readjust the values of the excitatory and fast inhibi-

tory conductance decay rates, rE and rF , respectively, so
that the conductance responses have the appropriate dura-

tion lengths.

The next step is to consider the mean-driven limit of the

incoming spikes in the model driven by a ‘‘white odor’’

stimulus. To mimic the ‘‘white odor’’ stimulus, the external

spikes from the background and odor are combined to form

a single source of external input with Poisson rate m, and
spike strengths fE and fI for the excitatory and inhibitory

neurons, respectively. We then further assume that the

external drive operates in the mean-driven regime, in

which each individual spike is small but the spikes arrive at

high rates (i.e., fi ! 0; m ! 1 with fim held constant),

replacing the sums over the incoming spike trains in

Eq. (9a), f odori

P
l dðt � silÞ þ fi

P
k dðt � cikÞ, with their

statistical averages, the constant functions fim, where i ¼ E

or I depending on whether the ith neuron belongs to the

excitatory or inhibitory population, respectively.

Furthermore, as we only consider networks with

unstructured, uniform random connectivity, we can assume

that probability of a synaptic connection between any pair

of neurons of given types will be statistically equivalent to

that of any other synaptic connections between any other

pair of the same types of neurons. Thus, statistically, we

can replace the individual synaptic connection weights, pEij ,

pFij , and pSij, by the corresponding connection probabilities

between the corresponding populations, pEQ, p
F
Q, and pSQ,

respectively.

From the coarse-graining process carried out in the

previous two paragraphs, we can conclude that the result-

ing conductance equations describe the conductance

dynamics of a typical (excitatory or inhibitory) neuron, i.e.,

one that is statistically equivalent to all other neurons of the

same type. Thus, we replace the individual neuronal con-

ductance equations in Eqs. (9) by equations for the con-

ductances of the corresponding neuronal populations. This

replacement eliminates the need for the index i and lets us

introduce the subscript notation of Q in its place, where

Q is either E or I to represent quantities associated with the

typical excitatory or inhibitory neuron, or, equivalently, the

corresponding populations, respectively.

We now apply the same mean-driven limit to the net-

work-generated spikes as we did to the external spikes. Due

to the uniform, unstructured random connectivity of the

network, we can assume that each excitatory and inhibitory

neuron, respectively, is driven by the average per-neuron
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firing rate of the appropriate type, mEðtÞ and mIðtÞ. We

scale these by the number of neurons of each type in the

network and their synaptic connection probabilities to find

the population-averaged firing rates, NEp
E
QmEðtÞ,

NIp
F
QmIðtÞ, and NIp

S
QmIðtÞ, arriving at the acetycholine,

GABAA, and slow inhibitory receptors, respectively, on the

postsynaptic excitatory (Q ¼ E) and inhibitory (Q ¼ I)

neurons. Thus, the sums over the network spikes,
SEi
NE

P
j 6¼i p

E
ji

P
l dðt � tjlÞ,

SFi
NI

P
j6¼i p

F
ji

P
l dðt � tjlÞ, and

SSi
NI

P
j 6¼i p

S
ji

P
l dðt � tjlÞ, in Eqs. (9a), (9b), and (9d), are

replaced by the average network drive terms SEQp
E
QmEðtÞ,

SFQp
F
QmIðtÞ, and SSQp

S
QmIðtÞ, respectively.

In this way, since each excitatory or inhibitory neuron is

statistically equivalent to all other neurons of the same

type, the set of 4N equations for the neurons’ conductances

in Eqs. (9) can be replaced by the following eight repre-

sentative equations for the two neuronal populations:

rE
dgEQ
dt

¼ �gEQ þ fQmþ SEQp
E
QmEðtÞ; ð10aÞ

rF
dgFQ
dt

¼ �gFQ þ SFQp
F
QmIðtÞ; ð10bÞ

rS
dgSQ
dt

¼ �gSQ þ hQ; ð10cÞ

qS
dhQ
dt

¼ �hQ þ SSQp
S
QmIðtÞ; ð10dÞ

with Q ¼ E or I for the excitatory or inhibitory population,

respectively.

To solve for the firing rates, we treat the voltage equa-

tion in Eq. (1) as a constant-coefficient differential equa-

tion; we have one such equation for each of the two

populations. This is justified by assuming that the per-

neuron firing rates, mEðtÞ and mIðtÞ, and therefore also the

associated conductances, vary slowly compared to the

voltages, while also assuming that the conductances are

relatively high so that the voltages vary fast. This means

that the (conductance-induced) time scale of the voltage is

shorter than the shortest conductance time scale (see ref.

