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Abstract We present a numerical analysis of the dy-
namics of all-to-all coupled Hodgkin-Huxley (HH)
neuronal networks with Poisson spike inputs. It is im-
portant to point out that, since the dynamical vector
of the system contains discontinuous variables, we pro-
pose a so-called pseudo-Lyapunov exponent adapted
from the classical definition using only continuous dy-
namical variables, and apply it in our numerical inves-
tigation. The numerical results of the largest Lyapunov
exponent using this new definition are consistent with
the dynamical regimes of the network. Three typical
dynamical regimes—asynchronous, chaotic and syn-
chronous, are found as the synaptic coupling strength
increases from weak to strong. We use the pseudo-
Lyapunov exponent and the power spectrum analysis of
voltage traces to characterize the types of the network
behavior. In the nonchaotic (asynchronous or synchro-
nous) dynamical regimes, i.e., the weak or strong cou-
pling limits, the pseudo-Lyapunov exponent is negative
and there is a good numerical convergence of the solu-
tion in the trajectory-wise sense by using our numerical
methods. Consequently, in these regimes the evolution
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of neuronal networks is reliable. For the chaotic dy-
namical regime with an intermediate strong coupling,
the pseudo-Lyapunov exponent is positive, and there
is no numerical convergence of the solution and only
statistical quantifications of the numerical results are
reliable. Finally, we present numerical evidence that
the value of pseudo-Lyapunov exponent coincides with
that of the standard Lyapunov exponent for systems we
have been able to examine.
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1 Introduction

Networks of conductance-based integrate-and-fire
(I&F) neurons have been used to simulate the
dynamics and study the properties of large scale
neuronal networks (Somers et al. 1995; Troyer et al.
1998; McLaughlin et al. 2000; Cai et al. 2005; Rangan
et al. 2005; Rangan and Cai 2007). But the I&F model
does not account for the detailed generation of action
potentials. We consider here the more physiologically
realistic Hodgkin–Huxley (HH) model (Hodgkin and
Huxley 1952; Dayan and Abbott 2001). This model of
excitable membrane, originally introduced to describe
the behavior of the squid’s giant axon, provides a
useful mechanism that accounts naturally for both
the generation of spikes, due to voltage-dependent
membrane conductances arising from ionic channels,
and the existence of absolute refractory periods.
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This classical model serves as the foundation for
other neuron models with more complicated types of
behavior, such as bursting. However, the complexity
of the HH-like neuron model precludes detailed
analytical studies of its quantitative properties, hence
one often resorts to numerical simulations to study
them.

In this work, we focus on the numerical investiga-
tion of HH neuronal network dynamics and describe
how to characterize the types of the network’s long
time behavior (e.g., chaos) from the dynamical systems
perspective. There have been extensive studies on the
impact of chaos and the predictability of dynamical
behaviors on biological and physical systems (Campbell
and Rose 1983) and neuronal systems (Mainen and
Sejnowski 1995; Hansel and Sompolinsky 1992, 1996;
Kosmidis and Pakdaman 2003). Chaotic solutions have
been observed in the study of a single HH neuron
with different types of external inputs (Aihara and
Matsumoto 1986; Guckenheimer and Oliva 2002; Lin
2006). In our study of all-to-all homogeneously coupled
HH networks under a deterministic sinusoidal drive
(Sun et al. 2009) or a stochastic Poisson input in this
work, we find three typical dynamical regimes as the
synaptic coupling strength varies. Under the external
Poisson spike input, when the HH neurons are weakly
coupled, the network is in an asynchronous state, where
each neuron fires randomly with a train of spikes. When
the coupling is relatively strong, the network oper-
ates in a synchronous state. For a moderately strong
coupling between these two limits, the network dynam-
ics exhibits chaotic behavior, as quantified by a posi-
tive Lyapunov exponent as well as a positive pseudo-
Lyapunov exponent, as will be discussed below.

It turns out that there is a strong influence of the
dynamical regimes on our numerical methods for evolv-
ing the network dynamics. In the nonchaotic dynami-
cal regimes, i.e., the weak coupling or strong coupling
limit, we show that there is a good numerical conver-
gence of the solution in the classical, trajectory-wise
sense by using our numerical methods. However, in
the chaotic regime, i.e., with an intermediate strong
coupling strength, there is no numerical convergence
of the solution and only statistical quantifications of
the numerical results are reliable. To characterize the
chaotic/nonchaotic regimes, we employ several mea-
sures, such as measuring the pseudo-Lyapunov ex-
ponent and the power spectrum analysis of voltage
traces, etc.

The largest positive Lyapunov exponent measures
the rate of exponential divergence of perturbations of
a dynamical system and it can be obtained by following
two nearby trajectories with a separation which is of

order ε, and calculating their average exponential rate
of separation. For a smooth dynamical system in which
all dynamical variables evolve continuously, there are
standard algorithms to compute Lyapunov exponents
(Parker and Chua 1989; Schuster and Just 2005). How-
ever, our HH network dynamics is a nonsmooth dy-
namics via pulse-coupled interactions, for which we
use a second-order kinetic scheme to describe the dy-
namics of conductance. The conductance dynamics is
described by an impulse response with the form of an α-
function with both fast rise and slow decay timescales.
The first derivative of the conductance dynamics of
each neuron is discontinuous since its kinetic equation
contains a Dirac δ-function that represents the arrival
of the pulse induced by the presynaptic spikes or feed-
forward spikes. If the trajectory vector contains the
first derivative of the conductance dynamics when we
calculate the separation between two trajectories, the
separation can be of order one since at this moment it
is possible that one trajectory may receive a spike but
the other may not. Mueller examined how to extend the
standard Lyapunov notion to dynamical systems with
jumps (Mueller 1995). Here, we propose to examine
the dynamics with jumps from a different point of
view. We want to investigate the implication of jump
dynamics for the flows in a subspace which contains
all smooth variables. There is another motivation for
our work: Can we predict the dynamics of the system
by examining partial components of the system? For
smooth dynamics without noise, the answer is yes. One
can construct the so-called delay coordinate vectors
to compute the largest Lyapunov exponent (Takens
1981). However, for nonsmooth dynamics, such as the
HH neuronal networks we consider here, the answer is
still not clear. Therefore, we define a pseudo-Lyapunov
exponent adapted from the classical definition by ex-
cluding these discontinuous variables from the trajec-
tory vector when we compute the separation rate of two
nearby trajectories while using the standard method
to measure the Lyapunov exponent (Parker and Chua
1989). Via numerical study, we demonstrate that the
pseudo-Lyapunov exponent can capture the dynamical
regimes of the network dynamics very well. As shown
in our numerical study, the numerical values of the
pseudo-Lyapunov exponents coincide with those of the
standard Lyapunov exponents in the network systems
for which we can employ standard methods to com-
pute Lyapunov exponents. This indicates that classical
results about Lyapunov exponents can be potentially
extended to thresholded, pulse-coupled HH network
dynamics.

The outline of the paper is as follows. In Section 2,
we present a brief description of our HH neuronal
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network model and the numerical method for evolv-
ing the network system. In Section 3, the definition
of pseudo-Lyapunov exponents for the HH network
system is described. In Section 4, we provide numeri-
cal results of several different HH neuronal networks,
which illustrate the predictability of network dynamics
from these pseudo-Lyapunov exponents. We present
conclusions in Section 5.

2 The model

2.1 The network of Hodgkin-Huxley neurons

The dynamics of a Hodgkin-Huxley (HH) neuronal
network with N neurons is governed by

C
d
dt

Vi = −GNam3
i hi

(
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) − GKn4
i

(
Vi − VK

)

−GL
(
Vi − VL
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i , (1)
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)(
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(
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(
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(
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) − βn
(
Vi

)
ni, (4)

where the index i labels the neuron in the network, C is
the cell membrane capacitance and Vi is its membrane
potential, mi and hi are the activation and inactiva-
tion variables of the sodium current, respectively, and,
ni is the activation variable of the potassium current
(Hodgkin and Huxley 1952; Dayan and Abbott 2001).
The parameters GNa, GK, and GL are the maximum
conductances for the sodium, potassium and leak cur-
rents, respectively, VNa, VK, and VL are the correspond-
ing reversal potentials. Functional forms and parame-
ters values for the HH neuron equations are given in
Appendix A.

