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Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of
many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics.
Using the 3-Fermi—Pasta—Ulam nonlinear system as a prototypical example, we show that in thermal
equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear
regime possesses an effective linear stochastic structure in renormalized normal variables. In this
framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-
wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the
long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective
linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems.

1. Introduction

Dispersion relations play a controlling role in characterizing turbulence of weakly nonlinear dispersive waves
[1]. For strongly nonlinear waves in thermal equilibrium and non-equilibrium, is there a similar relation that
can capture important dynamic features of the turbulence? It has been found that such relations, referred to as
renormalized dispersion relations, often arise from wave—wave interactions, and they can deviate substantially
from the bare linear dispersion relation [2—6]. The pioneering Fermi—Pasta—Ulam (FPU) lattice is an example
exhibiting such phenomenon even in strongly nonlinear regimes [2, 3, 6—9]. The FPU lattice problem has
spurred a great number of important developments in physics and mathematics [10, 11]. There have been many
theoretical and numerical efforts in understanding its anomalous heat conduction, i.e., the divergence of the
thermal conductivity and the failure of Fourier’s law [12—15] as the problem of energy transport in one
dimensional systems has attracted great interests in recent decades [12, 16]. Here, one has to address important
questions of what are the carriers that transport energy in turbulent states and what are their spatiotemporal
characteristics in both thermal equilibrium and nonequilibrium steady state. In this work, we will address these
issues through characterizing spatiotemporal features of these carriers using the renormalized dispersion
relation and show that energy transport in the turbulent state is controlled by the renormalized waves.
Resolution of these issues can provide deep insights into effective descriptions of turbulent states in general
nonlinear dispersive waves in thermal equilibrium and nonequilibrium steady state.

We will show below that there is a linear stochastic dynamic structure embedded in the 3-FPU turbulent
states in thermal equilibrium even in strongly nonlinear regimes. This linear structure is intimately related to the
renormalized dispersion relation. By examining the spatiotemporal characteristics and dynamical behaviors of
renormalized waves, we demonstrate that the long time behavior of the momentum correlation functions is
dominated by the long-wavelength renormalized waves and the linear stochastic structure results in a power-law

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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decay of the amplitude of momentum correlation functions [17-20]. We further show that these dynamical
features of renormalized waves persist in nonequilibrium steady state turbulence. We demonstrate that the
energy carriers in nonequilibrium steady state are long-wavelength renormalized waves in the linear stochastic
dynamic structure, which nearly saturates the total energy flux in the turbulence. This scenario of linear
stochastic dynamic structure characterized by the renormalized dispersion relation can be extended to the
turbulence descriptions of many general nonlinear wave systems in both thermal equilibrium and
nonequilibrium steady state.

2. The FPU model

The dimensionless Hamiltonian of the 8-FPU chain is

H= Y Ypilgn-ar+ L, - e 0
- zp,, ) qn+1 qn 4 qn+1 qn >
n=—N/2+1

where p,, and g,, are the momentum and the displacement of the nth particle, respectively, and 3
parameterizes the strength of nonlinearity. In the Fourier space, the Hamiltonian can be written as

N—1

1 1

H= Y — P + —wi QI + V(Q),
k=02 2
where
. | km

Wy = 2sin| — 2
k (N) (2)

is the linear dispersion relation, Py, Qx and V(Q) are the Fourier transforms of p,,, g,, and the quartic term,
respectively. To investigate the S-FPU system in equilibrium, we apply the periodic boundary conditions. For
nonequilibrium steady state, we apply fixed boundary conditions q_ ,, = gy, = 0. The particles of
n=—N/2 4+ landn = N /2 attwo ends are connected to Langevin heat reservoirs; i.e., with the governing
equations §, = —0H /0q, — A\j, + 0,&,(t), where &, (¢) is Guassian white noise with (¢, (¢)) = 0,

(&, (¢, (t')} = §(t — t'). The driving coefficients o, and the dissipation coefficient \ satisfy the Einstein
relation 02 = 2\T;,, where T,, are the temperatures of the two heat reservoirs.