Shelley et al. 2002). For constant conductance values

gEQ; g
F
Q; and gSQ, the first-order linear equation in Eq. (1)

becomes a constant coefficient equation, and takes the form

s
dvQðtÞ
dt

¼� 1þ gEQ þ gFQ þ gSQ

� �
vQðtÞ þ eR þ gEQeE þ gFQeF þ gSQeS

� �
;

ð11Þ

which has the solution

vQðtÞ ¼ Ce� 1þgEQþgFQþgSQð Þt=s þ
eR þ gEQeE þ gFQeF þ gSQeS

1þ gEQ þ gFQ þ gSQ
;

ð12Þ

with arbitrary constant of integration, C. This constant is

determined by the initial condition that the membrane

potential starts at its resting potential value, eR, just after
spiking,

vQð0Þ ¼ eR; ð13Þ

and thus,

C ¼
gEQðeR � eEÞ þ gFQðeR � eFÞ þ gSQðeR � eSÞ

1þ gEQ þ gFQ þ gSQ
: ð14Þ

At the time t
spike
Q , the membrane potential in Eq. (12)

with C in Eq. (14), reaches the threshold,

vQðtspikeQ Þ ¼ VT : ð15Þ

Therefore, tspikeQ is the amount of time between a neuron’s

consecutive spikes given the particular values of the con-

ductances. The reciprocal of tspikeQ is thus the firing rate of

the typical neuron in the population, mQ, at those con-

ductance values.

The membrane potential, vQ, only crosses the firing

threshold when the corresponding slaving potential,

Vs;Q ¼
eR þ gEQeE þ gFQeF þ gSQeS

1þ gEQ þ gFQ þ gSQ
; ð16Þ

is larger than the spiking threshold, VT , as the membrane

potential is always being drawn toward Vs;Q. The condition

Vs;Q [VT can be rewritten as a condition on the effective

excitatory conductance gEQ such that

gEQ [
VT � eR
eE � VT

þ gFQ
VT � eF
eQ � VT

� �
þ gSQ

VT � eS
eQ � VT

� �
: ð17Þ

Using Eqs. (12) through (15), we can calculate the spike

time tspikeQ for the effective conductance region where these

conditions hold, arriving at the expression

tspikeQ ¼ s

1þ gEQ þ gFQ þ gSQ
ln

gEQðeE � eRÞ þ gFQðeF � eRÞ þ gSQðeS � eRÞ

DeR þ gEQDeE þ gFQDeF þ gSQDeS
n oþ

2

4

3

5;

ð18Þ

where DeZ is defined in Eq. (6) and f�gþ is defined as after

Eqs. (5).

As stated above, the reciprocal of tspikeQ in Eq. (18) is the

per-neuron firing rate mQ, given by the equation
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mQðtÞ ¼
1þ gEQ þ gFQ þ gSQ

s ln
gE
Q
ðeE�eRÞþgF

Q
ðeF�eRÞþgS

Q
ðeS�eRÞ

DeRþgE
Q
DeEþgF

Q
DeFþgS

Q
DeSf gþ

� � ; ð19Þ

where, again, Q ¼ E or I. Note that, in the case when

Vs;Q\VT , no spiking occurs and the average time to spike,

tspikeQ , would be taken as infinite, so that the per-neuron

firing rate vanishes. The firing rate, mQ in Eq. (19), is

inserted into the conductance equations in Eqs. (10) to

close the FR model.

As stated in the previous paragraph, when the denomi-

nator inside the logarithm in Eq. (19) vanishes, we define

the corresponding firing rate, mQ, Q 2 E; If g, to also

vanish. Thus, we conclude that the firing rate mQðtÞ is a

piecewise-defined, continuous function with mQðtÞ ¼ 0

when

DeR þ gEQDeE þ gFQDeF þ gSQDeS � 0; ð20Þ

and is given by Eq. (19) otherwise.

Using the relations

gEQ ¼ SEQp
E
Qg

E þ fQm; ð21aÞ

gFQ ¼ SFQp
F
Qg

F; ð21bÞ

gSQ ¼ SSQp
S
Qg

S; ð21cÞ

hQ ¼ SSQp
S
Qh; ð21dÞ

pairs of equations in Eqs. (10) for each type of conductance

become redundant and the FR system, defined by Eqs. (10)

and (19) and the inequalities in Eqs. (20) can be reduced to

the four-equation model for the effective conductance

variables gE; gF ; gS, and h, given by the conductance
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Fig. 9 Raster plots of the excitatory neurons in a network to which

three different odors are presented, generated by stimulating a

different 1/3 of the neuron in the network. Each column corresponds

to a different binding index b, for which temporally-bound neurons

are those with binding index BIi;j;k � b. In all panels, black dots

represent unbound neurons, stars represent temporally-bound neurons

directly driven by the odor, and open symbols represent temporally-

bound neurons not directly driven by the odor stimulus. The

figure illustrates that many bound neurons are stable with respect to

binding index threshold b. Parameters found in Table 1
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equations in Eqs. (4) presented in ‘‘Firing-Rate Model’’

section, together with the firing-rate equations

mQðtÞ ¼
1þ SEQp

E
Qg

E þ fQmþ SFQp
F
Qg

F þ SSQp
S
Qg

S

s ln MQ½ � ; ð22aÞ

where

MQ ¼
P

P2fE;F;Sg S
P
Qp

P
Qg

PðeP � eRÞ þ fQmðeE � eRÞ

DeR þ fQmDeE þ
P

P2fE;F;Sg S
P
Qp

P
Qg

PDeP
n oþ :

