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Abstract

It has been discovered recently in experiments that the dendritic integration of excitatory glutamatergic inputs and
inhibitory GABAergic inputs in hippocampus CA1 pyramidal neurons obeys a simple arithmetic rule as
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I , where V
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S , V
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E and V

Exp
I are the respective voltage values of the summed somatic

potential, the excitatory postsynaptic potential (EPSP) and the inhibitory postsynaptic potential measured at the time when
the EPSP reaches its peak value. Moreover, the shunting coefficient k in this rule only depends on the spatial location but
not the amplitude of the excitatory or inhibitory input on the dendrite. In this work, we address the theoretical issue of how
much the above dendritic integration rule can be accounted for using subthreshold membrane potential dynamics in the
soma as characterized by the conductance-based integrate-and-fire (I&F) model. Then, we propose a simple I&F neuron
model that incorporates the spatial dependence of the shunting coefficient k by a phenomenological parametrization. Our
analytical and numerical results show that this dendritic-integration-rule-based I&F (DIF) model is able to capture many
experimental observations and it also yields predictions that can be used to verify the validity of the DIF model
experimentally. In addition, the DIF model incorporates the dendritic integration effects dynamically and is applicable to
more general situations than those in experiments in which excitatory and inhibitory inputs occur simultaneously in time.
Finally, we generalize the DIF neuronal model to incorporate multiple inputs and obtain a similar dendritic integration rule
that is consistent with the results obtained by using a realistic neuronal model with multiple compartments. This
generalized DIF model can potentially be used to study network dynamics that may involve effects arising from dendritic
integrations.
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Introduction

A single neuron may receive and integrate thousands of

excitatory and inhibitory synaptic inputs from its dendritic tree.

Through spatial and temporal integration of these synaptic inputs,

neurons in the cortex process information efficiently and produce

output signals known as spike trains. In order to understand how

the brain works, it is important to understand the rules that govern

dendritic integration. However these rules remain to be fully

elucidated. For the integration of multiple excitatory inputs, cable

theory [1,2] was developed and was successfully applied to

describe passive properties of dendrites as observed in experiments

[3,4]. In order to consider active properties of dendrites such as the

activity of some voltage-gated ion channels and the occurrence of

dendritic spikes [5–7], a two-layer network model was proposed

[8,9]. This model has been supported by some experiments using

focal synaptic stimulation and glutamate uncaging [10,11].

However, as reviewed in Refs. [12,13], there are still many other

important properties of dendritic integration, such as spike timing,

that cannot be captured by this model.

In contrast to theoretical and experimental results for the

integration rule of multiple excitatory inputs as mentioned above,

we know even less about the integration rule when both excitatory

and inhibitory inputs are presented together. In order to describe

dynamics of neuronal circuitry within the brain, it is important to

understand how excitatory and inhibitory inputs are integrated.

For example, the interactions of excitatory and inhibitory synaptic

currents have been found to play an important role in many

sensory systems [14–16]. Shunting inhibition is found to be able to

control the gain of a neuron in the presence of excitatory synaptic

inputs [17]. Inhibition can also modulate the frequency [18] and

improve the robustness [19] of gamma oscillations through

nonlinear interactions with synaptic excitation. Therefore, it is

important to determine precise rules that govern synaptic

excitation-inhibition integration in order to achieve a good

PLOS ONE | www.plosone.org 1 January 2013 | Volume 8 | Issue 1 | e53508



understanding of underlying computational mechanisms for these

neurophysiological phenomena.

Recently, a quantitative description of a dendritic integration

rule has been uncovered in experimental results from CA1

pyramidal neurons in one of our authors’ lab [20]. In the

experiment, when the excitatory glutamatergic input and the

inhibitory GABAergic input were elicited simultaneously with two

iontophoretic pipettes at adjacent locations on a dendritic trunk,

the response measured in the soma was found to be always smaller

than the linear sum of the individual excitatory postsynaptic

potential (EPSP) and inhibitory postsynaptic potential (IPSP)

measured in the soma separately as shown in Fig. 1. In Fig. 1, t�

denotes the time when the EPSP reaches its peak value, denoted as

V
Exp
E , which is referred to as the amplitude of EPSP. The values of

IPSP and the summed somatic potential (SSP) at time t� were

denoted by V
Exp
I and V

Exp
S , referred to as the amplitudes of IPSP

and SSP, respectively. The arithmetic summation rule for the

dendritic integration in Ref. [20] can now be expressed as

V
Exp
S &V

Exp
E zV

Exp
I zkV

Exp
E V

Exp
I , ð1Þ

where the third term on the right-hand side of Eq. (1) is the so-

called shunting component (SC) with k as the shunting coefficient

[20]. Such a relationship was also found for the mean values of

EPSP, IPSP and SSP, instead of the voltage values at time t� [20].

In addition, the shunting coefficient k depends on locations of both

the excitatory and the inhibitory stimulus but not the amplitudes of

EPSP and IPSP. As shown in the inset of Fig. 2, when the location

of the inhibitory input on the dendritic trunk is fixed and the

excitatory input is located in between the soma and the inhibitory

input site, k increases as the distance between the excitatory input

and the soma increases. On the other hand, when the excitatory

input is located further away from the soma than the inhibitory

input site, k remains almost constant with further increases in the

distance between the excitatory input site and the soma.

In Ref. [20], numerical simulation based on the software

NEURON [21] was also performed to examine this integration

rule. The simulation used a reconstructed spatial structure of the

CA1 neuron, which included 200 compartments, four different ion

channels, and four different neurotransmitter receptors. These

components are used to mimic both the active channel properties

and passive cable properties of the dendrite of the real neuron.

The simulation was able to account for many aspects of the

experimental results. However, the value of k produced by the

simulation was approximately only one half of the experimentally

measured value, indicating that the constructed multi-compart-

mental neuron is still not able to capture quantitatively the effects

of dendritic integration of a real neuron. Moreover, there are some

other experimental results as reported in the supplementary text of

Ref. [20] that have not been addressed by this multi-compart-

mental model, such as the case when excitatory inputs and

inhibitory inputs are no longer synchronous–-clearly, this situation

often occurs and excitatory and inhibitory stimulations may not

always occur at precisely exactly the same time as in Ref. [20]. (Of

course, excitatory and inhibitory events can be often highly

correlated in time [22].) We further note that the model used in

simulations contains many compartments and parameters, ren-

dering it difficult to study analytically. In addition, there are other

theoretical issues that need to be clarified. For example, it is not

clear how the nonlinear SC term arises mechanistically by using

this simulation approach. Furthermore, neuronal coding often

involves dynamics of networks. However, it would be difficult to

implement this multi-compartmental model in network simulation

in that the complexity of such a neuron model would make the

computational cost impractical. Therefore, it is desirable to

incorporate the dendritic integration features into a simpler

neuronal model that has the potential to address these theoretical

issues.