2.1. Renormalized dispersion relation
In thermal equilibrium, the renormalized dispersion relation has been obtained from an exact linear Langevin
equation (LLE) in the Zwanzig—Mori projection framework [21, 22]:

OH
<0Q*Q:>
k
Wiy =1L, 3)
(1Q«l?)
where (-) denotes thermal average, and is interpreted as a long time average in numerical computation. By
employing the energy equipartition theorem in the renormalized dispersion relation (3), wf can be written as
K
wi = ka = 7 Wk “)

(U)

where K = ZSZEN/ZHP;/Z andU = 2111\]:/2—1\]/2+1(qn+1 — qn)z/z are the kinetic and quadratic potential
energy, respectively, and 7, is a renormalization factor of the dispersion relation. Based on the equality
(K) = (U) + 2(V (Q)) obtained from the equipartition theorem for the 3-FPU chain, equation (4) can be

written in the form of wf = /1 + 2(V)/(U) wy, which has the same form as proposed in [7, 8]. In figure 1, we
display the measured dispersion relation £2;7°**. For a fixed mode k, the measured ;" corresponds to the value
of wonthe w — k plane where the spatiotemporal spectrum |Qk (w) |? reaches its maximum value. Here, Q (w)
is the temporal Fourier transform of Q,(#). It is important to note that for both thermal equilibrium and
nonequilibrium steady state, the theoretical prediction (4) agrees very well with Q"*** and these renormalized
dispersion relations are induced by wave—wave resonances, instead of inherited from their linear dispersive
dynamics [6, 9]. More specifically, the contribution of the trivial and nontrivial resonances is significant to the

renormalization of the dispersion relation [9].

2.2. Spatiotemporal characteristics
We now turn to the question of how these renormalized dispersive waves manifest themselves spatially and
temporally in the turbulent state of thermal equilibrium and nonequilibrium steady state. The columns of
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Figure 1. Comparison of dispersion relations wf, Q" and wy for the 3-FPU chain with N = 8192 in (a) thermal equilibrium and
(b) nonequilibrium steady state. The dashed—dotted black line corresponds to wy, the dashed red line corresponds to wf ,and the solid
green line corresponds to §2;'°**. In thermal equilibrium, the parameters are 8 = 100 and H/N = 3.9. In the nonequilibrium steady
state, the parametersare 3 = 100, A = 1, 0_n/241 = 1,and on/, = 10.
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Figure 2. Spatiotemporal evolution of kinetic energy density for the 3-FPU chains with N = 256 in thermal equilibrium (upper
panel) and in nonequilibrium steady state (lower panel). The left (a) (b), middle (c) (d), and right (e) (f) columns correspond to pﬂ2 / 2,
( pik )? / 2,and ( pnhk )? / 2, respectively (see text). The parameters 3, H/N, A, 0_n/2+1, and oy /, are the same as those in figure 1.

figure 2 display the kinetic energy density evolution pn2 / 2,( prfk)2 / 2,and ( pnhk)2 / 2, respectively, where the low k
momentum p,ik = %Zkelq Py exp (—i2mwkn/N)with K; = [0, N/4] U [3N/4, N — 1]and the high k

momentum pfk = %ZkeKH Py exp (—i2wkn/N)with Ky = [N/4 + 1, 3N /4 — 1].Infigures 2(a) and (b),
two types of localized objects (dark stripes) that carry sufficiently large amount of kinetic energy can be clearly
observed. For the ballistically traveling localized objects (nearly straight crosshatch stripes in figures 2(a) and
(b)), it can be numerically examined that they move approximately at the speed of the renormalization factor 7, .
Furthermore, the spatial structure of these objects resembles that of low k kinetic energy ( prik )? / 2 (figures 2(c)
and (d)). These traveling localized objects are wave packets of low k renormalized dispersive waves. The other
type of localized objects (meandering stripes in figures 2(a) and (b)) execute nearly random walks in space. They
show similar behaviors as high k kinetic energy ( pnhk )? / 2 (figures 2(e) and (f)). Their temporal frequencies are
near the high frequency edge of the renormalized dispersion band [2, 3]. These localized objects are wave packets
of high k renormalized waves and have been identified as discrete breathers (DBs) because their spatial structure
strongly resembles the idealized DBs in the 3 -FPU system [2, 3]. A numerical study analogous to figure 2(a) can
be found in [23]. However, we emphasize here that there is a rather different spatiotemporal manifestation
between long-wavelength and short-wavelength renormalized waves as can be seen from figure 2. Moreover, we
demonstrate that the traveling localized objects in figures 2(c) and (d) correspond to wave packets of low k
renormalized waves. As will be shown below, these objects dominate the long time behavior of the momentum
correlation function and they are responsible for transporting energy in nonequilibrium steady state in the
OB-FPU system.
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Figure 3. (a) Peak locations of C,, (11, t) versus time ¢ for the 3-FPU chain in thermal equilibrium (TE) (red axis): theoretical
predictions 7, (green stars) and numerical measurements of the left moving mode ¢, (red circles). Also plotted are peak locations of
C, (n, t) versus time tin nonequilibrium steady state (NESS) (blue axis): theoretical predictions 7, (cyan diamonds), numerical
measurements of the left moving mode CL (blue squares) and the right moving mode CR (magenta triangles). (b) Decay of the amplitude
of correlation functions in time: C, (1, t) (green), C l(n t) (red),and C o (n, t) (blue) for the 3 -FPU chain in thermal equilibrium.
In nonequilibrium steady state, their colors are cyan, black, and magenta, respectively. (c) and (d) scaling of the spatial profile of