In our conductance-based network model, Iinput
i

stands for the synaptic input current, which is given by

Iinput
i = −

∑

Q

GQ
i (t)

(
Vi(t) − VQ

G

)
, (5)

where GQ
i (t) are the conductances with the index Q

running over the types of conductances used, i.e., in-
hibitory and excitatory, and VQ

G are their corresponding

reversal potentials (see Appendix A). The dynamics of
GQ

i (t) are governed by

d
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σ Q
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i (t), (6)
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Each neuron is either excitatory or inhibitory, as indi-
cated by its type Li ∈ {E, I}. There are two conductance
types Q ∈ {E, I} also labeling excitation and inhibition.
We say an action potential or emission of a spike occurs
at time t if the membrane potential of a neuron (say the
jth neuron of type Q) reaches a threshold value Vth at
that time. Then the spike triggers postsynaptic events
in all the neurons that the jth neuron is presynaptically
connected to and changes their Q-type conductances
with the coupling strengths SQ

i, j. On the other hand,
for the postsynaptic ith neuron, its Q-type conductance
GQ

i (t) is determined by all spikes generated in the past
from the presynaptic neurons of type Q. The term
G̃Q

i (t) is an additional variable to describe the decay
dynamics of conductance and the variable GQ

i (t) has
an impulse response with the form of an α-function
with both a fast rise and a slow decay timescale, σ Q

r
and σ Q

d , respectively. The time TS
j,k stands for the kth

spike of neuron j prior to time t. The excitatory (in-
hibitory) conductance G̃E (G̃I) of any neuron is in-
creased when that neuron receives a spike from another
excitatory (inhibitory) neuron within the network. This
is achieved as follows: The coupling strengths SE

i, j are
zero whenever L j = I, and similarly SI

i, j are zero when-
ever L j = E. For the sake of simplicity, we consider
an all-to-all coupled neuronal network, in which SQ

i, j is
a constant SQ/NQ with NQ being the total number of
Q-type neurons in the network. However, our method
can readily be extended to more complicated networks
with heterogeneous coupling strengths that can encode
many different types of network architecture.

The system is also driven by feedforward inputs.
Here we consider stochastic inputs: we use a spike
train sampled from a Poisson process with rate r as
the feedforward input. We denote TF

i,k as the kth spike
from the feedforward input to the ith neuron and it
instantaneously increases that neuron’s Q-type G̃Q

i (t)
by magnitude FQ

i . For simplicity, we also take FQ
i to be

a constant, FQ, for Q-type conductance of all neurons
in the network. The typical values or ranges of σ Q

r ,
σ Q

d , SQ and FQ can be found in Appendix A. For the
numerical results reported here, we set Vth = −50mV.
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The qualitative features of the network dynamics are
insensitive to slight adjustments of the Vth value.

We note that, the conductance term GQ
i (t) in Eq. (6)

is a continuous function, but its first derivative is dis-
continuous, with a finite jump due to the presence
of the Dirac δ-function in Eq. (7). This discontinuity
in the network dynamics underlies our motivation for
examining the pseudo-Lyapunov exponents and their
implication in the classification of dynamical regimes of
HH neuronal networks in the Section 3.

2.2 Numerical scheme

For network modeling, we need a stable and accurate
numerical method to evolve the HH neuron equations
coupled with the dynamics of conductances (Eqs. (1)–
(7)) for each neuron. Since individual neurons interact
with each other through conductance changes associ-
ated with presynaptic spike times, it is also necessary to
have numerical interpolation schemes that can deter-
mine the spike times accurately and efficiently (Hansel
et al. 1998; Shelley and Tao 2001). In our numerical
study, we use the Runge-Kutta fourth-order scheme
(RK4) with fixed time step for integrating the system,
along with a cubic Hermite interpolation for estimating
spike times. The whole scheme is fourth-order accurate.
In Appendix B, Algorithm 1 details our numerical
scheme for a single neuron.

When simulating the network dynamics, we need
to carefully take into account the causality of spiking
events within a single time step via spike-spike inter-
actions, especially for large time steps (Rangan and
Cai 2007). In some approaches with the traditional
clock-driven strategy, like the modified Runge-Kutta
methods (Hansel et al. 1998; Shelley and Tao 2001),
at the beginning of a timestep, the state of the net-
work at the end of the step is not known, thus, only
the spikes of the feedforward input to the network
within that time step can be used to attempt to evolve
the system. This first approximation may indicate that,
driven by the feedforward input spikes, many neurons
in the network fire. However, this conclusion may be
incorrect because the first few of these spikes induced
within a large time step may substantially affect the rest
of the network via spike-spike interactions in such a
way that the rest of the spikes within the time step are
spurious. For example, this happens when a large time
step is used in these methods to evolve a network with
strong recurrent inhibition. We note that the modified
Runge-Kutta methods do not take into account spike-
spike interactions within a single large numerical time
step. As a consequence, when used to evolve a system
with strong network coupling strengths, these methods

need to take sufficiently small time steps to have only
a few spikes in the entire system within a single time
step. Here, we choose a strategy that allows for a larger
time step, similar to the event-driven approach (Mattia
and Del Giudice 2000; Reutimann et al. 2003; Rudolph
and Destexhe 2007). We take the spike-spike correction
procedure (Rangan and Cai 2007), which is equivalent
to stepping through the sequence of all the synaptic
spikes within one time step and computing the effect
of each spike on all future spikes. We step through this
correction process until the neuronal trajectories and
spike times of neurons converge. Details of this spike-
spike correction algorithm and the general coupling
strategy are discussed in refs. (Rangan and Cai 2007;
Sun et al. 2009). In Appendix C, Algorithm 2 details our
numerical method for evolving the HH network model.

3 Lyapunov exponents

3.1 Smooth dynamics

A useful tool for characterizing chaos in a smooth dy-
namical system is the spectrum of Lyapunov exponents,
in particular, the largest one, which measures the rate of
exponential divergence or convergence from perturbed
states of the system. A chaotic dynamics is signified
by a positive largest Lyapunov exponent. Generally,
the largest Lyapunov exponent λ can be obtained by
following two sufficiently close nearby trajectories X(t)
and X′(t) and calculating their average exponential rate
of separation:

λ = lim
t→∞ lim

ε→0

1

t
ln

∥
∥Z(t)

∥
∥

∥
∥Z0

∥
∥ , (8)

where Z(t) = X′(t) − X(t), ‖Z0‖ = ε and Z(0) = Z0 is
the initial separation. However, for a chaotic system,
at least one Lyapunov exponent is positive. This im-
plies that ‖Z(t)‖ grows unbounded as t becomes large.
Therefore, a practical approach to avoid numerical
overflows is to scale back one of the trajectories, say
X′(t), to the vicinity of the other X(t) along the direction
of separation whenever they become too far apart. We
refer to this step as renormalization (Parker and Chua
1989; Schuster and Just 2005). Figure 1 illustrates the
idea of this traditional algorithm. In this algorithm, one
calculates the divergence of sufficiently close nearby
trajectories after a finite time interval τ , and after each
such interval, ‖Z(nτ)‖ is renormalized to a fixed ε and
separation rates after sufficiently many τ -intervals are
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Fig. 1 Numerical evaluation of the largest Lyapunov exponent
λ. Note that the dashed line represents the perturbation vector
Z(t) = X′(t) − X(t). To avoid numerical overflows, after calculat-
ing the divergence of nearby trajectories at each step, ‖Z(nτ)‖ is
renormalized to the initial separation distance ε and the largest
Lyapunov exponent is evaluated to be the average of separation
rates after sufficiently many time intervals of length τ

averaged to obtain the largest Lyapunov exponent λ as
follows,

Z(τ ) = Z(0) exp(λ1τ);
Z(2τ) = Z(τ )

ε

‖Z(τ )‖ exp(λ2τ); . . . .