Many spiking neuronal models have been developed to capture

spike dynamics of real neurons [23–30]. Each model has its own

advantages and disadvantages with respect to the understanding of

neuronal spiking dynamics [31]. Since the data measured in the

experiment [20] were all collected at the soma, we first address the

issue of whether we can understand this dendritic integration rule

through somatic properties of a single-compartment point-neuron

model. Considering the trade-off between biological plausibility

and theoretical complexity among those existing neuronal models

[31–34], we choose the conductance-based integrate-and-fire

(I&F) model as the basic model for the investigation of the

dendritic integration rule. Note that the voltage traces measured in

the experiment [20] involved only subthreshold dynamics. The

I&F model is well-suited to investigate the dendritic integration

rule as models of the I&F type have been experimentally shown to

quantitatively capture the subthreshold dynamics of neurons

[34,35]. Surprisingly, this simple model can produce the

arithmetic rule [Eq. (1)] for the case in which the stimulus location

is fixed. Therefore, it suggests that somatic membrane potential

dynamics may play a role in the so-called dendritic integration

rule. Through our theoretical analysis, we demonstrate that the

nonlinear SC term arises from the multiplication of conductance

and voltage in the synaptic input of the neuron. We further point

out that, in a static two-port analysis, the product between

excitatory and inhibitory conductances gives rise to the product

between EPSP and IPSP. Using the insight derived from these

analyses, finally, we develop a dendritic-integration-rule-based

I&F (DIF) model to phenomenologically incorporate the spatial

Figure 1. Experimental measurement of EPSP, IPSP and SSP.
The time when EPSP reaches its peak value is denoted by t� . V

Exp
E and

V
Exp
I represent the amplitude of EPSP and IPSP at time t� , respectively.

V
Exp
S represents the amplitude of SSP at time t� . SC is the difference

between the SSP and the linear sum of the individual EPSP and IPSP
measured under separate excitatory and inhibitory inputs. When the
excitatory input and the inhibitory input are elicited simultaneously, the
response amplitude measured at the soma is found to be smaller than
that of the linear sum. (modified from Ref. [20]).
doi:10.1371/journal.pone.0053508.g001
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effect of the integration. This phenomenological model can not

only incorporate the dendritic integration rule, but also capture

experimental observations that have not been addressed by the

multi-compartmental model [20]. In addition, it also yields

predictions that can be further used to validate this model

experimentally. We note that the original dendritic integration

rule [Eq. (1)] is limited to the situation in which the excitatory and

inhibitory inputs are concurrent. When excitatory and inhibitory

inputs are not concurrent, the shunting coefficient k has to be

measured again in experiments to obtain the corresponding

dendritic integration formula. However, we show that the DIF

model has extended the dendritic integration rule to dynamical

situations and it can be used to study neuronal responses to any

stimulus pattern with both excitatory and inhibitory inputs.

Finally, we generalize the DIF model for studying the effect of

multiple inputs and obtain related results that are consistent with

those obtained using the NEURON software as reported in Ref.

[20]. Because our model is an I&F type, clearly, it can easily be

implemented in network dynamics to study certain effects arising

from dendritic integrations.

The paper is organized as follows, we first show both

theoretically and numerically that the arithmetic dendritic

integration rule can partially be explained by somatic subthreshold

membrane potential dynamics of the conductance-based I&F

model. Next, using the insight derived from a static two-port

analysis, we develop a simple DIF model to phenomenologically

parameterize the spatial dependence of the shunting coefficient k.

Our numerical results show that this model captures many

neurophysiological phenomena as observed in experiments. Here,

we further extend the DIF model to account for multiple inputs. In

Discussion, we determine the parameter range and describe some

predictions of the DIF model. In Methods, we introduce the

conductance-based I&F model and present both analytical and

approximate solutions to the I&F-type models. Here, we also

recapitulate the static two-port analysis in detail.

Results

Subthreshold Membrane Potential in the Soma
It has been demonstrated that the I&F model can capture very

well the subthreshold membrane potential dynamics in the soma

of a real neuron when its membrane potential is below *{55 mV

[34,35]. The membrane potential used in the experiment [20] for

determining the dendritic integration rule is precisely in this

subthreshold regime. A natural question arises, that is, how much

the dendritic integration rule can be accounted for by the somatic

membrane dynamics. Here, we employ the conductance-based

I&F model (see Methods) to address this question. First, we use the

experimental data to determine appropriate parameters to

reproduce the same profiles of EPSP and IPSP as measured in

the experiment [20] (Fig. 3, see Methods for details). Then, we use a

fourth-order Runge-Kutta method to solve the I&F model

numerically. We denote the EPSP by VE(t), IPSP by VI (t), and

SSP by VS(t). The time t� is the time when VE(t) reaches its peak

value. The values of VE(t�), VI (t�) and VS(t�) are referred to as

the amplitudes of EPSP, IPSP and SSP, respectively. In order to

verify the product form of the SC term, we follow the same data

processing procedure as in Ref. [20]: by setting the EPSP

amplitude at a fixed value while varying the IPSP amplitude, we

examine whether the SC amplitude linearly depends on the IPSP

amplitude. Conversely, for a fixed amplitude of IPSP, we examine

whether the SC amplitude linearly depends on the EPSP

amplitude. As shown in Fig. 4A, the SC increases linearly with

respect to the IPSP amplitude when the EPSP amplitude is fixed,

whereas the SC increases linearly with respect to the EPSP

amplitude when the IPSP amplitude is fixed. In addition, we

observe that both straight lines in Fig. 4A have almost identical

slopes and this relationship is exactly the same as the one observed

in the experiment [20]. If we use the mean values �VVE , �VVI and �VVS

of EPSP, IPSP and SSP respectively, averaged over a time interval

Figure 2. The spatial dependence of {a obtained from Eq.
(9). Given three fixed inhibitory input locations, we can parameterize a
in Eq. (9) by identifying kM with the shunting coefficient measured in
the experiment [20] to obtain the spatial dependence of a. Inset: the
experimental measurements of the shunting coefficient [20] as a
function of the distance between the excitatory input site and the soma
for three fixed inhibitory input sites on the dendrite (marked by dashed
lines).
doi:10.1371/journal.pone.0053508.g002