ð22bÞ

The conditions for which the firing rates in Eqs. (22) do

not vanish become

DeR þ fQmDeE þ
X

P2fE;F;Sg
SPQp

P
Qg

PDeP [ 0: ð23Þ

For an all-to-all coupled network, we take the connection

probabilities pEQ ¼ pFQ ¼ pSQ ¼ 1, and the above reduced

model becomes that given by the equations in Eqs. (4)

and (5) and the inequalities in Eqs. (7) in ‘‘Firing-Rate

Model’’ section.

We remark on the above assumption (iv), which states

that the dynamically-induced membrane-potential time

scales are taken to be faster than the conductance time

scales. This is rarely the case. In particular, the voltage

time scale almost never falls below 50% of the conduc-

tance time scale; nevertheless, the frozen-conductance

approximation in the voltage equation is quite accurate

(Shelley et al. 2002). Therefore, despite this accurate

agreement, the derivation of the FR model presented here

is not systematic in terms of any small parameter, and thus

the FR model cannot be considered as a limit of the I&F

model. While we can expect qualitative agreement between

the dynamics of the I&F model and the FR model, we can

only expect to achieve a more quantitative agreement after

possibly tuning some of the FR model parameters.

Appendix 2: Robustness of the binding-
index threshold

In this appendix, we discuss the robustness of our choice

for the value of the binding index threshold b, defined in

‘‘Binding index (BI)’’ section. As mentioned in ‘‘Odor

Response and Discriminability’’ section, the threshold

value b ¼ 0:65 we use for the binding index is the same as

that used in ref. Patel et al. (2013). There, it is shown that

this choice of b is suitable to identify a distinct, clearly

defined subset of the PNs that are temporally-bound given

each odor, and only indirectly driven by the corresponding

excited ORNs, which can be used to distinguish among

different odors. This is also true in the results of our sim-

ulations, as we have discussed in ‘‘Odor Response and

Discriminability’’ section and displayed in Fig. 3 and

Table 2.

In particular, in Fig. 9 we use the results of the same

numerical simulations as those used in Fig. 3, but we now

analyze them using three different values of the binding-

index threshold: b ¼ 0:2, b ¼ 0:65, and b ¼ 0:9. (Note that

the middle column of Fig. 9 is identical to Fig. 3.) We see

that only a few neurons that are bound at b ¼ 0:65 change

their bound/unbound property between the values of b ¼
0:2 and b ¼ 0:9, and most of those neurons are driven

directly by the odor stimulus arriving from the ORNs. For

Odor 1 in the top row of Fig. 9 (spiking activity shown in

blue), we found that the only indirectly-driven neuron that

changes from a bound to unbound classification with the

increase in threshold from 0.65 to 0.9 is neuron 69. For

Table 4 Quantities related to

temporally-bound, indirectly-

driven neurons during initial

network oscillations

characterized by a Binding

Index threshold of b ¼ 0:9

Number of bound, indirectly-driven neurons present:

Odor 1 30

Odor 2 31

Odor 3 31

Number of shared bound, indirectly-driven neurons between an odor pair:

Odor 1 and Odor 2 13

Odor 1 and Odor 3 11

Odor 2 and Odor 3 13

Percentage of unique bound, indirectly-driven neurons for each odor in a pair-wise comparison:

Odor 1 and Odor 2 56.7% for Odor 1; 58.1% for Odor 2

Odor 1 and Odor 3 63.3% for Odor 1; 64.5% for Odor 3

Odor 2 and Odor 3 58.1% for Odor 2; 58.1% for Odor 3

Neuron numbers for bound, indirectly-driven neurons present in only one of the three odors:

Odor 1 #33, 41, 43, 45 and 59

Odor 2 #37, 51, 69, and 73

Odor 3 #2, 3, 5, 14, 18, 53, and 65
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Odor 3 in the bottom row of Fig. 9 (spiking activity shown

in green), we found that only the indirectly-driven neurons

37 and 51 change their classification. Finally, for Odor 2 in

the middle row of Fig. 9 (spiking activity shown in red), no

indirectly-driven neurons change their bound/unbound

classification between threshold values of 0.65 and 0.9.

Additionally, when comparing spiking behavior at a

threshold of b ¼ 0:2 to that at b ¼ 0:65 we observe that all

indirectly-driven bound neurons remain bound at both

thresholds for all three model odors. Therefore, Table 2

also provides the data for b ¼ 0:2. Overall, the largest

change for the odors shown occurs for Odor 1 from b ¼
0:65 to b ¼ 0:9 where only 8% of the PNs (directly- and

indirectly-driven combined) change classification from

bound to unbound. Thus, the raster plots of bound neurons

between the threshold values b ¼ 0:2 and b ¼ 0:9 can still

clearly discriminate among different odors.

