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Abstract
How to characterize information flows in physical, biological, and social sys-
tems remains a major theoretical challenge. Granger causality (GC) analysis has
been widely used to investigate information flow through causal interactions.
We address one of the central questions in GC analysis, that is, the reliability of
the GC evaluation and its implications for the causal structures extracted by this
analysis. Our work reveals that the manner in which a continuous dynamical
process is projected or coarse-grained to a discrete process has a profound
impact on the reliability of the GC inference, and different sampling may
potentially yield completely opposite inferences. This inference hazard is present
for both linear and nonlinear processes. We emphasize that there is a hazard of
reaching incorrect conclusions about network topologies, even including sta-
tistical (such as small-world or scale-free) properties of the networks, when GC
analysis is blindly applied to infer the network topology. We demonstrate this
using a small-world network for which a drastic loss of small-world attributes
occurs in the reconstructed network using the standard GC approach. We further
show how to resolve the paradox that the GC analysis seemingly becomes less
reliable when more information is incorporated using finer and finer sampling.
Finally, we present strategies to overcome these inference artifacts in order to
obtain a reliable GC result.
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1. Introduction

Information flow plays a central role in physical and biological systems, such as in gene
regulation and cortical computation in the brain. How to characterize information propagation
within dynamical systems is a great theoretical challenge. There has been a long history of
studying causal relations between time series [1–6]. Recently, Granger causality (GC) analysis
has proven itself as a powerful method, widely used for extracting causal connectivity from data
in fields ranging from physics [7–10] and biology [11–14], to social science [15–18].

In general, it is often quite involved to acquire reliable GC inference. Usually the GC
framework requires the time series to be linear. For linear systems, the directed GC corresponds
to the structural connectivity that mediates physical interactions within a system. For nonlinear
systems, the relationship between the causal connectivity and the structural connectivity is still
under active investigation. Extending the GC theory to nonlinear, non-Gaussian times series
remains a central theoretical endeavor [19–21]. Note that the notion of GC is statistical rather
than structural, i.e. it identifies directed statistical causal connectivity through statistical features
of time series. As a statistical method, one of the important issues is how to collect time series
for dynamical variables in order to faithfully capture the information flow within the dynamics.
In this work, we study the reliability of GC inference for both linear and nonlinear systems and
demonstrate that there are inference hazards in the GC analysis arising from the manner in
which a continuous dynamical process is projected to a discrete process.

Because most dynamical quantities are continuous in time and GC values are generally
evaluated using discrete time series sampled from these continuous time processes, we
investigate the reliability of GC evaluation by studying the GC value as a function of the
sampling interval length τ (we will term this function the GC sampling structure). We show
that, for both linear and nonlinear dynamics, there are surprisingly common features in the GC
sampling structure: (i) when by the design of our system there is a causal flow, yet the GC value
can vanish over a certain set of τ, yielding an incorrect causal inference; or (ii) conversely, when
there is no causal influence by construction, the GC value can become of appreciable size for
some ranges of τ, yielding again a potentially erroneous causal inference. Clearly, these
phenomena greatly complicate the interpretation of the GC inference and potentially produce
opposing causality conclusions when using different sampling τʼs for empirical data. These
issues have yet to receive sufficient attention despite the wide use of GC analysis in many fields.
It is important to examine these issues in a GC analysis to avoid erroneous causal inference. We
use a small-world network reconstruction as an example to illustrate this hazard. As is well
known, many important biological or social networks possess small-world attributes [22, 23].
The small-world topology is generally linked to efficient parallel information processing on
both local and global levels. We show that an incorrect inference can arise, i.e. the small-world
attributes are completely lost in the reconstructed network when GC analysis is blindly applied
to the network topology reconstruction. Clearly, these sampling issues should also arise in data
processing for GC evaluations using low-pass filtering or down-sampling for many types of
imaging data, such as the BOLD signal in functional magnetic resonance imaging (fMRI)
[24, 25].
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To remove the inference artifacts in the GC analysis, it seems that a natural resolution is to
incorporate as much information as possible by using sufficiently fine sampling. However, as
we show below, this approach produces a paradox, i.e. a finer sampling may not imply a more
reliable GC inference. In what follows, we will use idealized models to study the mechanisms
underlying these phenomena and discuss an approach that can eliminate these artifacts to obtain
a reliable GC relation.