Figure 3. Reproduced profiles of EPSP and IPSP by the I&F
model. The thick dark (blue online) lines are produced from the I&F
model, the light gray lines represent EPSP and IPSP measured in the
experiment for different trials, and the thin dark (red online) lines
represent the trial-averaged responses in the experiment. Parameters in
the I&F model are chosen as follows, fE~1:16|10{5S:cm{2,
sEr~5ms, sEd~7:8 ms, fI ~3:71|10{5S:cm{2 , sIr~6 ms, and
sId~18 ms. (See Methods for details).
doi:10.1371/journal.pone.0053508.g003
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of 100 ms, the summation rule �VVS~ �VVEz �VVIz�kk �VVE
�VVI also holds

as shown in Fig. 4B. This is also consistent with the experimental

observations [20]. Our numerical results further show that the rule

holds for VE(t), VI (t) and VS(t) at any moment of time t (i.e., not

restricted to t�) as demonstrated in Fig. 4C (1–4) for a selected set

of times.

As shown above, the I&F dynamics of somatic membrane

potential can exhibit the dendritic integration rule [Eq. (1)].

However, one may ask why this linear dynamics of somatic

subthreshold membrane potential as described by the I&F model

can produce such a nonlinear integration rule. Below, we answer

this question analytically (see Methods for details). From Eq. (1), we

have

k~
VS(t){VE(t){VI (t)

VE(t):VI (t)
: ð2Þ

If we can demonstrate that k is independent of the amplitude of

inputs, then the dendritic integration rule holds. Performing a

Taylor expansion of the analytical solution to the conductance-

based I&F model, we can obtain approximations of EPSP, IPSP

and SSP (See Methods). Substituting these voltage values [Eqs.

(22b), (23b) and (24b)] into Eq. (2), we can obtain an approximate

k, denoted by k� as

k�~{

Ð t

0
feEhI (u)Q(hE ,u)zeI hE(u)Q(hI ,u)gdu

eEeI Q(hE ,t)Q(hI ,t)
, ð3Þ

where Q(f ,x) is a functional defined as

Q(f ,x)~
Ð x

0
eGL(y{t)=Cf (y)dy. eE and eI are the excitatory and

inhibitory reversal potentials, respectively. hE(:) and hI (:) as given

by Eqs. (17) and (18) only determine the profiles (rise and decay

time scale) of EPSP and IPSP, whereas the excitatory and

inhibitory inputs strength fE and fI corresponding to the

amplitudes of EPSP and IPSP as in Eqs. (15) and (16), do not

appear in the expression of k� [Eq. (3)]. Therefore, k� is

independent of the amplitudes of EPSP and IPSP for any times.

For the mean EPSP and the mean IPSP, we can simply take

integrals of VE , VI , VS over the time interval ½0,T � to obtain the

mean values (T~100ms in the experiment [20]), where the mean

is defined as
1

T

ðT

0

V (t)dt. By definition, the shunting coefficient

for the mean case can be evaluated as

k�mean~{
T
Ð T

0

Ð t

0
feEhI (u)Q(hE ,u)zeI hE(u)Q(hI ,u)gdudt

eEeI

Ð T

0
Q(hI ,t)dt

Ð T

0
Q(hE ,t)dt

, ð4Þ

which shows that k�mean is independent of the EPSP and IPSP

amplitudes for the same reason as mentioned in the analysis of Eq.

(3). Therefore, the dendritic integration rule holds for the somatic

membrane potential as modeled by the I&F dynamics. Through

the above analysis, it can be seen that the nonlinearity in the

dentritic integration rule ultimately arises from the product term of

the conductance G and the voltage V in the input current of the

I&F neuron (see Methods).

The DIF Neuronal Model
As is well known, the conductance-based I&F model is used to

describe the membrane potential dynamics in the soma without

taking into account dendritic structures. From the above analysis,

it seems that the subthreshold membrane potential dynamics in

the soma is able to explain the dendritic integration rule [Eq. (1)].

However, as can be seen in Fig. 4A, there is a difference of a factor

of two between the value of the shunting coefficient k measured in

the experiment and that of k computed by the I&F model.

Incidentally, the experimentally measured k and the value

obtained by the NEURON software in Ref. [20] also differ

almost by a factor of two. Importantly, as observed in the

experiment [20], the value of k depends on the distance between

the input sites and the soma. However, from Eq. (3), it can be seen

that k does not contain any spatial information explicitly. In the

following, we will construct a simple phenomenological neuron

model that incorporates the spatial dependence in the dendritic

integration rule. As can be seen below, our new neuron model can

account for additional observed experimental phenomena and will

also be useful for network simulations that take into account effects

arising from dendritic integrations.

Figure 4. Dendritic integration rule obtained from the I&F model (A–C) and the modified I&F model (D–F). We choose the values of
a~{8kV:cm2 and b~7kV:cm2 so that the value of k computed from Eq. (8) matches the value measured in the experiment [20]. Lines in figures
indicate linear fits with slope k. (A) Ratio between SC and EPSP (SC/EPSP) plotted against IPSP (red square online) and SC/IPSP plotted against EPSP
(blue circle online) at time t� for the I&F model (Red online: k = 0.070; blue online: k~0:065). Inset: experimental measurement (Red online: k = 0.142;
blue online: k~0:145). (B) Ratio between the mean SC and the mean EPSP (SC/EPSP) plotted against the mean IPSP (red square online), the mean SC
and the mean IPSP (SC/IPSP) plotted against the mean EPSP (blue circle online) for the I&F model. Inset: experimental measurement. (C) the same as
(A) but at time (1) t = 20 ms, (2) t = 40 ms, (3) t = 60 ms and (4) t = 80 ms, respectively, as marked on the figures. (D) the same as (A) but for the
modified I&F model (Red online: k = 0.147; blue online: k~0:143). Inset: the same as the inset of (A). (E) the same as (C) but for the modified I&F
model. (F) the same as (B) but for the modified I&F model. Inset: the same as the inset of (B).
doi:10.1371/journal.pone.0053508.g004

Figure 5. The shunting coefficient kM as a function of time.
With three different values of b: b~10kV:cm2 (thick dark line: red
online), b~0kV:cm2 (thick gray line: blue online), b~{10kV:cm2

(light gray line: green online). Here a is fixed as a~{8kV:cm2. It can be
seen that kM is nearly independent of the parameter b.
doi:10.1371/journal.pone.0053508.g005
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To incorporate the spatial dependence of the dendritic

integration rule, we first motivate the construction of our neuron

model by a static two-port analysis [33] (see Methods for details).