From the discussion in the previous paragraph, we

conclude that when we consider the portion of indirectly-

driven, temporally-bound neurons that are uniquely asso-

caited to a single odor in a pair-wise comparison between

two odors for threshold values of b ¼ 0:65 and b ¼ 0:9, we

find that there are overall fewer indirectly-driven, bound

neurons at the higher threshold but that a greater than or

equal number and a larger percentage of them are uniquely

associated to that odor. This holds across all three pair-wise

comparisons and is supported by the data provided in

Tables 2 and 4.

We identified this interval from b ¼ 0:2 to b ¼ 0:9

somewhat arbitrarily to be near, but not exactly equal to the

threshold values of b ¼ 0 and b ¼ 1, respectively. Choos-

ing these extreme values would be prohibitively inclusive

at b ¼ 0 (neurons in all triplets would be classified as

temporally-bound) and exclusive at b ¼ 1 (only neurons in

triplets with identical spiking behavior would be classified

as bound).

The discussion in this appendix thus shows that there

exists a large interval of threshold values of the binding

index, b, for which the odor-discriminability data quanti-

tatively changes little but the ability to discriminate among

odors qualitatively changes none at all.

Appendix 3: Limit cycle in the linearized
firing-rate model

In this appendix, we study a linearization of the FR model

in Eqs. (4) and (22), with an eye on providing a demon-

stration that a unique, attracting limit cycle exists in the

two-dimensional FR model for the fast effective conduc-

tances, gE and gF , with frozen slow effective conductance,

gS. Thus, in ‘‘Appendix 3.1’’, we derive this linearization,

and in ‘‘Appendix 3.2’’ we semi-numerically verify the

existence of a unique limit cycle in the resulting planar

piecewise-linear system for gE and gF with frozen gS. In

particular, we show that we can find the trajectories

explicitly in the four effective-conductance regions in

which this system is linear, and splice them together using

a numerical solution of a transcendental equation at each

boundary between two such regions. We use these spliced

trajectories to construct a Poincaré map, and demonstrate

the existence of the unique limit cycle by finding a unique

fixed point of this map.

Appendix 3.1: Derivation of the linearized model

In this section, we present the details of linearizing the FR

model in Eqs. (4) and (22), which results in a piecewise-

linear model.

Our procedure is to first note that if a firing rate mQ,

Q ¼ E or I, vanishes, the corresponding equation(s) in

Eqs. (4) is (are) already linear. If however, a firing rate is

nonzero, we linearize it as a function of the conductances

in order to linearize the corresponding equation(s) (4a),

(4b), or (4d). This procedure creates a piecewise-linear

function for the derivative of each effective conductance

variable: gE, gF , and h; the firing-rate term does not appear

in the differential equation for the slow effective conduc-

tance gS, and thus Eq. (4c) does not take a piecewise form.

A crucial step involves determining the boundaries

between the four regions created by the various combina-

tions of parts of the piecewise-defined firing rates:

mE ¼ mI ¼ 0, mE ¼ 0 and mI 6¼ 0, mE 6¼ 0 and mI ¼ 0,

mE;mI 6¼ 0, along which the system switches among the

differential equations that govern the trajectory.

When a slaving voltage Vs;Q in Eq. (16) is subthreshold,

Vs;Q\VT , the inequality in Eq. (17) is not satisfied, and the

corresponding firing rate vanishes, mQðtÞ ¼ 0, Q ¼ E or I.

It would follow then that each equation in Eqs. (4) would

take a linear form. In the superthreshold case when

Vs;Q [VT , mQðtÞ is nonlinear for each Q ¼ E or I. We

linearize about large values of the effective excitatory

conductance gE. (See more discussion at the end of this

section). In order for our linearization to proceed more

systematically, we first expand the firing rates mQðtÞ about
large values of the conductances gEQ, where Q ¼ E or I, and

only then express gEQ in terms of the effective conductance

gE using formulas in Eqs. (21).

By linearizing the firing rates in the superthreshold case,

we can produce a system of piecewise-linear equations for

the derivatives of the effective conductances. We then use

the reduced two-dimensional fast model, in which gS is

treated as a frozen parameter, to demonstrate the existence

of a limit cycle analytically, save for four root-finding
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calculations. The details of this analysis are given in

‘‘Appendix 3.2’’, below.