2. GC sampling structures

GC aims to analyze the causal influence of one time series, Xt, on another, Yt, by examining
whether the statistical prediction of Yt can be improved when the past information of Xt is
incorporated into it [2, 26, 27]. First, to fix the notation, we briefly recapitulate the GC analysis
[2, 27, 28]. For two stationary zero-mean discrete time series { }Xt and { }Yt , a statistical
prediction can usually be accomplished using the autoregression
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are residuals representing the prediction errors after we consider the shared

history for both time series. The sequences ϵ{ }t1 , ϵ{ }t2 , η{ }t1
, and η{ }t2

are white-noise time

series. The GC →Fy x characterizing the causal influence of { }Yt on { }Xt is defined as
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Note that ϵ ϵ⩾( ) ( )var vart t1 2 , i.e. the prediction of one time series cannot become worse
(i.e. have greater residual variance) after information from the other time series is incorporated,
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the frequency domain [2, 27, 28], e.g. ∫ ω= π π
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determinant of the spectral matrix ω( )S , where matrix elements ω( )Sxx and ω( )Syy are the

power spectra of { }Xt and { }Yt , respectively, and ω = ∑ ω
=−∞

+∞
−

−( )( )S X Y ecov ,xy n t t n
in is the cross-

spectrum of { }Xt and { }Yt .
To illustrate the application of GC in nonlinear dynamics, we choose network dynamics of

conductance-based, pulse-coupled integrate-and-fire (I&F) neurons [29]
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where vi and g
i
are the membrane potential and conductance for the ith neuron, respectively, g

L

is the leak conductance, ϵL and ϵE are the resting and reversal potentials, respectively, and σ is

the conductance time constant. When vi ϵ∈ ( )V,L th , a neuron evolves according to equation (2).
When vi reaches the threshold Vth, it is reset to the resting potential ϵL for a refractory period τref.
This threshold-reset event is referred to as a spiking event. The coefficient =s sAji ji denotes the

connection from neuron j to neuron i, with s the coupling strength and = ( )AA ji the adjacency

matrix of the network; Tj k, is the kth spike time of the jth neuron, whereas Ti l,
p is the lth spike time

in the Poisson input to the ith neuron. This input has rate μ and strength λ.
For a network of two neurons, x and y, with the adjacency matrix A with elements =A 0xx ,

=A 0xy , =A 1yx , and =A 0yy , we apply the GC analysis on the voltage time series. We expect

that a successful GC analysis of the network topology should result in consistency between the
causal and structural connectivities, that is, the presence of a structural coupling, =A 1yx ,

should induce a causal flow, i.e. ≠→F 0y x , whereas the absence of the coupling =A 0xy should

yield =→F 0x y . We demonstrate below how we can reliably assess this consistency by first

addressing artifacts arising from the sampling in the evaluation of GC values.
Note that the discrete time series used in the GC analysis is usually sampled from

continuous-time processes. The sampling effects can be captured by the GC sampling structure,

i.e. the GC values, →Fy x, →Fx y, as functions of the sampling interval τ, denoted by τ
→F ( )

y x,
τ
→F ( )

x y. For

the nonlinear network dynamics of two neurons, from its GC sampling structure as shown in
figure 1(a), we can observe the following properties:

(I) GC is an oscillatory, decaying function of τ,

(II) GC becomes nearly zero, or zero, periodically.

From this GC sampling structure, clearly, one is confronted with the question of what a
proper τ is to obtain the GC value for causal inference or network topology extraction.