Z(kτ) = Z((k − 1)τ )
ε

‖Z((k − 1)τ )‖ exp(λkτ); . . . . (9)

and

λ = lim
n→∞

1

n

n∑

k=1

λk = lim
n→∞

1

nτ

n∑

k=1

ln
‖Z(kτ)‖

ε
. (10)

In our simulation, we take ε = 10−8, which is suffi-
ciently small for estimating λ. We have verified that
slightly larger ε values yield the same results as reported
here. The selection of the value of τ is determined
by the following considerations: too small a value of
τ leads to an excessive number of renormalizations,
resulting in ratios ‖Z(kτ)‖

ε
which are all nearly one, thus,

giving rise to numerical inaccuracies in the calculation;
too large a value of τ could lead to numerical overflows
in the integration of the trajectories (Parker and Chua
1989). In the numerical results shown in Section 4, we
will present a convergence test of the largest Lyapunov
exponent using different values of τ . These values
range from the length of the time step used for evolving
the trajectories to a maximum value 50 ms and they
produce convergent results. We emphasize that the
Lyapunov exponents are a statistical property of a full
dynamical system (Ott 1993). Even if our numerically
obtained trajectories are not convergent in a chaotic
regime, we did, however, verify that our Lyapunov
exponent computation indeed exhibits convergence as
the time steps used to compute the trajectories become
smaller and smaller.

3.2 Pseudo-Lyapunov exponents

There are two main motivations for us to propose the
so-called pseudo-Lyapunov exponents. The first one is
as follows. In many applications, one cannot always
obtain all the components of the vector giving the
state of the dynamical system and the only available
information of the system is one or a few measured
scalar time series, e.g., the data of the membrane po-
tential of individual neurons. In such a situation, can we
characterize and predict the dynamics of the system?
For smooth dynamics without noise, the answer is yes.
For example, given a measured scalar time series u(t),
one can construct the so-called delay coordinate vector
(Takens 1981), an d-dimensional vector of the follow-
ing form: U(t) = (u(t), u(t + τ), . . . , u(t + (d − 1)τ )), to
represent the original dynamical system, where τ is
the delay time and d is the embedding dimension. It
has been proven that for properly chosen τ , if the
embedding dimension is sufficiently large, say, at least
more than twice the dimension D of the attractor of the
system, i.e., d > 2D + 1, then generically there exists
a diffeomorphism between the reconstructed and the
original attractors (Takens 1981). Therefore, one can
consider to use partial components in the vector X(t)
to compute the largest Lyapunov exponent. However,
for nonsmooth dynamics, such as the HH networks we
consider here, Takens’ theorem no longer holds. The
question of how much information we can extract by
examining partial components of the system remains
open.

The second motivation of invoking pseudo-
Lyapunov exponents is to attempt to circumvent the
difficulties in evaluating standard Lyapunov exponents
arising from the nonsmooth variables in the vector
X(t). The algorithm described in the previous subsec-
tion for evaluating the largest Lyapunov exponent is
designed for a smooth dynamical system, in which all
dynamical variables evolve continuously. By perform-
ing the renormalization procedures, one can always
keep the separation between the nearby trajectories
within order ε. However, as evident in Eq. (7), the
dynamical variable G̃Q

i of each neuron is discontin-
uous since its kinetic equation contains a δ-function
that represents the pulse induced by the presynaptic
spikes or feedforward spikes. When one calculates the
separation between two trajectories and performs the
renormalization, one trajectory of the entire network
may receive a spike but the nearby trajectory may not,
which induces an order one difference in the dynamics
of G̃Q

i between two trajectories. Figure 2 illustrates this
situation. Mueller showed that a generalized method
can be applied to calculate the Lyapunov exponents
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Fig. 2 Divergence in the conductance term G̃Q
i between two

trajectories. We calculate the separation between two trajectories
and do the renormalization at each time step tn = nτ . Note that
at time tn, the separation is of order ε. However, at time tn+1, the
neuron in the trajectory X(t) has already received a synaptic spike
and its conductance term G̃Q

i is increased by coupling strength
SQ, which is of order one, but the neuron in the nearby trajectory
X′(t) has not received a spike yet. Therefore, the separation is of
order one, which can induce errors in the calculation of largest
Lyapunov exponent

by taking care of handling the discontinuities and sup-
plementing transition conditions at the instants of dis-
continuities (Mueller 1995). In numerical computation
of the Lyapunov exponents, instead of using transition
conditions, we can wait to calculate the separation
between two trajectories until the next renormalization
time step point after the time interval τ when both
trajectories pass the discontinuity points. But we also
note that when the size of network N is very large,
the number of firing events increases, then the number
of the discontinuity points increases and this situation
can make the waiting time too long and numerical
overflows again become a problem since we need to
wait for all neurons in both trajectories to pass their
discontinuity points. However, by taking the perturba-
tion amplitude ε sufficiently small, we may reduce the
probability of these situations to occur.

Here, we propose to examine the dynamics with
discontinuities from a different point of view. We want
to investigate the implication of jump dynamics for the
flows in a subspace which contains all smooth variables.
For this aim, we propose a pseudo-Lyapunov expo-
nent adapted from the traditional definition. When we
calculate the separation of two nearby trajectories to
measure the largest Lyapunov exponent, we simply in-
clude only those variables that are continuous from the
trajectory vector. Hence, the variable G̃Q

i is excluded in
our present case, i.e., we only consider:

Xi(t) = (
Vi(t), mi(t), hi(t), ni(t), GQ

i (t)
)

(11)

for each neuron and use the vector X(t) = [X1(t), . . . ,
Xi(t), . . . , XN(t)] to characterize the dynamics of the

entire network. As shown in Section 4, the numerical
results of the largest pseudo-Lyapunov exponent eval-
uated using this projection to the smooth part of the
dynamics are consistent with the dynamical regimes of
the network as characterized by other quantifications.

In summary, we evaluate the largest pseudo-
Lyapunov exponent as follows: at the initial time t0 = 0,
for the original trajectory point X(0), we select a nearby
point X′(0) with the initial separation distance ‖Z(0)‖ =
ε; then we advance both trajectories to τ and calculate
the new separation ‖Z(τ )‖ to evaluate the exponential
rate of separation:

λ1 = 1

τ
ln

‖Z(τ )‖
ε

; (12)

meanwhile, the nearby trajectory X′(τ ) is renormalized
so the separation is ε in the same direction as Z(τ ):

Z(τ ) ← Z(τ )
ε

‖Z(τ )‖; (13)

Then we repeat these procedures to obtain λ2, . . ., λk

and calculate the average of the exponential rate of
separation by using Eq. (10).

4 Results

4.1 Three dynamical regimes of the network

First, we consider an all-to-all coupled network of
100 excitatory neurons driven by a feedforward input,
which is a realization of a Poisson process with the rate
ω = 50 Hz. Other parameters are given in Appendix A.
We perform simulations of this network for synaptic
coupling strength S ranging from 0.025 to 1.0 mS/cm2

with an increment of 
S = 0.025 mS/cm2. A system-
atic scanning result of the pseudo-Lyapunov exponents
obtained by using our method over a long time interval
of T = 216 = 65536 ms is shown in Fig. 3(a–c). As illus-
trated below, the result reveals three typical dynamical
regimes—an asynchronous, a chaotic, and a synchro-
nous regime. The “chaotic” regime of the network
exists in 0.263 � S � 0.395 mS/cm2 in the sense that
the pseudo-Lyapunov exponent is positive in this range
(We will further characterize this regime by other quan-
tifications). The left part (0.025 � S � 0.263 mS/cm2)
and the right part (0.395 � S � 1.0 mS/cm2) corre-
spond to the asynchronous state and synchronous state,
respectively.