For the time-independent case, the conductance inputs of both

excitation GE and inhibition GI are constant, the transfer

resistance between any two sites on the dendritic tree is also

constant. Therefore, we can express the excitatory and inhibitory

currents as Iex~GE(eE{VE
E ) and Iin~GI (eI{VI

I ), respectively.

Here VE
E represents the membrane potential at the site of

excitation and VI
I the membrane potential at the site of inhibition.

We can obtain the membrane potentials VE
E and VI

I as

VE
E ~KEEIexzKIEIin and VI

I ~KII IinzKEI Iex, respectively

[33]. Here KEE and KII are local transfer resistances at the sites

of excitation and inhibition, respectively. KIE corresponds to the

transfer resistance from the inhibitory site to the excitatory site and

vice versa for KEI . The membrane potential at the soma can be

obtained by adding the excitatory and inhibitory contributions,

i.e., VS~KESIexzKISIin. If the conductance inputs are suffi-

ciently small, we can obtain the following relationship under the

simultaneous drive

VS&VEzVI{(KESKIEeIzKISKEI eE)GEGI , ð5Þ

where VE (VI ) is the EPSP (IPSP) obtained with only excitatory

(inhibitory) input, and VS is the SSP in this static case. From

Methods, we have that the product of VE and VI can be

approximated by

VEVI&KESKISeEeI GEGI : ð6Þ

Therefore, we can obtain Eq. (39), which has exactly the same

form as the dendritic integration rule with a shunting coefficient

k~{
KIE

KISeE

{
KEI

KESeI

. We emphasize that this dendritic integra-

tion rule obtained through the two-port analysis is only valid for

the static case. Clearly, we need to address the time-dependent

case as in the experimental setup [20]. However, this static analysis

provides us with an observation about possible mechanisms

underlying the dendritic integration rule. Note that, in Eqs. (5)

and (6), the shunting component encompasses the product term

between the excitatory conductance GE and the inhibitory

conductance GI , in turn, yielding the product, VEVI , in Eq.

(39). Therefore, the product, GEGI , is the intrinsic origin of the

shunting component in the static case [Eq. (38)]. Using this

observation, we propose to generalize the I&F dynamics by

introducing terms of GEGI and obtain the following governing

equation for a neuron:

C
dVM

dt
~{GL(VM{eL){GE(1zaGI )(VM{eE)

{GI (1zbGE)(VM{eI ),

ð7Þ

where C is the membrane capacitance, GL is the leaky

conductance, GE and GI are the excitatory and inhibitory

conductances, respectively. eL is the resting potential, eE and eI

are the excitatory and inhibitory reversal potentials, respectively.

In Eq. (7), for clarity of later discussions, we denote the membrane

potential by VM . The parameters a and b are used to

parameterize the spatial effects of dendritic integration. In the

following, we will refer to Eq. (7) as the modified I&F model.

First, we discuss how to determine the parametrization of a and

b. Considering the time-independent case, we denote individual

EPSP and IPSP at the soma by VM
E and VM

I , the SSP by VM
S . The

condition dVM=dt~0 leads to VM
E ~

GEeE

GEzGL

, VM
I =

GI eI

GIzGL

and VM
S =

GEeEzGI eIz(aeEzbeI )GEGI

GEzGIz(azb)GEGIzGL

. By imposing the

condition that the dendritic integration rule holds, i.e.,

VM
S = VM

E zVM
I zkVM

E VM
I , we can conclude that the parame-

ters a and b must satisfy azb~
1

GL

and aeEzbeI =

eEzeIzkeEeI

GL

, from which, we obtain a~
eEzkeEeI

GL(eE{eI )
and

b~
1

GL

{
eEzkeEeI

GL(eE{eI )
. Note that, in the limit of GL??, we

have a~b~0, and the modified I&F model reduces to the

standard I&F model. That is, the modified I&F model is naturally

a generalized I&F model. We will show below that a, b can indeed

be used to parameterize the dendritic integration rule in a

dynamical situation.

We now turn to the discussion that in the modified I&F model

the dendritic integration rule holds for any moment of time,

including the time when the EPSP reaches its peak. Solving the

modified I&F model numerically using the fourth-order Runge-

Kutta method, we have the relationship among VM
E , VM

I , and VM
S

as Eq. (1) at the time when VM
E (t) reaches its peak (Fig. 4D) as well

as at any other times (Fig. 4E(1–4)). As shown in Fig. 4F, this

integration rule is also valid if the mean values of EPSP, IPSP and

SSP are used.

We can further obtain a theoretical expression of the shunting

coefficient. Performing Taylor expansion to the solution of integral

form of the modified I&F model to obtain the approximations of

EPSP, IPSP, and SSP (see Methods for details), then using Eq. (2),

we arrive at the shunting coefficient kM for the modified I&F

model

kM~k�z
(aeEzbeI )C

Ð t

0
hE(u)hI (u)eGL(u{t)=Cdu

eEeI Q(hI ,t)Q(hE ,t)
, ð8Þ

where k� is the shunting coefficient computed in the original I&F

model [Eq. (3)]. Q(:,t) is the same functional as defined in Eq. (3).

In Eq. (8), the first term k� on the right-hand side is independent of

the amplitude of EPSP or IPSP, as was shown previously. For the

second term, similarly, because hE(:) and hI (:) only control the

profiles of EPSP and IPSP and are independent of the amplitudes

of EPSP and IPSP. Therefore, kM is independent of the

amplitudes of EPSP and IPSP and the dendritic integration rule

holds for the modified I&F model. Following the same procedure,

we can also show that this integration rule holds for the mean

potentials. We can further approximate the shunting coefficient

kM as

kM&k�z
aC
Ð t

0
hE(u)hI (u)eGL(u{t)=Cdu

eI Q(hE ,t)Q(hI ,t)
, ð9Þ

in which kM is independent of the parameter b. This indepen-

dence is a consequence of the fact that the magnitude of the

inhibitory reversal potential (eI~{10 mV) can be viewed as

much smaller than that of the excitatory one (eE~70 mV) in

absolute value. Eq. (9) as an approximation for kM has been

verified numerically: Fig. 5 shows that kM is indeed nearly
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independent of b. Therefore, we can set b to be zero to obtain a

further simplified form of the modified I&F model,

C
dVM

dt
~{GL(VM{eL){GE(1zaGI )(VM{eE)