Properties I–II are general, not limited to nonlinear dynamics, and they also appear in
many of the linear models we have examined. Figure 1(b) illustrates such an example of linear
(second-order regressive) models:

ε= − − + +− − − −X X X Y Y a0.9 0.6 0.3 0.15 , (3 )t t t t t t1 2 1 2
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η= − +− −Y Y Y b0.7 0.4 , (3 )t t t t1 2

where εt and η
t
are Gaussian white noise with zero mean, ϵ =( )var 0.5t , η =( )var 1

t
, and

ϵ η =( )cov , 0.2t t
. Here, ‘sampling interval length’ τ =( )k refers to a ‘coarse-grained’ discrete

time series constructed using an original datum point after skipping −k 1 points in between. As
shown in figure 1(b), clearly, the model also possesses properties I–II.

New J. Phys. 16 (2014) 043016 D Zhou et al

5

Figure 1. The GC sampling structure. (a) For the uni-directed two-neuron network (2),

plotted are τ
→F ( )

x y (red) and
τ
→F ( )

y x (cyan), obtained from voltage time series of the system
(2). Shaded regions along the curves indicate a 95% confidence interval. The parameters
are =V 1th , ϵ = 0L , ϵ = 14/3E , τ = 2 msref , σ = 2 ms and = −g 0.05 ms

L
1 throughout the

text. Here μ = 1 kHz, λ = 0.06, s = 0.02. (b) For the second-order linear regression

model (3), plotted are →F ( )
x y

k (red) and →F ( )
y x

k (cyan) with sampling interval k. The insets in

(a) and (b) are corresponding spectra: ω( )Sxx (cyan), ω( )Syy (red), and ω( )Sxy (black)

computed from the original time series. (c) Comparison with asymptotic results of →F ( )
y x

k :
the black dotted line is numerically obtained GC and the cyan is the asymptotic form (5)

with β π= /8 and ϕ π= − /2. (d) For model II, plotted are →F ( )
x y

k (red), →F ( )
y x

k (cyan), F ( )
x y

k
.

(dashed cyan), F ( )
x y

k
, (dashed red) with sampling interval k (parameters ξ = 0.05, β = π

5
,

γ = 0.3, ϕ = π
2
). Corresponding spectra are plotted in the inset: Sxx (cyan), Syy (red), and

Sxy (black).



Next, we construct idealized models for which we have perfect control of causal influence
and use them to ascertain the phenomena observed in the GC sampling structure analytically.
Using the lag operator L, i.e. = −LX Xt t 1, and defining = + ∑ =

+∞( )a L a L1
n n

n
1

, = ∑ =
+∞( )b L b L
n n

n
1
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and = + ∑ =
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n
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, the dynamics we consider are
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where ϵt and η
t
are independent white-noise series, so that ϵ η =( )cov , 0t t

. Clearly, the structural

connectivity in the system (4) means that Yt causally influences Xt and is not influenced by Xt.

We first consider model I: =( )c L 1, ϵ Ω=( )var t , η =( )var 1
t

. Denoting the Fourier
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we obtain the spectra of { }X Y,t t as ω ω Ω ω ω= +* *( ) ( ) ( ) ( )S a a b bxx , =S 1yy , and

ω= ( )S bxy . Here, we first consider =S Cxx (C is a constant), i.e. there are to be no oscillations

in { }X .t Note that ω( )Sxx is the spectrum of the original time series ⋯{ }X X X, , ,0 1 2 . We denote

by ω( )S ( )
xx

k the spectrum for the time series ⋯{ }X X X, , ,k k0 2 , sampled from the original { }Xn

with the sampling interval of length k. For this model, we can easily show that ≡ ≡→F F 0( ) ( )
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which are GC computed using the time series sampled with interval length k. Therefore, for the
sampling interval k, we have

∫π
ω ω

ω ω
ω= = − −

π

π

→
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )
( ) ( )

F F
S S

S S

1
2

ln 1 d( ) ( )
( ) ( )