(i) Asynchronous state For very small values of the
coupling strength, the drive to a single neuron due to
the presynaptic spikes is so weak that the dynamics of
each neuron is essentially driven by the feedforward
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Fig. 3 (a): The pseudo-Lyapunov exponent versus the coupling
strengths S. The network is all-to-all coupled with 100 excitatory
neurons driven by a feedforward input, which is a realization of
a Poisson process with the rate ω = 50 Hz; (b): A fine scanning
result on [0.26, 0.27] mS/cm2. (c): A fine scanning result on
[0.39, 0.40] mS/cm2. (d): The pseudo-Lyapunov exponent of a
single test neuron (see text) in the network versus the coupling
strengths S. In each plot the time step 
t for the RK4 solver is
fixed to 2−5 ms and we use different renormalization time interval
τ from 
t to 1000
t to evaluate the pseudo-Lyapunov expo-
nent. The results here indicate our pseudo-Lyapunov exponent
calculation has achieved a numerical convergence. Note that all
the curves for different values of τ essentially overlap. The total
time of the trajectories is sufficiently long (65536 ms) in order to
obtain statistically convergent results for the pseudo-Lyapunov
exponent

input and the neurons fire at random, as is expected.
Two raster plots of the case S = 0.15 mS/cm2 obtained
by using two different time steps 
t = 2−5 and 2−4 ms
with same initial conditions are shown in Fig. 4(a).
It can clearly be seen that the computed trajectories
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Fig. 4 Raster plots of spike events in the same network as the
one in Fig. 3 computed using different time steps with same
initial conditions. The plots from (a) to (c) show typical cases
of three dynamical regimes with the coupling strength S = 0.15,
0.35, and 1.0 mS/cm2, respectively: (a) Asynchronous dynamics;
(b) Chaotic dynamics; (c) Synchronous dynamics. In each case
we show two simulation results obtained by using different time
steps 
t = 2−5 (upper) and 2−4 ms (lower), respectively

cannot be distinguished from each other and the firing
times are reliable. This type of asynchronous states
exists for 0.025 � S � 0.263 mS/cm2.

This case is also characterized by the power spectra.
We computed two kinds of power spectra: (1) the
mean power spectrum, averaged over all neurons, of
membrane potential trace, and (2) the power spectrum
of the mean membrane potential trace averaged over
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all neurons (Fig. 5(a)). Both of the power spectra are
of broad-band, with an asymptotic ∼ ω−2 decay at high
frequencies, signifying that (1) there are no clear oscil-
lations in the dynamics and (2) there is an exponential
decay of time-correlations of the measured quantities,
as implied by the Wiener-Khinchin theorem.

Moreover, we can verify the accuracy of our nu-
merical method by performing convergence tests of
the numerical solutions. For each test, we obtain a
high precision solution at time t = 1024 ms with a time
step (
t = 2−16 ≈ 1.5 × 10−5 ms) which is sufficiently
small so that the solutions using the algorithm with or
without spike-spike corrections produce the same con-
vergent solution. We take the convergent solution as
a representation of the high precision solution Xhigh(t).
Here, for simplicity of notation, we use the same defini-
tion of solution vector as Eq. (11) with X(t) = [X1(t),
. . . , Xi(t), . . . , XN(t)] to represent the solution of en-
tire network. We compare the high precision solu-
tion Xhigh(t) with the trajectories X
t(t) calculated with
larger time steps 
t = 2−9 → 2−4 ms. We measure the
numerical error in the L2-norm as follows:

E = ∥∥X
t − Xhigh
∥∥. (14)

As shown in Fig. 6, our method can achieve fourth-
order numerical convergence for S = 0.15 mS/cm2,
which is consistent with the fact that the pseudo-
Lyapunov exponent is measured to be negative
(Fig. 3(a)).

(ii) Chaotic state For intermediate coupling strength,
in this network for 0.263 � S � 0.395 mS/cm2, some-
times the neurons fire at random in an asynchronous
way and sometimes they fire in an almost synchronous
way. In Fig. 4(b) of the case S = 0.35 mS/cm2, two
raster plots obtained by using two small time steps

t = 2−5 and 2−4 ms with same initial conditions exhibit
a marked difference in spiking patterns of neurons
and the firing times seem to be unreliable and very
sensitive to numerical time steps even if they are suf-
ficiently small. As shown in Fig. 6, the convergence test
indicates that we cannot achieve expected numerical
convergence of the solutions for this case. Moreover,

�Fig. 5 The power spectrum of membrane potential trace of the
neurons in the same network as the one in Fig. 3. The plots from
(a) to (c) show three cases with the coupling strength S = 0.15,
0.35, and 1.0 mS/cm2 corresponding to an asynchronous, chaotic
and synchronous regime, respectively. In each plot the upper
(dashed) line corresponds to the mean power spectrum, averaged
over all neurons, of a neuron’s membrane potential trace; the
lower (solid) line represents the power spectrum of the mean
membrane potential trace averaged over all neurons
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Fig. 6 The convergence tests are performed on the same network
as the one in Fig. 3 by using the RK4 scheme with a final time
of t = 1024 ms. In the plot we show three cases with the cou-
pling strength S = 0.15 (circles), 0.35 (crosses) and 1.0 mS/cm2

(squares), respectively. The solid line indicates the slope for the
fourth order convergence

the statistical results for long time simulation show that
the dynamics of the network is chaotic in the sense
that the pseudo-Lyapunov exponent is measured to be
positive, as shown in Fig. 3(a). As will be reported
below, in our numerical study, we have also shown that
the pseudo-Lyapunov exponents as we defined here co-
incided with the standard Lyapunov exponents for the
network dynamics that we can examine numerically.
Therefore, chaotic dynamics in the sense of a positive
largest Lyapunov exponent is captured by our pseudo-
Lyapunov exponent.

The mean power spectrum, averaged over all neu-
rons, of a neuron’s membrane potential trace in
Fig. 5(b) also has a broad-band nature with small peaks.
The power spectrum of this chaotic state is similar to
that of the asynchronous state (Fig. 5(a)). However,
there are weak peaks in the spectra, typical of a chaotic
dynamics, in which oscillations coexist with irregular
time dynamics (Schuster and Just 2005). It is inter-
esting to note that the power spectrum of the mean
membrane potential trace averaged over all neurons
contains stronger, broad peaks, indicating weak coher-
ent, synchronous oscillations in the dynamics, as evi-
denced in Fig. 4(b). It appears that the mean membrane
potential averaged over all neurons can detect more
efficiently the underlying oscillations in the system.

(iii) Synchronous state When the coupling is strong,
S � 0.395 mS/cm2, a large portion of neurons in the
network fire synchronously after a few of the neurons

fire in advance. This firing pattern is shown in two raster
plots in Fig. 4(c) for the case S = 1.0 mS/cm2 obtained
by using two different time steps 
t = 2−5 and 2−4 ms
with same initial conditions. The raster patterns are
identical within the numerical accuracy and the firing
times are reliable in the sense that they are not sensitive
to numerical simulation time steps as long as they are
sufficiently small. Figure 6 also shows that our method
can achieve fourth-order numerical convergence when
S = 1.0 mS/cm2, which is consistent with the corre-
sponding pseudo-Lyapunov exponent being negative
(Fig. 3(a)), as commented above.

As shown in Fig. 5(c), both of the power spectra
contain peaks clearly located at integer multiples of
the fundamental frequency 50 Hz, indicating that the
membrane potential evolves with a strong periodical
component consistent with the feedforward input rate
50 Hz and the neurons fire almost synchronously, as
seen in Fig. 4(c).

In addition to the three typical dynamical regimes,
we also present the results of two special cases (S =
0.263 and 0.395 mS/cm2) to show the transitions from
the asynchronous state to the chaotic state and from the
chaotic state to the synchronous state, respectively. A
raster plot of the first case S = 0.263 mS/cm2 is shown
in Fig. 7(a). A large portion of neurons in the network
still fire at random and the mean power spectrum,
averaged over all neurons, of a neuron’s membrane po-
tential trace in Fig. 7(b) has a broad-band nature, which
is similar to that of the asynchronous state (Fig. 5(a)).
However, for this coupling strength, the drive to a
single neuron due to the presynaptic spikes reaches
a certain level so that some small clusters of neurons
in the network start to fire synchronously. Moreover,
the power spectrum of the mean membrane potential
trace averaged over all neurons (Fig. 7(b)) contains
a stronger, broad peak, around the fundamental fre-
quency 50 Hz indicating weak coherent, synchronous
oscillations in the dynamics.