C, (n, t): scaled plots of the left moving mode C, (, t) at different times in thermal equilibrium and nonequilibrium steady state,
respectively. For comparison, also plotted are the corresponding Guassian fits. The fitting parameter D is 2.6 in thermal equilibrium
and 2.0 in nonequilibrium steady state. The particle number is N = 8192. The parameters 3, H/N, A, 0_x/2+1,and oy, are the same
as those in figure 1.

2.3. Dynamical behaviors of the momentum correlation
To further characterize the dynamical behaviors of these renormalized dispersive waves, we invoke the
momentum correlation function [17]

(P, ()P, (0))

C,(n, t) = N
R PN YXO)

()

which describes the spatiotemporal evolution of momentum fluctuations. For the turbulent state in both
thermal equilibrium and nonequilibrium steady state, we can numerically show that C,, (1, t) possesses the
following properties: (i) the peak location of C,, (11, t) can be well described by 7, ¢, i.e., moving at the group
velocity, cg, of renormalized waves (as shown in figure 3(a)), where the group velocity is determined by the
renormalized waves ¢, = Owk ¥/ 0Q27mk/N)lk—o = n;. (i) There is a power-law decay of the amplitude of
Cp (n, t)as shown in figure 3(b). For comparison, figure 3(b) also d1splays the amphtude of Cy(n, t)and

o (1, 1), where C o, 1) and Cpi(n, t)are correlation functions of p kand p,, ,respectlvely It can be seen that
for sufficiently large time, | Cp | decays atthe samerate as | C,| whereas | CI’} | decays much rapidly. This
demonstrates that the dynamical behaviors of the ballistically traveling wave packets are indeed controlled by the
low k renormalized waves. (iii) C, (1, t) possesses a Gaussian profile in space as shown in figure 3(c).
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3. Effective linear stochastic structure

Next, we discuss that there is an effective linear dynamics underlying properties (i)—(iii) in the 5-FPU turbulent
states. We first discuss the equilibrium dynamics. Applying the Zwanzig—Mori formalism [21, 22], one can
rewrite the nonlinear §-FPU dynamics in equilibrium to obtain an exact LLE [6, 13, 14]. Under the Markovian
approximation [13, 14], the LLE can reduce to an effective linear dynamics of the renormalized waves with the
renormalized dispersion relation w¥:

Qi(t) = Pr (1),
Pr(t) = — (Wp)?Qe(®) — WPe(®) + Re(D), (6)

where R;(#) is a white noise with (Ry (t)) = 0, (Rg (1) R{(t")) = 2+, T5(t — ") with T the temperature. The
linear dynamics (6) gives rise to the momentum spectrum,