To more easily identify the large parameter gEQ, it is

helpful to rearrange the fraction inside of the logarithm in

Eq. (19) as follows:

gEQðeE � eRÞ þ gFQðeF � eRÞ þ gSQðeS � eRÞ
DeR þ gEQDeE þ gFQDeF þ gSQDeS

¼
A 1� BgFQ þ XgSQ

� �
=gEQ

h i

1� ðA� 1Þ � DeF
DeE

gFQ � DeS
DeE

gSQ

h i
=gEQ

;

ð24Þ

with A, B, and X defined as

A ¼ eE � eR
eE � VT

; B ¼ eR � eF
eE � eR

; X ¼ eR � eS
eE � eR

:

The logarithm of Eq. (24) can be rearranged so that the

resulting expression may be expanded for large gEQ,

log
A 1� BgFQ þ XgSQ

� �
=gEQ

h i

1� ðA� 1Þ � DeF
DeE

gFQ � DeS
DeE

gSQ

h i
=gEQ

8
<

:

9
=

;

¼ logAþ log 1� BgFQ þ XgSQ

� �
=gEQ

h i

� log 1� ðA� 1Þ � DeF
DeE

gFQ � DeS
DeE

gSQ

� �
=gEQ

	 


¼ ðA� 1Þ 1þ ðBþ 1ÞgFQ þ ðX þ 1ÞgSQ
� �h i

=gEQ þ logAþO gEQ
�2

� �
:

ð25Þ

When the expression in Eq. (25) replaces the logarithm in

the denominator of Eq. (19), the resulting version of the

firing rate, mQðtÞ, can be expanded once again for large gEQ
to produce the expression

1þ gEQ þ gFQ þ gSQ
s logA

�
1� ðA� 1Þ

logA
1þ ðBþ 1ÞgFQ þ ðX þ 1ÞgSQ
h i

1

gEQ
þO gE�2

Q

� ��
:

ð26Þ

To complete the linearization, we neglect higher order

terms in Eq. (26) and thus arrive at a linear firing-rate

equation for the superthreshold case (Vs;Q [VT ). Consid-

ering again that the firing rate is taken as vanishing in the

subthreshold case, when linearized about large gEQ, Eq. (19)

turns into the equation

~mQ ¼ 1

s logA
1� A� 1

logA

� �
þ gEQ

�	

þ 1� ðA� 1ÞðBþ 1Þ
logA

� �
gFQ þ 1� ðA� 1ÞðX þ 1Þ

logA

� �
gSQ

�
þ
;

ð27Þ

where, again, fxgþ ¼ x if x[ 0, and zero otherwise. The

inequality condition for ~mQ not to vanish, similarly to the

condition for the nonlinear firing rate in Eq. (23), is given

by the inequality

gEQ þ 1� ðA� 1ÞðBþ 1Þ
logA

� �
gFQ þ 1� ðA� 1ÞðXþ 1Þ

logA

� �
gSQ

þ 1�A� 1

logA

� �
[0:

ð28Þ

Using the relations in Eqs. (21), the piecewise-linear, per-

neuron firing rate for each excitatory neuron (taking

Q¼ E) becomes a function of the effective conductance

variables, gE, gF , and gS:
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gE
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0
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dg
E /d

t

nonlinear
linearized
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-10.5
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-9.5
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-8
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-7

dg
F /d

t

nonlinear
linearized

(a) (b)

Fig. 10 The curves representing the nonlinear (solid red lines) and

piecewise-linear (dashed black lines) functions that define a dgE=dt,

in Eqs. (4a) and (31a) as gE varies, with gF ¼ 4, and b dgF=dt in

Eqs. (4b) and (31b), versus gE for gF ¼ 9:6. Note the agreement

between the nonlinear and piecewise-linear curves for large gE in both

cases. Parameters in Table 1, except for the parameters pertaining to

the slow effective conductance gS. The slow effective conductance gS

is fixed at gS ¼ 0
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~mE ¼ 1

s logA
SEEp

E
Eg

E þ fEm
� �

þ 1� A� 1

logA

�	

þ 1� ðA� 1ÞðBþ 1Þ
logA

� �
SFEp

F
Eg

F

þ 1� ðA� 1ÞðX þ 1Þ
logA

� �
SSEp

S
Eg

S

�
þ
:

ð29Þ

Likewise, taking Q ¼ I, the piecewise-linear, per-neuron,

inhibitory firing rate is defined as

~mI ¼
1

s logA
1� ðA� 1ÞðBþ 1Þ

logA

� �
SFI p

F
I g

F

�	

þ 1� ðA� 1ÞðX þ 1Þ
logA

� �
SSI p

S
I g

S

þ SEI p
E
I g

E þ fImþ 1� A� 1

logA

�
þ
:

ð30Þ

The linearized, four-dimensional system for the deriva-

tives of the effective conductance variables, incorporating

Eqs. (29) and (30), is

rE
dgE

dt
¼ �gE þ ~mEðtÞ; ð31aÞ

rF
dgF

dt
¼ �gF þ ~mIðtÞ; ð31bÞ

rS
dgS

dt
¼ �gS þ h; ð31cÞ

qS
dh

dt
¼ �hþ ~mIðtÞ: ð31dÞ

As the only nonlinearities in Eqs. (4) appear in the firing-

rate terms, Eqs. (31) are piecewise-linear due to the

piecewise-linear nature of the linearized firing rates ~mE and

~mI . The conditions upon which different parts of the

piecewise-linear differential equations apply are thus the

conditions required for ~mQ not to vanish, given in Eq. (28)

with the relations in Eqs. (21). The three-dimensional

gEgFgS-space is thus divided into four regions by the two

interesting planes spanned by gE, gF , and gS, and defined

by setting the conditions in Eqs. (28) to zero. As solutions

of Eqs. (31) are computed, the region within which the

trajectory moves dictates which parts of the piecewise-

defined derivatives describe the behavior in that region.