{GI (VM{eI ):

ð10Þ

Eq. (10) is our central result and we will refer to this model as a

dendritic-integration-rule-based I&F (DIF) model. First, we

comment that the above conclusions about the dendritic

integration rule remain unchanged for the DIF model. Second,

we show that we can incorporate the spatial dependence of the

dendritic integration rule using the following parametrization. For

a given pair of excitatory and inhibitory inputs, the shunting

coefficient k can be measured in the experiment. We can use this

measured k as the value of kM to determine the value of a from

Eq. (9), namely, we can phenomenologically fit the value of a as a

function of stimulus locations. Our fitting yields the results which

are shown in Fig. 2. The parameter a captures the integration

effects to the soma arising from both passive cable properties and

active conductance properties (ion channels and receptors) of the

dendrite [20]. We note that a is determined by the shunting

coefficient k measured with a pair of concurrent excitatory and

inhibitory inputs. However, even when excitatory and inhibitory

inputs are not concurrent, the shunting coefficient k obtained

using Eq. (9) is still independent of the amplitudes of EPSP and

IPSP because the amplitudes of EPSP and IPSP do not appear in

the numerator and denominator. Therefore, the DIF model can

be used to study neuronal responses to general stimulus patterns of

excitatory and inhibitory inputs.

Finally, we show that the DIF model is consistent with many

other experimental observations, some of which have not been

obtained by the multi-compartmental model using NEURON

software [20].

(1) It has been found in the experiment that SC vanishes when

hyperpolarization is induced by somatic current injection Iinj(t)
instead of conductance input GI (t) on the dendrite [20]. For this

case, the drive can be modeled by Iinj = f
srsd

sd{sr

e
{ t

sd {e{ t
sr

� �
,

where f is the magnitude, sr and sd are the rise and decay time

constants, respectively [33]. The dynamics of the DIF model

becomes

C dVM

dt
~{GL(VM{eL){GE(VM{eE)zIinj :

As verified numerically in Methods, the soma response VM
E under

only excitatory drive can be well approximated by the first-order

expansion as VM
E &

ðt

0

eE
GE(u)

C
eGL(u{t)=Cdu. Therefore, for mul-

tiple excitatory inputs, we have the linear summation of EPSPs.

This linear summation rule for EPSP has also been found in

experiments [36]. We can further obtain VM
S &VM

E zVM
I : Fig. 6A

reproduces the experimental observation (the inset of Fig. 6A) that

there is no longer a nonlinear SC term.

(2) It has also been examined how the amplitude of SC is

affected by a relative temporal delay between excitatory and

inhibitory inputs. In the experiment [20], it was found that (i) the

SC amplitude decreases with the length of delay interval between

excitation and inhibition and (ii) A larger SC is induced when the

excitatory input is located on the distal dendrite than that on the

proximal dendrite. The experimental observation (i) can be

explained as follows. The shorter the temporal delay between

excitation and inhibition, the larger the SC because the amplitude

of SC relies on the product between VE(t) and VI (t). Due to this

product form, there is a kink structure for the SC, which can be

seen both in the experiment (the inset of Fig. 6B) and in our DIF

model (Fig. 6B). The observation (ii) can be understood as follows:

A distal excitatory input indicates a larger shunting coefficient k,

which leads to a larger absolute value of a in Eq. (9), therefore, SC

is larger for the distal excitatory input. Indeed, the DIF model can

capture this time-delay shunting effect successfully as shown in

Fig. 6B. The above experimental phenomena have not been

addressed by the multi-compartmental model in Ref. [20].

(3) By changing the driving force for IPSP from 210 to 0 mV, it

has been found in the experiment [20] that the nonlinear SC term

is not affected (the inset of Fig. 6C). In the DIF model, SC can be

obtained as SC~{

ðt

0

feE
GI (u)

C2
Q(GE ,u)+eI

GE(u)

C2
Q(GI ,u){

(
a

C
eEz

b

C
eI )GE(u)GI (u)eGL(u{t)=Cgdu. As discussed above, the

ratio of the reversal potentials between excitation and inhibition

can be viewed as large (D
eE

eI

D&1), therefore, we have

SC&{eE

ðt

0

fGI (u)

C2
Q(GE ,u){

a

C
GE(u)GI (u)eGL(u{t)=Cgdu,

which is independent of eI . Therefore, a moderate change of the

driving force for IPSP in the DIF model would not affect the value

of SC. As shown in Fig. 6C, the result of our DIF model agrees

with the experimental observation. This independence of the

inhibitory driving force shows that the nonlinear term in Eq. (1) is

Figure 6. Comparison of DIF model with experiments (A–C), multiple inputs (D), Predictions (E), spatial dependence of k in the I&F
model (F). (A) SSP (measured sum) vs. the linear sum between EPSP and direct somatic hyperpolarization. Here, SC is not observed. The inhibition
is caused by direct injection of an inhibitory current with amplitude of 22.6 mV (red circle online) and of 21.3 mV (red square online). Inset:
experimental measurement (modified from Ref. [20]). (B) SC vs. the relative time delay between IPSP and EPSP. For fixed inhibitory input site, we
choose two different input sites for excitation: one corresponds to the distal dendrite (red circle online) and the other the proximal dendrite (blue
square online). Inset: experimental measurement (modified from Ref. [20]). (C) SC is not affected by changing the driving force (DF) of IPSP from 0 to
210 mV. Inset: experimental measurement (modified from Ref. [20]). (D) Dendritic integration rule for two excitatory and two inhibitory inputs. The
simulated E–I sum represents the SSP obtained from Eq. (12) with a coincident activation of all excitatory and inhibitory inputs, whereas the predicted
E–I sum represents the somatic membrane potential obtained from Eq. (11). (E) Comparison between kM and k� as a function of time. The remainder
term is defined as kM{k� (thick gray, blue online). Inset: The asymptotic behavior *t{1 (denoted by ‘‘asymptotic’’, thick dark dash line, red online)
of the remainder term (denoted by ‘‘exact’’, thick gray, blue online) obtained from Eq. (9). (F) spatial dependence of k� in the I&F model when the
inhibitory input site is fixed. Using the spatial dependence of the conductance time constants, we can obtain the result that k� decreases as the
distance increases between the excitatory input site and the soma. This is not consistent with the experimental observation (Inset: the same as the
inset of Fig. 2).
doi:10.1371/journal.pone.0053508.g006
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consistent with the notion of shunting inhibition [20]. Using Eq.