sz'ykT
S = (|P, 2) = :
p (W) = (|Pr(W)]*) ((WIE)Z — W)+ ’Yiwz

Inthelimitof N — oo, the corresponding correlation function C, (11, t) becomes

1 Q / .
Co(n, t)= —f e 7| cos ot — 7—l<Lsm o' |dk
2w Jo 20

k

+ 1 eH'zk’[cos ¢ — ry—kLsin (b]dk, (7)
254

2w Jo

where ¢" = Tt + kn, ¢ = TfFt — kn,and Bf = J(wh)? — 'yi/4 . The first integral and the second integral
in equation (7) arise from the left moving and right moving renormalized waves, respectively. Next, we assume a
scaling relation for the relaxation rate, 7, ~ Dk® in the limit of small wavenumbers. From our numerical
examination, the relaxation rate -y, can be directly computed from the decay rate of (P (t) P;(0)) for low k’s and
then the value of o can be numerically extracted from such v, as 1.9 & 0.1. There have been many studies about
the value of the scaling exponent « [15, 18, 19, 24-28]. The value o« = 2, which is consistent with our simulation,
is theoretically predicted by the mode-coupling theory [19, 28]. Under this scaling assumption, we obtain that
for large t the integral (7) is asymptotically dominated by the contribution from k — 0.In the moving frame

r = n £ 7, t atlarge time, the asymptotic behavior of the left moving and right moving components of C,, (1, t)
is

2

Cin, 1)~ —— ') 1T [t e

2o ()7 P\ T () | ()

From equation (8), the peak locations are centered at site n = Fn, t for left moving and right moving
renormalized waves, respectively. Therefore, the group velocity ¢, is indeed equal to the renormalization factor
7, as consistent with what is observed in numerical experiment (figure 3(a)). Note that for our nonlinear waves
the values of the renormalization factor 7, (figure 1(a)), the group velocity of low k renormalized waves

(figure 2(c)) and the speed of the peak location of the correlation function C, (1, t) (figure 3(a)) are identical
within numerical accuracy. Traditionally, one deals with the dispersion relation and the group velocity only for
linear components of dispersive waves. For nonlinear waves, it is theoretically interesting to quantify their
dispersion relation and group velocity and further understand the reason underlying above identities. We
emphasize that the framework of the effective linear stochastic structure for nonlinear 3-FPU systems provides a
natural underpinning of the renormalization for the effective dispersion relation and its connection to the group
velocity and the speed of the peak location of C, (1, t) in the nonlinear waves. The formula (8) displays a power-
law decay in the amplitude, | C,| ~ t~1/, The value of o obtained from fitting of | Cpl ~ t71/9§s2.0 £+ 0.1in
thermal equilibrium. These numerical results show that there is a self-consistency in our description of the
effective linear dynamics. As the dominant contribution to the integral (7) comes from the neighborhood of

k = 0in the long time limit, only the low k modes contribute to the long time behaviors of C, (1, t) whereas the
high k modes have a much shorter correlation time as shown in figure 3(b). Finally, our asymptotic analysis
predicts a Gaussian profile for the scaled C, (1, t). Here, the scaled C, (1, t) is

(Dt/2)VC,p((n + cgt)/(Dt/2)!/?, t),i.e., spaceis shifted by a distance ¢yt, then scaled by 1/(Dt/2)!/*, with
amplitude scaled by (Dt /2)!/“. This Gaussian profile is confirmed in our numerical experiment, as shown in
figure 3(c).

®)
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total energy flux

Figure 4. The energy flux as a function of the driving coefficient oy /,. Blue circles and red stars correspond to the energy flux Jand the
renormalized energy flux J L respectively. (Inset) The energy flux J: versus wavenumber k. The particle numberis N = 8192. The
parameters (3, A, and 0_y ;1 are the same as those in figure 1.

4. Nonequilibrium steady state turbulence

Our numerical results of the turbulent states in nonequilibrium steady state with thermal reservoirs at the two
ends are displayed in figures 2 and 3. Importantly, from these results, it can be clearly concluded that the above
behaviors of renormalized dispersive waves persist and the prediction (8) is still valid (we note that the fitted
value for ais 1.9 + 0.1 in nonequilibrium steady state). Our previous work [9] has numerically confirmed that
the theoretical renormalized dispersion relations are valid for a wide range of temperature gradients in
nonequilibrium steady states. Therefore, the description of the effective linear dynamics (6) can be generalized to
the nonequilibrium steady state turbulence for the §-FPU system. This effective description can be further
corroborated by the following analysis of the energy flux. For a harmonic chain, the total energy flux J can be
expressed in the Fourier spaceas ] = Im ZkN:/iN/H Jr> where Ji = (viwr Qe PY) and vi= cos(kmr/N) is the
group velocity. For the 8-FPU turbulent state, we can show that the energy flux can be well approximated by
Jt =1Im ij /2 N/241 Ji, where J} is obtained by assuming the linear wave system having the renormalized