A raster plot of the second case S = 0.395 mS/cm2

is shown in Fig. 7(c). Most of time the neurons fire
in an almost synchronous way, but there are still time
periods when they fire at random in an asynchronous
way. As shown in Fig. 7(d), both of the power spectra
are similar to those of the chaotic state (Fig. 5(b)). The
mean power spectrum, averaged over all neurons, of a
neuron’s membrane potential trace also has a broad-
band nature with weak peaks, which indicates that
oscillations coexist with irregular time dynamics. The
power spectrum of the mean membrane potential trace
averaged over all neurons contains stronger, broad
peaks, indicating weak coherent, synchronous oscilla-
tions in the dynamics.
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Fig. 7 (a–b) Raster plot of spike events and the power spectrum
of membrane potential trace of the neurons in the same network
as the one in Fig. 3 with the coupling strength S = 0.263 mS/cm2,
respectively. (c–d) Raster plot and the power spectrum for the
case of S = 0.395 mS/cm2, respectively

It has been shown that chaos can arise in the dy-
namics of a single HH neuron, for example, under a
periodic external drive (Guckenheimer and Oliva 2002;
Lin 2006). On the other hand, in some in vitro exper-
iments it was found that single neurons are reliable
under a broad range of conditions, i.e., the spike times
of a neuron in vitro in response to repeated injections
of a fixed, fluctuating current signal tend to be repeat-
able across multiple trials (Mainen and Sejnowski
1995). Therefore, there is a natural question: what
about a single neuron in the HH network under a
stochastic external Poisson input and the inputs from
other neurons, can it be chaotic?

To address whether the dynamics of a neuron that
receives the feedforward input plus the spikes from
other neurons in the network, can be chaotic or not, we
introduce the notion of a “test” neuron. For example,
if we want to examine the dynamics of the ith neuron
with its trajectory Xi(t) in the network, we create a test
neuron, whose trajectory X ′

i (t) is close to Xi(t). This
test neuron X ′

i (t) receives the same feedforward input
plus the same synaptic spikes from other neurons in the
network as the ith neuron Xi(t) does. But we do not
feed the output spikes generated by this test neuron
X ′

i (t) back into the network. Then we can calculate
the pseudo-Lyapunov exponent λi for the dynamics of
the ith neuron by following Xi(t) and X ′

i (t) with the
same integration and renormalization procedures for
sufficiently long time as we describe for computing the
pseudo-Lyapunov exponent of the network dynamics
in Subsection 3.2. The initial separation ε between
Xi(t) and X ′

i (t) is also set to 10−8, which is sufficiently
small for estimating the pseudo-Lyapunov exponent.
We have verified that slightly large ε values yield the
same results as reported here. Figure 3(d) shows the
numerical results for the same range of S as in Fig. 3(a).
The pseudo-Lyapunov exponent of a single neuron
remains negative for any value of S. We have also
verified that the pseudo-Lyapunov exponent of other
single neurons are all negative. This result indicates
that the dynamics of a single neuron in the network in
the sense of test neurons is not chaotic. The chaos is
a phenomenon under the effect of a network dynamics
with feedback of every neuron to other neurons.

4.2 Attractor structures of the network dynamics

As we mentioned in Subsection 3.2, it is possi-
ble to use partial components in the vector X(t)
to compute the largest Lyapunov exponent. If the
unstable directions in individual dynamic subspaces
V(t) = [V1(t), . . . , Vi(t), . . . , VN(t)], m(t), h(t), n(t), (de-
fined similarly as V(t)) are not perpendicular to
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each other in phase space, the expansion or con-
traction rate along these directions (sub-vectors) are
the same as the one along the most unstable direc-
tion for the entire dynamic space. Therefore, even
when we use only the dynamic variables Xi(t) =(
Vi(t), mi(t), hi(t), ni(t)

)
for each neuron and use the

vector X(t) = [X1(t), . . . , Xi(t), . . . , XN(t)] to compute
the largest Lyapunov exponent, we can still obtain
quantitatively correct results. We have confirmed that
the pseudo-Lyapunov exponents are the same whether
they are computed by using [V(t), m(t), h(t), n(t)] or us-
ing [V(t), m(t), h(t), n(t), G(t)]. Moreover, these results
are consistent with the one computed by using the full
dynamical vector [V(t), m(t), h(t), n(t), G(t), G̃(t)] with
Mueller’s method (Mueller 1995), as shown in Fig. 8
for those network systems we have been able to ex-
amine. This result provides strong evidence that our
pseudo-Lyapunov exponents coincide with the stan-
dard Lyapunov exponents for our network dynamics.

In the mean field, large N limit, we find that the most
unstable direction of the entire network system mainly
lies in the subspace [V(t), m(t), h(t), n(t)] as N → ∞.
This fact can be revealed by performing tests as shown
in Fig. 9. First we define the mean field limit as the limit
where the size of network N → ∞, and each presy-
naptic input strength to any individual neuron scales as
S/N. Clearly, each individual coupling strength S/N →
0, as N → ∞; but the total synaptic input remains finite.
Here we compute the percentages of perturbation of
the conductance terms G(t) and G̃(t) (defined similarly
as V(t)) relative to the contribution of other variables in
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Fig. 8 The pseudo-Lyapunov exponent of the same net-
work as the one in Fig. 3 versus the coupling strengths S. We show
three cases with different dynamic variable combinations [V(t),
m(t), h(t), n(t), G(t), G̃(t)] (squares), [V(t), m(t), h(t), n(t), G(t)]
(circles), and [V(t), m(t), h(t), n(t)] (crosses), respectively. The
first case (squares) corresponds to the standard Lyapunov expo-
nent for systems with jumps (Mueller 1995). Note that the curves
for these three cases overlap. The total time for following the
trajectories is sufficiently long (65536 ms) in order to obtain sta-
tistically convergent results for the pseudo-Lyapunov exponent

the perturbation for all neurons: PG = ‖
G‖
‖
X‖ and PG̃ =

‖
G̃‖
‖
X‖ , then take the mean field limit when the size of
network is increased from N = 10 up to 104. It turns
out that both percentages of PG and PG̃ in general
are less than 1%, and they decrease nearly according
to a power law as the size N increases, as shown in
Fig. 9. These observations indicate that the dominant
perturbation comes from the remaining variables in the
dynamic vector, i.e., [V(t), m(t), h(t), n(t)]. Therefore,
the most unstable direction of the entire system lies
in the subspace spanned by these variables as N → ∞
in the mean field limit of the network dynamics and
we can use them as the smallest subset of variables to
account for the network behavior.

4.3 Firing rate

In many applications, it is often not necessary to resolve
every single trajectory of all neurons in the system. For
example, many physiological experiments (Koch 1999)
only record the statistical properties of a subpopulation
of neurons in the entire system, such as firing rate. For
example, an experiment may only be concerned with
the firing rate statistics or the ISI distribution aggre-
gated for many neurons in the system over a long time.
Although there is no convergence of the numerical
solutions in the chaotic regime as discussed above, we
can achieve accuracy in statistical quantities, such as the
average firing rate.

First, we compare the statistical results of firing rate
by using different time steps 
t for the RK4 solver from
2−7 to 2−4 ms. Figure 10(a) shows the average firing rate
R, which is the number of firing events per neuron per
second, averaged over the whole population of the neu-
rons in the same network as in Fig. 3 for different values
of coupling strength S. In the asynchronous regime
(0.025 � S � 0.263 mS/cm2), the firing rate increases
slowly from 28 to 29 spikes/sec. When the network
enters the chaotic regime (0.263 � S � 0.395 mS/cm2),
the firing rate firstly drops back to about 28 spikes/sec
around S ≈ 0.275 mS/cm2, then grows rapidly as S
increases, i.e., a strong gain across the chaotic regime.
When the network becomes synchronous (0.395 � S �
1.0 mS/cm2), the firing rate increases slowly from 44 to
48 spikes/sec.

Figure 10(b) shows the relative error in the aver-
age firing rate between the result with large time step
(
t = 2−4 = 0.0625 ms) and the result with small time
step (
t = 2−9 = 0.001953125 ms), which is defined as
follows:

ER = |Rsmall − Rlarge|/Rsmall. (15)
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Fig. 9 Percentage of perturbation of conductance terms G(t) and
G̃(t) relative to the contribution of other dynamical variables
for all neurons in an all-to-all connected network of N exci-
tatory neurons driven by the feedforward input of a particular
realization of a Poisson process with the rate ω = 50 Hz versus
the size N of the network from 10 up to 104. The plots from

(a) to (c) show three cases with the coupling strength S = 0.15,
0.35, and 1.0 mS/cm2 corresponding to an asynchronous, chaotic
and synchronous regime, respectively. In each plot the squares
correspond to the percentages of 
G; the circles represent the
percentages of 
G̃

We can achieve more than 2 digits accuracy in the
average firing rate for all values of S, even in chaotic
regime.