(2) along with the above equation, we obtain

kM~
SC

VE(t):VI (t)

&{
1

eI

Ð t

0
fhI (u)Q(hE ,u){aChE(u)hI (u)eGL(u{t)=Cgdu

Q(hE ,t)Q(hI ,t)
,

which shows that the shunting coefficient kM is inversely

proportional to eI in the DIF model. This relation has also been

found by using the multi-compartmental model in Ref. [20].

DIF Model for Neuronal Network
Note that a pyramidal neuron normally receives a large number

of excitatory and inhibitory synaptic inputs [37]. It has been

examined by simulation [20] whether the dendritic integration

rule obtained from a pair of excitation and inhibition is applicable

to multiple excitatory and inhibitory inputs. By using the

NEURON software, the following relationship has been found

VS~
X

i

V i
Ez

X
j

V
j
Iz
X

ij

kijV
i
EV

j
I , ð11Þ

where VS is the SSP with a coincident activation of all excitatory

and inhibitory inputs, Vi
E and V

j
I are the individual EPSP and

IPSP, respectively. Vi
E is induced by the ith excitatory input alone

and V
j
I is induced by the jth inhibitory input alone [20]. To

account for multiple excitatory and inhibitory inputs and related

dendritic integrations, we need to further generalize the DIF

model. We propose the following natural extension:

C
dVl

dt
~{GL(Vl{eL){

X
i

Gi
E(Vl{eE){

X
j

G
j
I (Vl{eI )

{
X

i

X
j

al
ijG

i
EG

j
I (Vl{eE),

ð12Þ

where Vl is the membrane potential of the lth neuron, Gi
E

represents the ith excitatory conductance input and G
j
I the jth

inhibitory conductance input, al
ij is determined by the shunting

coefficient kij for the pair of the ith excitatory and the jth

inhibitory inputs. Using the above model, we study whether the

dendritic integration rule has the form of Eq. (11). We tested the

case of two excitatory and two inhibitory inputs using several

groups of faijg, with each aij corresponding to the shunting

coefficient for each pair of excitation and inhibition. The results

are shown in Fig. 6D, which shows that the form of Eq. (11) holds

as the dendritic integration rule in the DIF network model [Eq.

(12)]. Similar to Eq. (1), Eq. (11) requires that all excitatory and

inhibitory inputs occur simultaneously, therefore, one cannot use

the formula [Eq. (11)] to calculate the soma responses to the

general stimuli of multiple inputs. To study neuronal responses to

general inputs of multiple sites, we need to use the DIF network

model since it naturally exhibits dendritic integration effects

dynamically.

For a given network of N neurons with polysynaptic connec-

tivity, we can use the value of al
ij for the lth neuron in Eq. (12) to

effectively take into account the dendritic integration effect arising

from each pair of synaptic inputs from the ith presynaptic

excitatory neuron and the jth presynaptic inhibitory neuron. The

values of fal
ijg are chosen to model spatial distances of the synaptic

locations. Then, we can evolve the dynamics of the neuronal

network [Eq. (12)] without explicitly considering the dendritic tree

structure for each neuron. Clearly, neither the polysynaptic

connectivity nor the value of al
ij for each pair of synaptic inputs

is easy to obtain in current experiments. However, one may

numerically study the network dynamics by choosing different

values of fal
ijg, which correspond to different spatial effects of

dendritic integration. Our DIF network model might be poten-

tially useful in the numerical study to address the effects arising

from dendritic integration in neuronal networks.

Discussion

In this work, we have proposed a simple DIF neuron model that

dynamically incorporates the spatial dependence of the dendritic

integration rule by a phenomenological parametrization. Via

analytical and numerical methods, we have shown that the DIF

model is capable of capturing many experimental observations.

Below, we will further discuss properties of this model as well as

predictions of this model.

First, we will provide some rationale to the form of the DIF

model in Eq. (10). In fact, Eq. (10) can be viewed as a special case

of the following equation

C
d

dt
V~{GL(V{eL){GEf (GI )(V{eE){GI (V{eI ), ð13Þ

where f (GI )~1za1GI (t)za2G2
I (t)z � � �. As we have discussed

previously, higher order terms of GI can be ignored since they are

too small to have any significant influence on the value of the

shunting coefficient k. Therefore, Eq. (10) essentially encompasses

the major terms which contribute to the dendritic integration [Eq.

(1)]. The nonlinear SC term in Eq. (1), which takes the form of the

product between excitatory and inhibitory responses, can be

understood as follows: the input is through conductances which

appear as the multiplication factor of the voltage in Eq. (14).

Therefore, linear summation rule for the responses is not

necessarily true since the relation between the input and the

output response is no longer linear. In other words, the bilinear

structure between the conductance and the voltage in I&F-type

models gives rise to the bilinear term of the excitatory response VE

and the inhibitory response VI when the excitatory and inhibitory

conductance inputs occur simultaneously. Note that, the voltage of

neurons in the experiment [20] is substantially below the

threshold, therefore, we can use the linear component of the

I&F model to model a neuron’s dynamical behavior. However,

when the voltage is not sufficiently low or when a neuron produces

spikes, we may need to use the exponential I&F model [34] or

Hodgkin-Huxley-type neuron models to take into account the

nonlinear behaviors of a neuron arising from its ion channels. Of

course, further experiments should be performed to examine

dendritic integration effects in such regimes.

Next, we determine the range of the parameter a in our DIF

model. Notice that, for a fixed excitatory input location, the

shunting coefficient k measured in the experiment is between 0.08

and 0.3mV{1 for various inhibitory input locations [20]. From the

relation [Eq. (9)] between kM and a, we can determine the range

of a: 225 * 22 kV:cm2. Interestingly, in this range, a is always

negative. As a consequence, the inhibitory conductance input will

reduce the effects of excitatory drive, as can be seen from the term

GE(1zaGI )(eE{V ) in Eq. (10). In other words, the inhibition is
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amplified and the neuronal network might be more inhibited than

that without dendritic integrations.

Predictions by the DIF Model
We now turn to the prediction of our DIF model, which can be

verified in experiments:

(1) The asymptotic behaviors of k� and kM are quite different

when the time t is near zero. As shown in Fig. 6E, k� approaches a

finite value, whereas kM approaches infinity as t tends to zero.