( ) ( )y x
k

x y
k xy

k
yx

k

xx
k

yy
k,

by the definition of the total GC. The only spectrum component that varies with k is the cross-

spectrum S ( )
xy

k . To illustrate the behavior of the GC sampling structure, we choose

β ϕ= ∑ +ξ
=

+∞ −( ) ( )b L e n Lcos
n

n n
1

, which reflects the typical oscillatory, decaying behavior of
the correlations in the time series. Here ξ, β, and ϕ are constants. Under the condition that

ω≫ ( )C b ,
2

using the spectral representation of →F ( )
y x

k above, we can show that →F ( )
y x

k has the

asymptotic form

β ϕ≈ +ξ
→

− ( )F e k Ccos (5)( )
y x

k k2 2

for large k, which clearly possesses properties I–II. In particular, for suitable values of β and ϕ,
the GC value vanishes on a certain set of k. Figure 1(c) shows such an example, which also
confirms that the GC asymptotic solution for large k agrees well with the numerically obtained
GC sampling structure from the time series. By the model construction (4), there is a causal
flow from Yt to Xt. However, through our asymptotic analysis, we confirm that the
corresponding GC vanishes on certain sampling intervals, k.

To emphasize another kind of sampling artifact [30] in the GC sampling structure, we
consider model II, for which β= + ∑ ξ

=
+∞ −( ) ( )a L n L1 e cos
n

n n
1

, γ= ∑ ξ
=

+∞ −( )b L e cos
n

n
1

β ϕ+( )n L ,n and β= + ∑ ξ
=

+∞ −( ) ( )c L n L1 e cos
n

n n
1

, where ξ, β, γ, ϕ are constants:
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ϵ =( )var 1t , η =( )var 1
t

, and ϵ η =( )cov , 0.t t
As shown in figure 1(d), model II also possesses

properties I–II. Importantly, it displays a prominent feature of spurious GC as property

(III) →F ( )
x y

k (the red curve in figure 1(d)) has a non-zero value, which becomes appreciable for

>k 1, despite the fact that there is no causal influence from { }Xt to { }Yt by the model
construction.

This phenomenon is also discernible in figure 1(a) for the nonlinear network, for which

=A 0xy , yet →F ( )
x y

k can significantly deviate from zero over some interval τ, as clearly

demonstrated by the 95% confidence region in figure 1(a).
As described above, properties I–III in the GC sampling structure are common features for

both linear and nonlinear models. These properties have strong ramifications in the application
of the GC analysis. Importantly, properties II and III demand additional sampling criteria for
establishing the reliability of any conclusions about the causal influence for both linear and
nonlinear systems.

3. Small τ limit for GC

Because GC is not invariant with respect to τ, we cannot choose the sampling-interval length
arbitrarily in the GC analysis. One possible solution is to use a discrete time series sampled with
very fine intervals from a continuous-time process. Intuitively, this approach would incorporate
ever more information for causality determination with ever finer intervals. However, as shown
in figure 2(a), for the case of nonlinear network dynamics, we have the following phenomenon
as property

(IV) the GC value, obtained using a discrete time series with the sampling interval τ,
approaches zero almost linearly as τ → 0.

Therefore, the GC constructed in this way would give rise to a paradox that we eventually
lose the ability for causal inference through GC despite the fact that more information is
incorporated as τ → 0. We present the mathematical reasons below for property IV, from which
one can see that it is also a general phenomenon.

Because GC can be computed through the spectral representation, we first study the limit

of the spectral matrix ωτ ( )S( ) which is the spectrum of the time series ∈τ τ { }X Y n, ,n n , with

the sampling interval τ obtained from a bivariate continuous-time stationary process { }X Y,t t ,

∈ t . Then, the covariance matrix τ( )nG , ∈ n is a sampling of

= − −

− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( )
( ) ( )