dispersion relation wi, ie.,
L L L
]k = <Vk Wi Qkplf% 9

with the corresponding renormalized v = 7, cos(k7/N). As can be seen from figure 4, for a wide range of
driving strength o /2, which is related to the temperature difference at the two ends, the total energy flux J* of
the linear system with the renormalized dispersion relation is in excellent agreement with the total energy flux of
the original nonlinear dynamics | = ZnN:/Z—N/ZJrljn’ where j, = (p,[(4,., — 4,) + 3@,,, — 4,)°]). Further-
more, we find that almost all contribution to the flux J* comes from the low k modes (as seen in the inset of
figure 4). The agreement between the renormalized flux J* and ] demonstrates that the renormalized waves in
turbulence behave like nearly noninteracting linear waves in transporting energy and the energy carriers are
wave packets of low k renormalized waves. Note that a decomposition of the flux into modal components can be
naturally carried out for harmonic chains [14, 29]. However, our decomposition (9) is different from the
decomposition J; = (viwi Qi Py) in early works [14] in the following sense. For nonlinear waves in anharmonic
chains such as 5-FPU chains, how to achieve a modal decomposition for flux is, in general, difficult. Here,
because of the effective linear stochastic structure in nonlinear 3-FPU chains, the flux can be well characterized
by the decomposition (9) through renormalized components. As shown by the analysis of the contribution to
the flux from each mode component J%, we emphasize that low k renormalized waves are responsible for
transporting energy in nonequilibrium steady state. From the above discussion, we can conclude that the ballistic
traveling wave packets manifested in the turbulence are long-wavelength renormalized waves, characterized by a
power-law correlation, traveling at the group velocity determined by the renormalized dispersion relation, and
transporting energy in turbulence in nonequilibrium steady state as well.

5. Conclusion and discussion

We have examined the validity of effective linear stochastic dynamics in the strongly nonlinear regime of the
B-FPU turbulence in both thermal equilibrium and nonequilibrium steady state. Using the effective linear

6
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Figure 5. (a) Comparison of dispersion relations w¥ (dotted blue line) and Q"*(solid green line) for the purely quartic chain with
N = 8192 in thermal equilibrium. Plotted is the logarithmic modulus In |§k (w) ? with its magnitude color coded. The parameters
are 8 = 100and H/N = 3.9. (b) Peaklocations of C,, (1, t) versus time t. (c) Decay of the amplitude of correlation functions in time.
(d) Scaling of the spatial profile of C, (1, t). The fitting parameter c is 2.0 and D is 2.6.

structure, we have well captured the long time behaviors of C, (1, t), including the group velocity and power-
law decay of the amplitude. We have also demonstrated that the long time behavior of C, (, t) is dominated by
the long-wavelength renormalized waves. In addition, we have shown that the total energy flux is nearly
saturated by long-wavelength renormalized waves, which constitute the energy carriers in the system. In the
following, we further demonstrate that this scenario of linear stochastic dynamics can be generalized to other
nonlinear wave systems. We first consider a purely quartic chain with the Hamiltonian

H=Y" /2 N/241 %pnz + g(qn +1 — 4,)". We emphasize that the linear dispersion relation is absent in this
dynamics. However, the renormalized dispersion relation can be induced by the nonlinear wave interactions in
thermal equilibrium (figure 5(a)). As shown in figure 5, the dynamical behaviors of renormalized dispersive
waves in the turbulent state are the same as those in the 5-FPU chain. In this turbulent state, the group velocity is
also derived from the renormalized dispersion relation wj = 27, sin(km/N) withn, = \/(K)/(U)

(figure 5(b)) and there is a power-law decay of the correlation amplitude (figure 5(c)). It can be seen from

figures 5(c) and (d) that the long time behavior of C, (1, t) is dominated by the long-wavelength renormalized
waves as well. Therefore, the turbulence of the (dispersionless) purely quartic chain can be well captured by the
effective linear stochastic structure with an induced renormalized dispersion relation wy. In contrast to many
other one-dimensional momentum-conserving systems, the coupled rotator model exhibits a normal heat
conduction [30, 31]. The coupled rotator model is described by the Hamiltonian