From Eq. (9), the difference between k� and kM is

aC
Ð t

0
hE(u)hI (u)eGL(u{t)=Cdu

eI Q(hI ,t)Q(hE ,t)
, which we refer to as the remainder

term and its asymptotic behavior is *t{1 when t is near zero. In

this case, although both the numerator and the denominator of the

remainder term are small, the ratio between them can still be very

large since the numerator is *t3 and the denominator is *t4

when t is near zero. By measuring the EPSP, IPSP and SSP at the

early time t instead of t�&20ms in the experiment [20], one could

first examine whether the dendritic integration rule [Eq. (1)] still

holds. If so, one could further verify whether there is an increase in

magnitude for the shunting coefficient k as discussed above. Of

course, care should be taken in measuring k near t~0 because in

this situation the signals are very weak, thus leading to a larger

measurement error for k.

(2) As discussed previously, the intrinsic origin of the product

between EPSP and IPSP in the dendritic integration rule comes

from the product between the excitatory and inhibitory conduc-

tances. From the DIF model, it is easy to derive the nonlinear

relation GEI&GLzGEzGIzaGEGI , where GEI is the conduc-

tance when both excitatory and inhibitory inputs are presented. By

recording EPSP, IPSP and SSP with high temporal resolution

[34], one can construct the corresponding conductances GE , GI

and GEI to examine whether such a nonlinear relation holds for

any given fixed pair of excitatory and inhibitory inputs.

(3) For synaptic inputs, e.g., inputs are through conductances

GE and GI , the I&F-type models are no longer linear because they

contain the product between the input (conductance) and the

response (voltage) as in Eqs. (10) and (14). However, if all the

inputs are through direct current injection, the nonlinear SC term

in Eq. (1) should vanish as predicted by both the DIF model and

the standard I&F model [Eq. (14)].

(4) From the expression of the shunting coefficient kM [Eq. (8)],

we notice that this dendritic integration rule is not completely

attributable to the dendritic properties. The first term on the right-

hand-side of Eq. (8) shows that the somatic membrane properties

are also responsible for the integration rule. Therefore, if all the

conductance inputs are acted on the soma instead of on the

dendrite, one should also observe the dendritic integration rule as

in Eq. (1). Of course, in this case, the shunting coefficient k will no

longer possess (i) the distal-proximal asymmetry property, and (ii)

the dependence of active conductance on the dendrite as observed

in the experiment [20] since the input sites of excitation and

inhibition are all located at one point (the soma) and the

distribution of active conductances (ion channels and receptors)

on the dendrite are no longer relevant.

Finally, we point out that the rise and decay time constants of

EPSP depend on the input sites for real neurons [38]. Since the

shunting coefficient k� in Eq. (3) is a function of sEr, sEd , one may

wonder whether it is possible to capture the spatial dependence of

the shunting coefficient k by the I&F model [Eq. (14)] in

combination with the input-location dependence of the time

constant of EPSP. We first substitute the EPSP’s rise and decay

time constants measured in the experiment [38] into the fitting

function in Ref. [38] to reconstruct the EPSP profile. Then, we use

a differential evolution method [39]–-which is a global optimiza-

tion method–-to search for the best choices of sEr and sEd to fit

the reconstructed EPSP profile [38]. As shown in Fig. 6F, the value

of k� calculated in this manner first decreases as the distance

increases between the excitatory input site and the soma, and then

saturates at a constant value. The behavior is not consistent with

the experimental measurements [20] (the inset of Fig. 6F). In

addition, this approach also fails to explain the phenomena

mentioned in Fig. 6B.

Methods

Conductance-based Integrate-and-fire Model
For the conductance-based I&F neuron model, its dynamics are

governed by [33]

C
dV

dt
~{GL(V{eL){GE(V{eE){GI (V{eI ), ð14Þ

where C is the membrane capacitance per unit area, GL is the

leaky conductance, GE and GI are the excitatory and inhibitory

conductances, respectively. eL is the resting potential, eE and eI are

the excitatory and inhibitory reversal potentials, respectively. The

dynamics of conductances GE and GI can be described by [40]

GE(t)~fENEhE(t), ð15Þ

GI (t)~fI NI hI (t), ð16Þ

where fE and fI represent the input strength of excitation and

inhibition, respectively. NE and NI are normalization factors

which make fE and fI the maxima of GE and GI , respectively.

They are chosen as NE = ½( sEr

sEd

)
sEr

sEd {sEr 2(
sEr

sEd

)
sEd

sEd {sEr �{1
,

NI = ½( sIr

sId

)
sIr

sId {sIr 2(
sIr

sId

)
sId

sId{sIr �{1
. sEr and sEd are the rise

and decay time constants of the excitatory conductance, respec-

tively. sIr and sId are the rise and decay time constants of the

inhibitory conductance, respectively. hE(t) and hI (t) are a-like

functions [40] which determine the profiles of EPSP and IPSP,

respectively. They are defined as

hE(t)~e
{ t

sEd {e
{ t

sEr , ð17Þ

hI (t)~e
{ t

sId {e
{ t

sIr : ð18Þ

Since the I&F model only describes the soma dynamics, GE and

GI are not synaptic conductances but the effective soma

conductances which model the change of the somatic membrane

potential due to local synaptic inputs on the dendrite.

In order to be consistent with the setup in the experiment [20],

all the voltage values mentioned are chosen as relative voltages

with respect to the resting potential. To reproduce the same

profiles of EPSP and IPSP as measured in the experiment [20], we

choose the time constants as sEr~5ms, sEd~7:8ms, sIr~6ms,

and sId~18ms. The range of input strength fE and fI is
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determined by the range of amplitudes of EPSP and IPSP in the

experiment [20]. fE is chosen from 1:8|10{6 to

1:8|10{5S:cm{2 to make the EPSP vary from 1 mV to

10 mV. Similarly, fI is chosen from 1:7|10{6 to

5:2|10{5S:cm{2 to make IPSP vary from 0.2 mV to 4 mV.

The reversal potentials relative to the resting potential are chosen

to be the same as those used in the experiment [20]: eL~0mV,

eE~70mV, eI~{10mV, along with commonly used neurophys-

iological parameters C~1:0|10{6F:cm{2, GL~5:0|

10{5S:cm{2 measured in experiments [33]. As shown in Fig. 3,

the profiles of EPSP and IPSP measured in the experiment can be

well reproduced by the I&F model with the above parameters.