We now comment on why we linearize the FR model by

expanding about large values of the excitatory conduc-

tances. This is because, in that regime, firing rates are also

large. At large firing rates, in turn, the response of a neu-

ronal network (such as an I&F model) asymptotically

becomes independent of the amount of fluctuations in the

dynamics; see ref. Kovačič et al. (2009), especially the

results of numerical simulations shown in Fig. 8. Addi-

tionally, the response of the linearized FR model discussed

in this section turns out to resemble that of a neuronal

network in the fluctuation-driven regime. Therefore, the

linearized FR model has a convenient physiological inter-

pretation: it provides a FR model corresponding to an I&F

model in the fluctuation-driven regime.

When the slow effective conductance gS is held fixed,

we can depict the nonlinear and linearized derivatives of

the excitatory and fast inhibitory effective conductance

variables gE and gF given in Eqs. (4) and (31), as surfaces

over the gE-gF-plane. In Fig. 10, we show representative

slices through these surfaces, and thus compare each of the

nonlinear derivatives of the effective fast conductances gE

and gF , shown by solid red lines, with their respective

linearized derivatives, shown by dashed black lines, over

an interval of gE, for a fixed value of gF . Notice that the

two sets of curves are tangential in the limit of large

excitatory effective conductance gE.

Appendix 3.2: Existence of a unique limit cycle

In this section, we use an approach alternative to that

presented in ‘‘Bifurcation Mechanism’’ section in order to

verify the existence of a unique limit cycle in the piece-

wise-linear FR model, Eqs. (31), with the effective slow

conductance variable, gS, held fixed at a constant value. We

achieve this verification with a combination of analytical

solutions within each of the above-described regions in

which the piecewise-defined linearized FR model has a

linear form, and numerical solves of single-variable tran-

scendental equations at each boundary between two such

regions. Lastly, we confirm the existence of a limit cycle

through an iterative process of possible initial conditions

and associated solution trajectories.

With the simplification of the effective slow conduc-

tance, gS, as a fixed value, the piecewise-linear system in

Eq. (31) becomes a two-dimensional system of the exci-

tatory and fast inhibitory effective conductances gE and gF ,

respectively. The variable h is also no longer necessary

when gS is held fixed. The two-dimensional system is given

by the equations

rE
dgE

dt
¼ �gE þ ~mEðtÞ; ð32aÞ

rF
dgF

dt
¼ �gF þ ~mIðtÞ; ð32bÞ

with ~mEðtÞ and ~mIðtÞ given in Eqs. (29) and (30), respec-

tively, for a fixed value of gS.

Additionally, the three-dimensional boundary surfaces

described in ‘‘Appendix 3.1’’ for the intact linearized FR

model, become two intersecting lines in the gE-gF-plane

given by the equations of the firing rates with the slow

effective conductance gS fixed,

124 Cognitive Neurodynamics (2021) 15:103–129

123



~mE ¼ 0; ð33aÞ

~mI ¼ 0; ð33bÞ

with the firing rates ~mE and ~mI given in Eqs. (29) and (30),

respectively.

Within each of the four regions determined by the above

boundary lines, the system in Eqs. (32) is described by a

different subset of parts of the piecewise-defined functions

on its right-hand sides. We solve each system explicitly up

to arbitrary constants of integration, determined by initial

conditions. As the trajectory moves through one region and

meets a boundary line, new initial conditions are deter-

mined by the intersection of the trajectory and the bound-

ary, and the trajectory is then computed for the next region.

Computing the new initial conditions as the trajectory

crosses each boundary requires solving for the roots of a

transcendental function, for which we employ MATLAB’s

built-in root-finding algorithm, fzero. Proceeding in this

manner through all four regions, the solution trajectory can

be determined analytically, except for these four solves.

Specifically, we consider the two-dimensional system in

Eq. (32) with fixed slow inhibitory effective conductance

gS, and begin with an initial value for the fast inhibitory

effective conductance, gFð0Þ ¼ l. For convenience, we

consider that the initial condition for the solution lies on

the inhibitory boundary line, ~mI ¼ 0, from Eq. (33b), and

Table 5 Parameters used for visualizing boundary lines and com-

puting solutions to the firing-rate system in Eq. (33) with gS held

constant in Fig. 11

Parameter Value Parameter Value

m 5300 Hz SEEp
E
E 5

fEm 6.625 SEI p
E
I

4.5

fIm 0.53 SFEp
F
E 15

rE 2 ms SFI p
F
I 0.01

rF 8 ms gS 0

-0.2

0

0.2

0.4

0.6

0.8

g
F

0 0.5 1 1.5

gE

-0.2

0

0.2

0.4

0.6

0.8

g
F

0 0.5 1 1.5

gE

-0.2

0

0.2

0.4

0.6

0.8

g
F

0 0.5 1 1.5

gE
0.3 0.4 0.5 0.6 0.7 0.8

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) (b)