( )s
X X X Y

Y X Y Y
G

cov , cov ,

cov , cov ,

t t s t t s

t t s t t s

, ∈ s . Define ∫= π
−∞

+∞ −( ) ( )f s e sP G ds fi 2 , i.e. the

power spectral density (PSD) of the continuous processes X Y,t t. By the Wiener–Khinchin

theorem, ω τ= ∑τ ω
∈

−
( ) ( )n eS G ,( )

n
ni noting that the relation between the frequency f for the

continuous process and ω for the discrete time series is ω πτ= f2 , we obtain τ ω →τ ( ) ( )fS P( )

as τ → 0. Using this relation, the total GC spectral representation yields
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∫τ
τ→ − − →τ

−∞

+∞

( )( )F C f f
1

ln 1 d as 0 (6)( )
x y,

where = ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( )C f P f P f P f P fxy yx xx yy is the coherence of the continuous-time

processes Xt and Yt. Similarly, we can also show that τ
τ
→F ( )

x y
1 , τ

τ
→F ,( )

y x
1 and τ

τ
·F ( )

x y
1 have limits as

τ → 0 and these limits are intrinsic properties of the continuous processes. Therefore, the GC is
linearly proportional to the sampling interval length for small τ.

New J. Phys. 16 (2014) 043016 D Zhou et al

8

Figure 2. The GC sampling structure as τ → 0 for the uni-directed two-neuron network

(2) with μ = 1 kHz, λ = 0.0177, s = 0.02. (a) τ
→F ( )

y x (gray dashed line) and τ
→F ( )

x y (black

dotted line) obtained from voltage times series. (b) τ
τ
→F ( )

x y
1 (dotted line), τ

τ
→F ( )

y x
1 (gray

dashed line), τ
τF ( )

x y
1

. (black dashed line ), τ
τF ( )

x y
1

, (black solid line), and the horizontal gray

straight line is ∫− −
−∞

+∞ ( )( )C f fln 1 d (see equation (6)). The inset is the coherence C

(f) computed from PSD. Note that, by the asymptotic distribution theory of GC [27], the
estimator of a directed GC has a bias p n/ , where p is the regression order and n is the
length of the time series. We have used the Bayesian information criterion [31] to
determine the regression order p and have subtracted this type of bias in (a) and (b).



4. Procedure for reliable GC inference

From the above analysis, it is clear that one needs to be rather careful in interpreting causal
inference using the GC analysis. Our analysis also provides a general approach to
circumventing the issues discussed above: first, a range of τ should be used to sample
continuous-time processes to obtain a set of discrete time series. Second, one computes the GC
structure to examine its general behavior in order to (i) avoid using an accidental sampling
interval τ for which GC may vanish despite the presence of causal influence, or (ii) avoid
spurious non-zero GC values for finite τ as seen in figure 1(d) when there is no causal influence.
Third, on account of the typical length scales τosci and τd of the oscillations and decay in the GC
sampling structure, one should use fine sampling τ≪ τosci, τd to find the linear range of the GC,

τF ( ) (with the estimator bias [27] removed as in figure 2), as a function of τ, and then plot the

ratio of ττF /( ) to extract its limiting value as τ → 0.
Returning to the network of two neurons, using the above approach, we can now

successfully confirm the consistency between the causal connectivity and structural
connectivity, i.e. that the topology =A 1yx and =A 0xy of the two-neuron networks can be

reliably linked to ≠τ
τ
→F 0( )

y x
1 , =τ

τ
→F 0( )

x y
1 as τ → 0, as shown in figure 2(b).

In addition, we comment on some other aspects of the GC oscillation features observed in
figure 1. As shown in figures 1(a) and (b) for both linear and nonlinear dynamics, the oscillation
frequency in the GC sampling structure is twice the peak frequencies of the spectra. This
relation also appears in the asymptotic solution (5) for model I, which contains the oscillation

frequency β π=f /
GC

and whose ω( )Sxy has a peak at β π= =f f/2 2
S GC

. Note that for

nonlinear networks, the GC analysis extracts an underlying regression structure. The spectra
(figure 1(a)) in the network case all have the same peak frequency, resembling those in model II
(figure 1(d)), therefore, they share similar GC sampling structures by the GC spectral theory.
Complicated oscillation structures in the GC sampling structures may arise and, in general, are
related to the spectral peak frequencies of the original time series.