Finally we present a special test with a fixed coupling
strength S = 0.35 mS/cm2 and vary the input rate ω

from 5 to 200 spikes/sec to study the gain function of the
network. We find again that a chaotic regime exists for
30 � ω � 70 spikes/sec (Fig. 11(a)). Figure 11(b) shows
the average firing rate R with different time steps 
t
from 2−7 to 2−4 ms. In Fig. 11(c), we show that there
is also more than 2 digits accuracy in the average firing
rate for all values of ω. Again, this indicates that we can
achieve accuracy in the statistical quantification in the
chaotic regime.

4.4 Network with a high-order kinetics in conductance

To present evidence that chaos is not arising from
threshold dynamics at Vth, we extend the study of
the HH neuronal network dynamics further by using
a continuous function (in Eq. (21) below) to describe
the dynamics of synaptic interactions (Compte et al.
2003) (only the feedforward inputs have jump variables,
as shown in Eq. (20) below). Therefore, there is no
hard threshold Vth as in the model in Subsection 2.1.
Moreover, in order to evolve the network dynamics
by using the standard RK4 scheme without the spike-
spike correction procedure, we use a high-order kinet-
ics in conductance to make it sufficiently smooth as
demanded by the use of the RK4 scheme. Then the
synaptic interactions in this system are no longer event-
driven and our numerical method can have a fourth-
order accuracy. For simplicity, we again study an all-
to-all connected network of 100 excitatory neurons and

omit the index Q labeling the types of conductances.
The dynamics of Gi(t) are governed by

d
dt

Gi(t) = −Gi(t)
σr

+ G1i(t), (16)

d
dt

G1i(t) = −G1i(t)
σr

+ G2i(t), (17)

d
dt

G2i(t) = −G2i(t)
σr

+ G3i(t), (18)

d
dt

G3i(t) = −G3i(t)
σr

+ G4i(t), (19)

d
dt

G4i(t) = −G4i(t)
σr

+
∑

j�=i

Si, jg
(

Vpre
j

)

+
∑

k

Fiδ
(
t − TF

i,k

)
, (20)

where

g
(

Vpre
j

)
= 1

1 + exp
(
−

(
Vpre

j − 20
)

/2
) . (21)

We evolve the network dynamics by solving Eqs.
(16)–(21) coupled with Eqs. (1)–(5). Note that for a
fixed realization of the input, the system is determin-
istic. For this system, one expects that our numeri-
cal method should be formally fourth-order accurate.
However, when we perform simulations of the network
driven by the same realization of stochastic feedfor-
ward input for synaptic coupling strength S ranging
from 0.025 to 1.0 mS/cm2, we find again that a chaotic
regime exists for 0.25 � S � 0.4 mS/cm2 (Fig. 12(a)).
For this regime, there is no classical trajectory conver-
gence as shown in Fig. 13.
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We have also confirmed that the pseudo-Lyapunov
exponents are the same whether they are computed by
using partial dynamical variables [V(t), m(t), h(t), n(t)]
or using all continuous dynamical variables [V(t), m(t),
h(t), n(t), G(t), G1(t), G2(t), G3(t)]. Moreover, these re-
sults are consistent with the one computed by using
the full dynamical vector [V(t), m(t), h(t), n(t), G(t),
G1(t), G2(t), G3(t), G4(t)] with Mueller’s method, as
shown in Fig. 12(b). For this smooth pulse-coupled dy-
namics (i.e. no hard threshold), the pseudo-Lyapunov
exponents again coincide with those of the standard
one, i.e., using the full set of dynamical variables.

To find whether the dynamics of a neuron that re-
ceives the feedforward input plus the spikes from other
neurons in this type of HH network can be chaotic or
not, we again employ the notion of a “test” neuron
to calculate the pseudo-Lyapunov exponent of a single
test neuron. In Fig. 12(c), we show that the pseudo-
Lyapunov exponent of a single test neuron remains
negative for any value of S, which indicates that the
dynamics of a single test neuron in this network is not
chaotic.
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Fig. 10 (a): Average firing rate of the same network as the one
in Fig. 3 versus the coupling strengths S by using different time
steps 
t = 2−7 to 2−4 ms. (b): The relative error in the average
firing rate between the result with a large time step (
t = 2−4 ms)
and the result with a small time step (
t = 2−9 ms) versus S. Note
that there are several points of S for which the relative error are
not plotted in Panel (b) since the results of the average firing rate
using two different time steps are identical at these points and the
relative errors vanish. The total time is 65536 ms
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Fig. 11 (a) The pseudo-Lyapunov exponent of the same network
as the one in Fig. 3 versus the input rate ω for the coupling
strength S = 0.35 mS/cm2 by using different time steps 
t = 2−7

to 2−4 ms. (b): Average firing rate versus the input rate ω. (c): The
relative error in the average firing rate between the result with a
large time step (
t = 2−4 ms) and the result with a small time
step (
t = 2−9 ms) versus ω. Note that there are several points
of ω (≤ 15 spikes/sec) for which the relative error are not plotted
in Panel (c) since the results of the average firing rate using two
different time steps are identical at these points and the relative
errors vanish. The total time is 65536 ms

As shown in Fig. 13, our method can achieve fourth-
order numerical convergence when S = 0.15 (asynchro-
nous state) and 1.0 mS/cm2 (synchronous state). How-
ever, for S = 0.35 mS/cm2, there is no convergence of
the solutions. This non-convergence is consistent with
the fact that the largest Lyapunov exponent is positive
in the chaotic dynamics.
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Fig. 12 (a): The pseudo-Lyapunov exponent of the network
with a high-order kinetics in conductance term versus the coup-
ling strengths S. Note that all the curves for different values of
τ essentially overlap. (b): We show three cases with different
dynamic variable combinations [V(t), m(t), h(t), n(t), G(t), G1(t),
G2(t), G3(t), G4(t)] (squares), [V(t), m(t), h(t), n(t), G(t), G1(t),
G2(t), G3(t)] (circles), and [V(t), m(t), h(t), n(t)] (crosses), re-
spectively. Note that the curves for these three cases overlap.
The first case (squares) corresponds to the standard Lyapunov
exponent for systems with jumps (Mueller 1995). (c): The pseudo-
Lyapunov exponent of a single test neuron in the network versus
the coupling strengths S. In each plot we use different time steps
τ for renormalization from 2−5 to 2−2 ms, but the time step 
t
for the RK4 solver is the same (2−5 ms). Note that all the curves
for different values of τ essentially overlap. The total time for
following the trajectories is sufficiently long (65536 ms) in order
to obtain statistically convergent results for the pseudo-Lyapunov
exponent

4.5 Network with inhibitory neurons

We further address the question of how the above exci-
tatory network results will be modified by the presence
of inhibitory neurons. Therefore, we make another
extension in the study of the HH neuronal network dy-
namics by adding inhibitory neurons into the network.
Here, we consider an all-to-all connected network of 80
excitatory neurons and 20 inhibitory neurons with the
discontinuous dynamics of the conductance term (Eqs.
(6) and (7)). The stochastic feedforward input is the
same as before with the input rate ω = 50 Hz and other
parameters are given in Appendix A.