Analytical and Approximate Solutions to I&F-type Models
Based on the I&F model, the individual EPSP [VE(t)] and IPSP

[VI (t)] under separate excitatory and inhibitory inputs can be

described by

C
d

dt
VE~{GL(VE{eL){GE(VE{eE), ð19Þ

C
d

dt
VI~{GL(VI{eL){GI (VI{eI ), ð20Þ

whereas, the SSP [VS(t)] under simultaneous excitatory and

inhibitory inputs can be described by

C
d

dt
VS~{GL(VS{eL){GE(VS{eE){GI (VS{eI ): ð21Þ

The conductances of excitation and inhibition are given by Eqs.

(15) and (16). With notations GS~GEzGI and fGSGS~eEGEz
eI GI , we can obtain analytical solutions to Eqs. (19–21) along with

their approximations in integral forms as

VE(t)~

ðt

0

eE
GE(u)

C
eGL(u{t)=Ce

Ð u

t
GE (v)=Cdv

du ð22aÞ

&
ðt

0

eE
GE(u)

C
eGL(u{t)=C(1z

ðu

t

GE(v)=Cdv)du, ð22bÞ

VI (t)~

ðt

0

eI

GI (u)

C
eGL(u{t)=Ce

Ð u

t
GI (v)=Cdv

du ð23aÞ

&
ðt

0

eI
GI (u)

C
eGL(u{t)=C(1z

ðu

t

GI (v)=Cdv)du, ð23bÞ

VS(t)~

ðt

0

fGSGS(u)

C
eGL(u{t)=Ce

Ð u

t
GS (v)=Cdv

du ð24aÞ

&
ðt

0

fGSGS(u)

C
eGL(u{t)=C(1z

ðu

t

GS(v)=Cdv)du, ð24bÞ

where approximations are taken with respect to the second order

of
Ð u

t
GE(s)ds,

Ð u

t
GI (s)ds, and

Ð u

t
GS(s)ds in Taylor expansions. In

particular, the soma response VE(t) under only the excitatory

input can also be approximated by the first-order expansion as

VE(t)&
Ð t

0
eE

GE(u)

C
eGL(u{t)=Cdu.

For the modified I&F model [Eq. (7)], the individual EPSP (VM
E )

can be obtained by setting the inhibitory input GI~0 in Eq. (7).

For this case, Eq. (7) reduces to Eq. (19). Similarly, for the

individual IPSP (VM
I ) where GE~0, Eq. (7) reduces to Eq. (20).

Therefore, we can use Eqs. (23) and (25) as approximations of

EPSP (VM
E ) and IPSP (VM

I ). For the SSP (VM
S ), with notations

GM
S ~GEzGI +(azb)GEGI , gGM

SGM
S ~eEGE+eI GIz(aeEzbeI )GEGI ,

we can obtain the analytical solution to Eq. (7) as

VM
S (t)~

ðt

0

gGM
SGM
S (u)

C
eGL(u{t)=Ce

Ð u

t
GM

S
(v)=Cdv

du ð25Þ

along with the following approximation by performing the second-

order Taylor expansion with respect to
Ð u

t
GM

S (v)dv:

VM
S (t)&VS(t)z(

a

C
eEz

b

C
eI )

ðt

0

GE(u)GI (u)eGL(u{t)=Cdu, ð26Þ

where VS(t) is given by Eq. (24b). All the above approximations

have been verified numerically and the relative errors with respect

to the analytical solutions are less than 5%.

Two-port Analysis
A linear relationship between the synaptic current and the

membrane potential has been observed in the experiment [41] for

fast, non-NMDA input into hippocampal pyramidal neurons.

Therefore, we can describe the synaptic currents of excitation and

inhibition by Iex~GE(t)(eE{VE
E (t)) and Iin(t)~GI (t)(eI{

VI
I (t)), respectively. Here, VE

E (t) and VI
I (t) represent the

membrane potentials at the sites of excitation and inhibition,

respectively. According to linear cable theory [33], the voltage

change Vj(t) at location j in response to an arbitrary current input

Ii(t) at location i can be expressed as Vj(t)~Kij(t) ? Ii(t), where

Kij(t) is the impulse response of the system and the symbol ‘‘?’’

stands for convolution in time. In particular, for the time-

independent case, we can obtain the EPSP at the soma (VE ) under

only the excitatory input as VE~KESGE(eE{VE
E ), whereas the

EPSP at the input site (VE
E ) can be obtained as

VE
E ~KEEGE(eE{VE

E ). Therefore, we have

VE~
KESGEeE

1zKEEGE

: ð27Þ

Similarly, we can obtain the IPSP at the soma (VI ) under only

the inhibitory input as

VI~
KISGI eI

1zKII GI

: ð28Þ

For simultaneous inputs of excitation and inhibition, the SSP

can be expressed as

VS~KESGE(eE{fVEVE)zKISGI (eI{fVIVI ), ð29Þ
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where fVEVE and fVIVI are given by fVEVE = KEEGE(eE{fVEVE)+
KIEGI (eI{fVIVI ) and fVIVI = KII GI (eI{fVIVI )+KEI GE(eE{fVEVE), re-

spectively. Solving the above equations, we can obtain

fVEVE~
KEEGEeEzKIEGI eIz(KEEKII{KEI KIE)GEGI eE

1zKEEGEzKII GIz(KEEKII{KEI KIE)GEGI

, ð30Þ

fVIVI ~

{
(KEEGEeEzKIEGI eI )KEI GEz(KEI GEeEzKII GI eI )(1zKEEGE )

1zKEEGEzKII GI z(KEEKII {KEI KIE)GEGI

,
ð31Þ

VS~

KESGE eEzKISGI eI z(KESKII {KISKEI )GI GE eEz(KISKEE{KESKIE )GE GI eI

1zKEE GEzKII GI z(KEE KII {KEI KIE )GE GI

:
ð32Þ

As pointed out in Refs. [20,33], the magnitudes of KEEGE ,

KII GI , KIEGI , KEI GE are on the order of 10{2*10{1 due to

small synaptic inputs and thus can be viewed as much smaller than

unity. Therefore, we have the following approximations by

keeping up to the second-order terms in Taylor expansions

VE&KES(1{KEEGE)GEeE , ð33Þ

VI&KIS(1{KII GI )GI eI , ð34Þ

and

VS&KES(1{KEEGE)GEeEzKIS(1{KII GI )GI eI

{KESKIEGEGI eI{KISKEI GEGI eE :
ð35Þ

Finally, we can obtain

VS&VEzVI{(
KIE

KISeE

z
KEI

KESeI

)VEVI ð36Þ

with the shunting coefficient k~{
KIE

KISeE

{
KEI

KESeI

. Eq. (36) has

the same form as the dendritic integration rule [Eq. (1)] as

observed in the experiment.
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