H=yN2, /241 %pnz + [1 — cos(q,,, — q,)]. Inboth the low and high energy limits, this dynamical system
becomes integrable [14]. We here focus on the validity of the effective linear stochastic structure in its strongly
chaotic, turbulent regime. It can be observed from figure 6(a) that both the measured dispersion relation §2;7*
and the theoretical prediction wf = \/ (QF0H /0Q;¥)/{|Qx[?) vanish in the turbulent state (we note that there
is a vestigial spectral band at the bare linear dispersion relation as can be observed faintly in figure 6(a). However,
the spectral power at the renormalized dispersion relation w{ = 0 is seven orders of magnitude higher than that
at the bare linear dispersion band. Here, as usual, the bare linear dispersion relation can be obtained from the
quadratic approximation of the Hamiltonian when g, | — q,,is small). Because of the vanishing renormalized

7
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Figure 6. (a) Comparison of dispersion relations w# (blue circles), Q2" (green stars), and wy (dashed line) for the coupled rotator
model with N = 1024 in thermal equilibrium. Plotted is the logarithmic modulus In |Q\k (w) | with its magnitude color coded. The
energy densityis H/N = 0.5. (b) Decay of the amplitude of correlation functions in time. (c) Scaling of the spatial profile of C, (1, t).
The fitting parameter « is 2.0 and D s 5.6.

dispersion relation, wy = 0, the linear stochastic structure gives rise to the asymptotic behavior of C, (1, t)

RPN A O N [

7o (D)@ P ZF(i) (D)l

(10)

if the relaxation rate in the limit of small wavenumbers is assumed to be 7, ~ Dk®. Thelong time behavior of

C, (n, t)is again dominated by the long waves (figure 6(b)). Moreover, the form (10) with the parameter

a = 2.0in Cy(n, t) (figure 6(c)) signifies the diffusion of the momentum within the turbulence as confirmed in
figure 6(c). Therefore, the turbulent states in all the above wave dynamics even without dispersion, regardless the
conservation of momentum, can be successfully captured by the effective linear stochastic dynamics.

In addition to symmetric potentials as above, we further consider an asymmetric potential, i.e., the a3-FPU

chain with the Hamiltonian H = ZL/Z_N/ZH%&Z + %(qn+1 —q) + %/(q,1+1 —-q) + %(qwrl — g ) If

o’ = 0, the pressure typically is nonzero in the chain. The Boltzmann factor in this case is given by

exp(—[V (x) + Px]/T), where Tis the temperature, x = g, ; — q,, V(x)is the potential of the chain, and Pis
the pressure [19]. In the NPT ensemble, the pressure P = — (V' (x))p. can be viewed as an average force ona
specific particle x. From the Boltzmann factor, we can see that the equilibrium position of x is not located at zero,
but at x, with x, satisfying V' (xo) = —P. Ifthere is a unique solution of x,, then in the low temperature regime
the effective potential V*ff of renormalized waves is provided by V¢ff = V (x) + Px =

V (x0) + V" (x0) (x — x0)*/2 + V" (x0)(x — x0)°/3 4+ [ (x — x¢)*/4 and the renormalization factor 7, is

K o1 N2
= % with U = — Z @y — 49, — x0)?, (11)
n=—N/2+1

where x satisfies the equation V' (xo) = (V'(q, +1 — 4,))p,7- From figure 7(a), we can clearly see that the
theoretical prediction is in excellent agreement with the measured dispersion relation. There is a power-law
decay of the correlation amplitude (figure 7(c)). The fitting parameter o = 1.6 so that the decay rate of
correlation amplitude is 0.62 which is close to the result 2 /3 predicted in [ 18—20]. The long time behavior of
C, (n, t)is again dominated by the long-wavelength renormalized waves (figures 7(c) and (d)). Note that the
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Figure 7. (a) Comparison of dispersion relations w,f (dashed blue line), £2;"°**(solid green line), and wy (solid black line) for the
a3-FPU chain with N = 8192 in thermal equilibrium. Plotted is the logarithmic modulus In |6k (w) > with its magnitude color
coded. The parametersare o' = 1, 3 = 4and H/N = 0.98. (b) Peak locations of C, (n, t) versus time t. (c) Decay of the amplitude
of correlation functions in time. (d) Scaling of the spatial profile of C, (n, ). The fitting parameter « is 1.6 and Dis 0.33.

scaled C, (1, t)is also predicted to possess a Gaussian profile from our theory”. Therefore, the turbulence of the
a8-FPU chain can also be well characterized by an embedded effective linear stochastic structure.