In particular, we fix the coupling strength for inhibit-
ory (excitatory) synapses onto excitatory (inhibitory)
neurons SEI = SIE = 0.1 mS/cm2 and vary the recurrent
excitatory coupling strength SEE ranging from 0.025
to 1.0 mS/cm2 to perform four systematic scanning
tests for four different values of recurrent inhibitory
coupling strength SII = 0.1, 0.2, 0.3 and 0.4 mS/cm2,
respectively. We find again a chaotic regime existing in
the tests of SII = 0.1, 0.2, and 0.3 mS/cm2. As shown
in Fig. 14(a), for the case of SII = 0.1 mS/cm2, the
chaotic regime exists in 0.224 � SEE � 0.447 mS/cm2

for which the pseudo-Lyapunov exponent is positive;
for SII = 0.2 mS/cm2, the chaotic regime exists at all
points of 0.025 � SEE � 0.411 mS/cm2, and for SII =
0.3 mS/cm2, the chaotic regime exists at all points
of 0.025 � SEE � 0.345 mS/cm2. However, for SII =
0.4 mS/cm2, the pseudo-Lyapunov exponent is nega-
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Fig. 13 The convergence tests are performed on the same net-
work as the one in Fig. 12 by using the RK4 scheme with a final
time of t = 1024 ms. In the plot we show three cases with the cou-
pling strength S = 0.15 (circles), 0.35 (crosses) and 0.7 mS/cm2

(squares), respectively. The solid line indicates the slope for the
fourth order convergence
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Fig. 14 (a): The pseudo-Lyapunov exponent of the network
with 80 excitatory and 20 inhibitory neurons versus the coupling
strengths SEE between the excitatory neurons; (b): The pseudo-
Lyapunov exponent of a single test neuron in the network versus
the coupling strengths SEE; (c): Average firing rate of the net-
work versus the coupling strengths SEE. In each plot, we show
four results of different inhibitory coupling strength SII = 0.1
(circles), 0.2 (crosses), 0.3 (squares), and 0.4 mS/cm2 (pluses).
The total time for following the trajectories is sufficiently long
(65536 ms) in order to obtain statistically convergent results for
the pseudo-Lyapunov exponent

tive for any value of SEE, which indicates that there is
no chaotic regime in this case.

Again, to address whether the dynamics of a neuron
that receives the feedforward input plus the spikes
from other neurons in this type of HH network can
be chaotic or not, we employ the notion of a “test”
neuron to calculate the pseudo-Lyapunov exponent of
a single neuron. In Fig. 14(b), we show that the pseudo-

Lyapunov exponent of a single test neuron is negative
for any values of SEE and SII, which indicates that the
dynamics of a single test neuron in this network is not
chaotic. In Fig. 14(c), we also show that the average
firing rates for all cases are monotonically increasing as
SEE increases.

As shown in Fig. 15(a), when SII = 0.1 mS/cm2,
our numerical method can achieve fourth-order ac-
curacy for both nonchaotic cases SEE = 0.15 and
1.0 mS/cm2. However, for SEE = 0.35 mS/cm2, con-
sistent with the chaotic dynamics, we cannot achieve
convergence of the solutions. For SII = 0.2 mS/cm2

as shown in Fig. 15(b), there is no convergence for
either cases SEE = 0.15 or 0.35 mS/cm2 as they are
in chaotic regime (Fig. 14(a)). Only for the case of
SEE = 1.0 mS/cm2, we can achieve numerical conver-
gence of the solutions. As shown in Fig. 15(c), when
SII = 0.3 mS/cm2, there is convergence of the solutions
for both nonchaotic cases SEE = 0.35 and 1.0 mS/cm2,
but not for the case SEE = 0.15 mS/cm2. In Fig. 15(d),
when SII = 0.4 mS/cm2, we can achieve convergence
of the solutions for all three cases as they are in non-
chaotic regime. In summary, our numerical method for
evolving the network dynamics are consistent with the
dynamical regimes of the network as very well indicated
by the pseudo-Lyapunov exponent.

4.6 Network with heterogeneous coupling strengths

Finally, we present a study of the HH neuronal network
dynamics with heterogeneous coupling strengths and
show the robustness of the proposed method. Here,
we again consider an all-to-all connected network of
80 excitatory neurons and 20 inhibitory neurons with
the discontinuous dynamics of the conductance term
(Eqs. (6) and (7)). The stochastic feedforward input
is the same as before with the input rate ω = 50 Hz
and other parameters are given in Appendix A. In
particular, we generate a N × N random matrix A with
exponentially distributed random elements Ai, j. Then
the coupling strength for the jth neuron’s synapses onto
the ith neuron is given by Si, j = Ai, jS

Q
i, j, in which SQ

i, j is a
constant SQ/NQ with NQ being the total number of Q-
type neurons in the network, as we define in Section 2.

Here we fix the parameter of the coupling strength
for inhibitory (excitatory) synapses onto excitatory (in-
hibitory) neurons SEI = SIE = 0.05 mS/cm2 and vary
the parameter of the recurrent excitatory coupling
strength SEE ranging from 0.01 to 0.4 mS/cm2 to
perform four systematic scanning tests for four dif-
ferent parameter values of recurrent inhibitory cou-
pling strength SII = 0.1, 0.2, 0.3 and 0.4 mS/cm2,
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Fig. 15 The convergence tests are performed on the same net-
work as the one in Fig. 14 by using the RK4 scheme with a final
time of t = 1024 ms for two different inhibitory coupling strength
(a) SII = 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 mS/cm2. In each plot, we

show three cases with the coupling strength SEE = 0.15 (circles),
0.35 (crosses) and 1.0 mS/cm2 (squares), respectively. The solid
line indicates the slope for the fourth order convergence

respectively. We find a chaotic regime existing in all
tests. As shown in Fig. 16(a), when SII = 0.1 mS/cm2,
the chaotic regime exists at all points of 0.01 � SEE �
0.174 mS/cm2, but for the other cases of SII = 0.2, 0.3
and 0.4 mS/cm2, the chaotic regime exists roughly in
the intermediate regime 0.085 � SEE � 0.165 mS/cm2

for which the pseudo-Lyapunov exponent is positive.
In Fig. 16(b), we show that the pseudo-Lyapunov

exponents of a single test neuron are negative for any
values of SEE and SII, which indicates that the dynamics
of a single test neuron in this network is not chaotic. In
Fig. 16(c), we also show that the average firing rates for
all cases are monotonically increasing as SEE increases.

As shown in Fig. 17(a), when SII = 0.1 mS/cm2,
our numerical method cannot achieve fourth-order
accuracy for both chaotic cases SEE = 0.05 and
0.14 mS/cm2. However, for SEE = 0.4 mS/cm2, con-
sistent with the nonchaotic dynamics, we can achieve
convergence of the solutions. For SII = 0.2 mS/cm2

as shown in Fig. 17(b), there is no convergence for
the case SEE = 0.14 mS/cm2 as it is in chaotic regime
(Fig. 16(a)). But for the cases of SEE = 0.05 and
0.4 mS/cm2, we can achieve numerical convergence of
the solutions. Since the results of the other two cases,
SII = 0.3 and 0.4 mS/cm2, are similar to the one of
SII = 0.2 mS/cm2, we omit the plots for these cases



J Comput Neurosci (2010) 28:247–266 263

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

SEE

Ly
ap

un
ov

 e
xp

on
en

t
(a)

 

 

SII=0.1

SII=0.2

SII=0.3

SII=0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

SEE

Ly
ap

un
ov

 e
xp

on
en

t

(b)

 

 

SII=0.1

SII=0.2

SII=0.3

SII=0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
30

32

34

36

38

40

42

44

46

48

50

SEE

F
iri

ng
 r

at
e 

(s
pi

ke
s/

se
c)

(c)

 

 

SII=0.1

SII=0.2

SII=0.3

SII=0.4

Fig. 16 (a): The pseudo-Lyapunov exponent of the network
with heterogeneous coupling strengths with 80 excitatory and 20
inhibitory neurons versus the coupling strength parameter SEE

between the excitatory neurons; (b): The pseudo-Lyapunov ex-
ponent of a single test neuron in the network versus the coupling
strength parameter SEE; (c): Average firing rate of the network
versus the coupling strength parameter SEE. In each plot, we
show four results of different inhibitory coupling strength SII =
0.1 (circles), 0.2 (crosses), 0.3 (squares), and 0.4 mS/cm2 (pluses).
The total time for following the trajectories is sufficiently long
(65536 ms) in order to obtain statistically convergent results for
the pseudo-Lyapunov exponent

here. In summary, our numerical method for evolving
the network dynamics with heterogeneous coupling
strengths are consistent with the dynamical regimes
of the network as very well indicated by the pseudo-
Lyapunov exponent.
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Fig. 17 The convergence tests are performed on the same net-
work as the one in Fig. 16 by using the RK4 scheme with a
final time of t = 1024 ms for two different inhibitory coupling
strength (a) SII = 0.1 and (b) 0.2 mS/cm2. In each plot, we show
three cases with the coupling strength SEE = 0.05 (circles), 0.14
(crosses) and 0.4 mS/cm2 (squares), respectively. The solid line
indicates the slope for the fourth order convergence. Since the
results of the other two cases SII = 0.3 and 0.4 mS/cm2 are
similar to the one of SII = 0.2 mS/cm2, we omit the plots for these
cases here