(c) (d)

Fig. 11 The solid (dashed) black line represents the inhibitory

(excitatory) boundary line given by ~mI ¼ 0 ( ~mE ¼ 0). The colored,

dashed curves illustrate the solution trajectory-segments through the

four regions separated by these lines for the linearized firing rate

system with gS frozen. For each such trajectory segment, the

corresponding dot indicates its initial condition, and the pink dot

the point at which the trajectory returns to the initial portion of the

boundary line. Two example solution trajectories, one with Pðl1Þ[ l1
and another with Pðl2Þ\l2, are shown in panels a and b. The mapping

of the interval l1\l\l2 on the line ~mI ¼ 0 along the analogous

trajectory segments is shown in c. Note that a single cyan, green, red,
and pink dot is plotted for all the trajectories as they are indistin-

guishable at those points due to the strong contraction. In panel d, the

initial values for gFð0Þ ¼ l are compared with the final values of

gF ¼ PðlÞ when the trajectory returns to the starting part of the

boundary line. Their difference, PðlÞ � l, is plotted. The value l of the
fixed point occurs where PðlÞ � l ¼ 0, i.e., at the intersection between

the curve and the dashed line. Parameters found in Table 5
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thus the excitatory effective conductance begins at the

value given by

gEð0Þ ¼ � 1

SEI p
E
I

fImþ 1� ðA� 1ÞðBþ 1Þ
logA

� �
SFI p

F
I l

	

þ 1� ðA� 1ÞðX þ 1Þ
logA

� �
SSI p

S
I g

S þ 1� A� 1

logA



:

ð34Þ

Starting at the above-described point, ðgEð0Þ; gFð0ÞÞ, the
trajectory is determined by the system of equations,

rE
dgE

dt
¼ �gE; ð35aÞ

rF
dgF

dt
¼ �gF þ 1

s logA
1� ðA� 1ÞðBþ 1Þ

logA

� �
SFI p

F
I g

F

�

þ 1� ðA� 1ÞðX þ 1Þ
logA

� �
SSI p

S
I g

S þ SEI p
E
I g

E

þfImþ 1� A� 1

logA

�
;

ð35bÞ

in the first region through which it moves. The system in

Eq. (35) has the explicit solution given by the equations

gEðtÞ ¼ C1e
�t=rE ; ð36aÞ

gFðtÞ ¼ C2e
�jt=rF þ

C1S
E
I p

E
I e

�t=rE þ fImþ 1� A�1
s lnA

s j� rF
rE

� �
lnA

�
fImþ 1� A�1

s lnA

s rE
rF

j2 � jð Þ lnA ;

ð36bÞ

where j ¼ 1� SFI p
F
I

s lnA 1� ðA�1ÞðBþ1Þ
logA

� �h i
, and C1 and C2 are

constants of integration determined by the initial condition

established above. The value of t at which this trajectory

meets the excitatory boundary in Eq. (33a) is determined

using MATLAB’s built-in root-finding algorithm, and the

value of Eq. (36) at that point becomes the initial condition

for the solution calculation in the next region. Similar

systems of equations and solutions to these systems can be

determined explicitly in the same fashion. The trajectory

moves through the second region where the linearized fir-

ing-rate equations, ~mE and ~mI are nonzero, then through the

third region where ~mE is nonzero and ~mI ¼ 0, and finally

moves through the fourth region where ~mE ¼ ~mI ¼ 0, until

the trajectory reaches the first region again. At each point

where the trajectory meets a boundary line, new initial

conditions are determined. Explicit systems that determine

the dynamics of the solution trajectory with explicit solu-

tions, up to constants of integration, determined later by

initial conditions, for each region of the two-dimensional

gE-gF-plane, can be written down. (See ref. Pyzza 2015 for

the complete set of systems and solutions). Note that the

initial condition choice on the boundary line ~mI ¼ 0 is

made for convenience; for our argument below, it could be

made along any of the boundaries dividing the regions in

which Eqs. (32) are linear, or, in principle, along any

sufficiently long curve segment transverse to the trajctories

of the system.

The process by which we calculate the trajectory for a

given value, gFð0Þ ¼ l, may be repeated for a range of

different values of l. We then consider the value of the fast

inhibitory effective conductance, gFðtÞ, when the trajectory

returns to the part of the boundary line, ~mI ¼ 0, from which

it originated, after one excursion away from it. In this way,

we generate a Poincaré map, P(l), of this boundary line into

itself. Investigating PðlÞ � l for a range of values of l, we

find that the map P(l) has a unique fixed point. In other

words, there is a particular value of l such that the trajec-

tory will begin and end at the same point, which indicates

the existence of a unique limit cycle for a given parameter

set.