5. An example: small-world networks

Finally, we illustrate the importance of the above GC extraction strategy in an example of the
reconstruction of a directed, small-world network of neurons. The small world network is
initially wired using a similar method to the Watts–Strogatz method [22] with a modification to
take into account directed edges [32, 33]. The small-world attributes are reflected in a large
clustering coefficient and a small shortest path length in comparison with random networks. For
our network of 100 excitatory neurons, the average clustering coefficient and the average
shortest path lengths are 0.434 and 6.53, respectively. (For an undirected random network of the
same number of nodes and edges, the average clustering coefficient and the average shortest
path length would be 0.040, 2.44, respectively. For a directed random network, a node can then
no longer always reach any other node through a directed path.) Using the voltage time series
obtained from solving system (2), we can compute the conditional GC from neuron i to neuron j
given the information about other neurons in the network (for details see [34]). The network
topology is then successfully reconstructed (i.e. identical to that of the original network), as
shown in figure 3(a), using the above GC extraction strategy. If a fixed sampling interval, say,
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τ = 6.0 ms, was used, the conventional GC analysis would produce a network topology that
completely fails to capture the original network topology. This reconstructed network is shown
in figure 3(b), which recovers only five directed connections while failing to find nearly 400
original connections in the total 9900 possible edges. Clearly, this reconstructed network, with a
vanishing clustering coefficient and no connected paths, has even failed to capture the statistical
structures of the network. Incidentally, we can also successfully reconstruct networks of
coupled excitatory and inhibitory neurons with an arbitrary adjacent coupling matrix [19]. This
example suggests that one should be very careful about the interpretation and implication of
causal connectivity obtained using conventional methods for time series with a fixed sampling
frequency. A systematic verification is needed to establish their validity.

6. Discussion and conclusion

In summary, we have shown that for both linear and nonlinear processes the computed GC is
dependent on the sampling interval length τ. For instance, the GC may vanish on a certain set of
τ despite the presence of true causal influence, or it can become non-zero over a range of τ
despite the absence of any causal influence. Furthermore, the naive idea of using a sufficiently
fine sampling interval, thus incorporating as much information as possible, will always give rise
to vanishing GC regardless of whether there is a causal influence between the time series or not.
By constructing simple idealized models, we have ascertained analytically the above
phenomena as observed in both linear and nonlinear processes, and proposed approaches to
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Figure 3. Loss of small-world attributes. Left panel: a small-world I&F network of 100
excitatory neurons whose directed connections are constructed using our GC extraction
strategy with the smallest sampling interval τ = 1 ms (see text). These have been
verified to be identical to the original directed network topology; here, a neuron is
represented by a small circle and a directed edge is indicated by an arrow pointing from
the presynaptic neuron to the postsynaptic neuron. Right panel: a network topology
constructed using the τ = 6 ms sampling interval in the conventional GC analysis. This
has recovered only five directed connections, while failing to capture nearly ∼400
original connections. This drastic loss of small-world attributes is a consequence of the
incorrect sampling interval used in the GC analysis. The parameters for the I&F system
(2) are μ = 1 kHz, λ = 0.012 and s = 0.005.



overcome these sampling artifacts in order to obtain a reliable GC inference. We discussed the
sampling issues of GC using the parametric methods of GC evaluations in the time domain as
above. However, we point out that, naturally, similar issues about the sampling effects in the
GC analysis also exist for non-parametric methods in the frequency domain. One has to deal
carefully with the sampling issue regardless of whether a parametric method or non-parametric
method of computing GC is used. We further comment that there is another related, interesting
scientific question, namely, even for a fixed sampling rate, whether there is causal influence
from one time scale to another in a coarse-grained sense. We note that this question was
addressed in [35] by using a wavelet decomposition in time. Finally, we expect that our
approach of obtaining reliable GC values can be used in analyzing GC relations for various
kinds of observational data, such as EEG and fMRI signals, and may shed light on the impact of
sampling effects in other empirical data-inference methods.
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