5 Conclusion

We have presented a numerical study of the network
dynamics of HH neurons with Poisson spike inputs and
found three typical dynamical regimes—the asynchro-
nous, chaotic and synchronous ones as the synaptic
coupling strength varies from weak to strong. In the
nonchaotic (asynchronous or synchronous) dynamical
regimes, i.e., the weak or strong coupling limits, we can
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achieve good numerical convergence of the solution
in the trajectory-wise sense by using our numerical
methods. Therefore, in these regimes the solutions are
reliable. For the chaotic dynamical regime with an
intermediate strong coupling, there is no numerical
convergence of the solution and only statistical quan-
tifications of the numerical results are reliable, such
as the average firing rate. We also emphasize that the
chaos is a network property in a certain regime and the
dynamics of a test neuron that receives the feedforward
input plus the spikes from other neurons in the network
is usually not chaotic.

We apply and extend several tools from the dy-
namical system’s theory, such as measuring the largest
Lyapunov exponent and the power spectrum analy-
sis of voltage traces to characterize the types of the
network behavior. In particular, we propose so-called
pseudo-Lyapunov exponent adapted from the classi-
cal definition by excluding the discontinuous variables
from the trajectory vector. In the nonchaotic dynam-
ical regimes, the pseudo-Lyapunov exponent is neg-
ative. The chaotic regime is signified by a positive
pseudo-Lyapunov exponent. The numerical results of
the pseudo-Lyapunov exponent using the new defini-
tion are consistent with the dynamical regimes of the
network very well. Furthermore, our numerical studies
also present strong evidence that, for HH network dy-
namics, the values of pseudo-Lya-punov exponents co-
incide with those of the standard Lyapunov exponents.
It will be interesting to further investigate whether
these two notions are mathematically equivalent for
HH network dynamics. This will further extend clas-
sical results about the Lyapunov exponents to thresh-
olded, pulse-coupled network dynamics.

Most of the results presented in this article were
obtained for networks of N = 100 neurons, but in-
creasing the size of the network does not change our
conclusions. In addition, although we have focused on
the models with the stochastic feedforward input and
shown the corresponding numerical results in previous
section, similar phenomena appear when we use deter-
ministic models with a continuous type of feedforward
input. There are also three dynamical regimes corre-
sponding to the asynchronous, chaotic and synchronous
states of the network as the coupling strength increases
(Sun et al. 2009).
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foundation.

Appendix A: Parameter values for the Hodgkin-
Huxley equations

Parameter values or ranges and function definitions of
the Hodgkin-Huxley model are as follows (Dayan and
Abbott 2001):

GNa = 120 mS/cm2, VNa = 50 mV,

GK = 36 mS/cm2, VK = −77 mV,

GL = 0.3 mS/cm2, VL = −54.387 mV,

C = 1μ F/cm2, VE
G = 0 mV, VI

G = −80 mV,

FE = 0.05 ∼ 0.1 mS/cm2, SE = 0.05 ∼ 1.0 mS/cm2,

FI = 0.01 ∼ 0.05 mS/cm2, SI = 0.05 ∼ 1.0 mS/cm2,

σ E
r = 0.5 ms, σ E

d = 3.0 ms,

σ I
r = 0.5 ms, σ I

d = 7.0 ms,

αm(V) = 0.1(V + 40)/(1 − exp (−(V + 40)/10)),

βm(V) = 4 exp (−(V + 65)/18),

αh(V) = 0.07 exp (−(V + 65)/20),

βh(V) = 1/(1 + exp (−(35 + V)/10)),

αn(V) = 0.01(V + 55)/(1 − exp (−(V + 55)/10)),

βn(V) = 0.125 exp (−(V + 65)/80).

Appendix B: Numerical method for a single neuron

Here we provide details of the numerical method for
evolving the dynamics of a single neuron. For simplic-
ity, we use vector Xi to represent all the variables in the
solution of the ith neuron:

Xi(t) = (
Vi(t), mi(t), hi(t), ni(t), GQ

i (t), G̃Q
i (t)

)
.

Given an initial time t0 and time step 
t, initial values
Xi(t0), and spike times TF

i,k and TS
j�=i,k from the rest of

the network, our method computes a numerical solu-
tion of all variables Xi(t0 + 
t) as well as the interven-
ing spike times TS

i,k (if any occurred) for the ith neuron
as follows:

Algorithm 1. (Single neuron scheme)
Step 1: Input: an initial time t0, a time step 
t, a set of

spike times TF
i,k and TS

j�=i,k and associated strengths FQ
i

and SQ
i, j.

Step 2: Consider the time interval [t0, t0 + 
t]. Let M
denote the total number of feedforward and presynaptic
spikes within this interval. Sort these spikes into an
increasing list of M spike times Tsorted

m with correspond-
ing spike strengths Ssorted,Q

m . In addition, we extend this
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notation such that Tsorted
0 := t0, Tsorted

M+1 := t0 + 
t and
Ssorted,Q

0 = Ssorted,Q
M+1 := 0.

Step 3: For m = 1, . . . , M + 1, advance the equations
for the HH neuron model and its conductances (Eqs.
(1)–(7)) from Tsorted

m−1 to Tsorted
m using the standard RK4

scheme to obtain Xi(Tsorted
m ); Then, update the conduc-

tance G̃Q
i (Tsorted

m ) by adding the appropriate strengths
Ssorted,Q

m .
Step 4: If the calculated values for Vi(Tsorted

m ) are
each less than Vth, then we can accept Xi(Tsorted

M+1 ) as the
solution Xi(t0 + 
t). We update t0 ← t0 + 
t and return
to step 2 and continue.

Step 5: Otherwise, let Vi(Tsorted
m ) be the first calculated

voltage greater than Vth. We know that the ith neuron
fired somewhere during the interval [Tsorted

m−1 , Tsorted
m ].

Step 6: In this case we use a high-order polynomial
interpolation to find an approximation of the spike time
tfire in the interval [Tsorted

m−1 , Tsorted
m ]. For example, we

can use the numerical values of Vi(Tsorted
m−1 ), Vi(Tsorted

m ),
d
dt Vi(Tsorted

m−1 ), d
dt Vi(Tsorted

m ) to form a cubic polynomial.
We record tfire as the (k + 1)th postsynaptic spike time
TS

i,k+1 of the ith neuron. We update t0 ← t0 + 
t and
return to step 2 and continue.

Appendix C: Numerical method for the HH network

Here we briefly outline an algorithm which accounts
for spike-spike interactions, and can accurately evolve
recurrent HH networks governed by Eqs. (1)–(7).

Algorithm 2. (Network model scheme)
Step 1: Given initial values initial values Xi(t0) and

feedforward input spike times TF
i,k for all i, we can apply

Algorithm 1 and time step 
t to obtain an estimate of
neuronal trajectories on the interval [t0, t0 + 
t].

Step 2: We use this rough estimate to classify the
neurons into two groups A spike, A quiet—those that are
estimated to fire within [t0, t0 + 
t] and those that are
not.

Step 3: We sort the approximate spike times of neu-
rons within A spike into a list T with corresponding
coupling strengths S .

Step 4: We use the feedforward spikes TF
i,k as well as

the approximate spike times T and Algorithm 1 and the
same time step 
t to correct the neuronal trajectories of
the subnetwork A spike over the interval [t0, t0 + 
t], and
obtain a more accurate approximation to the spike times
T . This spike-spike correction procedure is equivalent
to stepping through the list T and computing the effect
of each spike on all future spikes. We step through this

correction process until the neuronal trajectories and
spike times of neurons in A spike converge.

Step 5: Finally we use the corrected estimates of the
spike times T as well as the feedforward spikes TF

i,k and
Algorithm 1 and time step 
t to evolve the remainder of
the neurons A quiet from t0 to t0 + 
t.
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