We illustrate this process in Fig. 11, in which the slow

effective conductance is fixed at the value gS ¼ 0 (i.e., no

slow inhibition), representing the case with the largest

oscillations. In Figs. 11a, b, for l ¼ l1 ¼ 0:28 and

l ¼ l2 ¼ 0:8, respectively, we show two trajectory seg-

ments that progress counter-clockwise in the gE-gF-plane

through the four regions determined by the boundary lines

given in Eqs. (33), until they return to the portion of the

line ~mI ¼ 0 above its intersection with the line ~mE ¼ 0.

The blue, cyan, green, and red trajectory sub-segments are

described by the solutions to the systems of equations for

gE and gF given by the appropriate combinations of the

piecewise portions of Eqs. (32a) and (32b) in each of these

four regions, respectively. Note that for the first of two

trajectories Pðl1Þ[ l1, and for the second Pðl2Þ\l2. In

Fig. 11c, d, we display the mapping of the interval

l1\l\l2 along one excursion of the trajectories that begin

on this interval, back onto a smaller interval inside

l1\l\l2. The corresponding trajectory segments of a

number of equidistant initial points are plotted in Fig. 11c,

where we see that these trajectories are so strongly con-

tracted towards one another that they are indistinguishable

already on the line ~mE ¼ 0. A graph of the difference,

PðlÞ � l, between the final and initial gF-values along the

trajectory segments emerging from the interval l1\l\l2
on the line ~mI ¼ 0 is displayed in Fig. 11d. The initial

condition for which this difference vanishes gives the fixed

point of the mapping l to P(l), and thus the unique limit

cycle.

126 Cognitive Neurodynamics (2021) 15:103–129

123



References

Ache BW, Young JM (2005) Olfaction: diverse species, conserved

principles. Neuron 48(3):417–430. https://doi.org/10.1016/j.neu

ron.2005.10.022

Barbara GS, Zube C, Rybak J, Gauthier M, Grunewald B (2005)

Acetylcholine, gaba and glutamate induce ionic currents in

cultured antennal lobe neurons of the honeybee, apis mellifera.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

191(9):823–836. https://doi.org/10.1007/s00359-005-0007-3

Bazhenov M, Stopfer M, Rabinovich M, Abarbanel HD, Sejnowski

TJ, Laurent G (2001) Model of cellular and network mechanisms

for odor-evoked temporal patterning in the locust antennal lobe.

Neuron 30(2):569–581

Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HD,

Sejnowski TJ, Laurent G (2001) Model of transient oscillatory

synchronization in the locust antennal lobe. Neuron

30(2):553–567

Borgers C, Kopell N (2005) Effects of noisy drive on rhythms in

networks of excitatory and inhibitory neurons. Neural Comput

17(3):557–608. https://doi.org/10.1162/0899766053019908

Burkitt AN (2006) A review of the integrate-and-fire neuron model: I.

homogeneous synaptic input. Biol Cybern 95(1):1–19. https://

doi.org/10.1007/s00422-006-0068-6

Burkitt AN (2006) A review of the integrate-and-fire neuron model:

II. inhomogeneous synaptic input and network properties. Biol

Cybern 95(2):97–112. https://doi.org/10.1007/s00422-006-0082-

8

Cai D, Tao L, Rangan AV, McLaughlin DW (2006) Kinetic theory for

neuronal network dynamics. Commun Math Sci 4(1):97–127

Carcaud J, Giurfa M, Sandoz JC (2016) Parallel olfactory processing

in the honey bee brain: Odor learning and generalization under

selective lesion of a projection neuron tract. Front Integr

Neurosci 9:75

Cayre M, Buckingham SD, Yagodin S, Sattelle DB (1999) Cultured

insect mushroom body neurons express functional receptors for

acetylcholine, gaba, glutamate, octopamine, and dopamine.

J Neurophysiol 81(1):1–14. https://doi.org/10.1152/jn.1999.81.

1.1 PMID: 9914262

Chen WR, Shepherd GM (2005) The olfactory glomerulus: a cortical

module with specific functions. J Neurocytol 34(3):353–360.

https://doi.org/10.1007/s11068-005-8362-0

Christensen TA, Pawlowski VM, Lei H, Hildebrand JG (2000) Multi-

unit recordings reveal context-dependent modulation of syn-

chrony in odor-specific neural ensembles. Nat Neurosci

3(9):927–931. https://doi.org/10.1038/78840

Corronc HL, Alix P, Hue B (2002) Differential sensitivity of two

insect gaba-gated chloride channels to dieldrin, fipronil and

picrotoxinin. J Insect Physiol 48(4):419–431. https://doi.org/10.

1016/S0022-1910(02)00061-6

Eisthen HL (2002) Why are olfactory systems of different animals so

similar? Brain Behav Evol 59(5–6):273–293

Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR (2007) c-
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