From above results we can see that there is rather good agreement between theoretical predictions and
numerical simulations, so that the scenario of the linear stochastic dynamic structure is effective in describing
the long time dynamics of the wave turbulence in many nonlinear wave systems. In this framework, we can well
capture two important features of the dynamics: one is the renormalized dispersion relation, which can deviate
substantially from the linear dispersion relation, the other is the spatial profile of the momentum correlation
functions C, (1, t). For 3-FPU chains, The Hamiltonian (1) possesses quartic terms of trivial and nontrivial
resonances, so that the renormalized dispersion relation is induced by quartic resonant interactions as discussed
in our previous work [9]. For the Majda—McLaughlin—Tabak model [32], it is demonstrated that nonlinear wave
interactions renormalize the dynamics, leading to a possible destruction of scaling structures in the bare wave
systems, and creation of nonlinear resonance quartets in wave systems for which there would be no resonances
as predicted by the linear dispersion relation [33]. For the (dispersionless) purely quartic chain, the quartet
resonances also play an important role in the renormalization of the dispersion relation. Therefore, the
renormalized dispersion relation is closely related to the resonance structures of the system. Moreover, by
analyzing the peak locations of the integral (7), we have demonstrated that the traveling velocity of C, (1, t) is
exactly the same as the renormalization factor 7, .

After applying the Markovian approximation and thermodynamical limit, the momentum correlation
function C, (n, t) (equation (7)) can be naturally derived. For FPU chains and coupled rotator models, the
integral (7) is asymptotically dominated by the small wavenumber k, so that the long time spatiotemporal
dynamics is dominated by long-wavelength renormalized waves. This can be seen from the excellent agreement
between |C,|and | C}, | as shown in figures 3(b), 5(c), 6(b), and 7(c). In addition, we can obtain the Gaussian
profile of C, (n, t) (equations ((8) and (10)) from the dominance of long-wavelength renormalized waves. This is
confirmed in our numerical simulations as shown in figures 3(c), (d), 5(d), 6(c), and 7(d).

> Note that from our theory the scaled C, (, t) is predicted to possess a Gaussian profile, whereas it is a KPZ function in [18, 19].
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Figure 8. (a) Comparison of dispersion relations w¥ (dotted blue line), 2*(solid green line), and wy (dashed black line) for the ¢*
model with N = 2048 in thermal equilibrium. Plotted is the logarithmic modulus In |§k (w) [? with its magnitude color coded. The
parametersare 3 = 1and H/N = 1. (b) The relaxation rate -, versus wavenumber k. () and (d) comparison of the spatial profile of
Cy (n, t) between direct numerical simulations and theoretical prediction (12). The fitting parameter wkZO =2.27,

wiy = —4 X 1075, 7, = 0.14,and 7} = 4.9 x 1077

To go beyond momentum-conserving nonlinear lattices as discussed above, we now turn to the discrete ¢*
model with a non-vanishing external on-site potential, which belongs to the class of momentum-nonconserving

lattices. The Hamiltonianis H = >°¥/2 . %pnz + %(an — )% + gq:, which possesses a normal heat
conduction [14]. Since its total momentum is no longer a constant, the dispersion relation does not vanish, i.e.,
wy = 0atk = 0.In our framework of the effective linear stochastic structure, the theoretical prediction of the
dispersion relation w? (equation (3)) can still well capture the measured dispersion relation in numerical

simulations as shown in figure 8(a). The momentum correlation function can be derived as

1 N2 .
Co(n, t) = — Z e 7| cos wkzt - Zkz sin@i t | cos kn, (12)
k=—N/2+1 20§

where Wf = \J(wf)? — 'yi / 4. We can see from figure 8(b) that the relaxation rate , has a global minimum at
k = N/2.Therefore, the long time dynamics of the correlation function C, (1, t) is dominated by short-
wavelength renormalized waves (figures 8(c) and (d)). To evaluate C, (1, t) of equation (12), we use the
quadratic approximation, wf ~ wf, + wkZO” (k — k0)2/2 and 7y, &~ 7y, + 72’0 (k — k0)2/2 atky = N/2.The
parameter values of wkZO , wkZOI R Yy, and ’yzo can be extracted from the profile of wf and .- The above evaluated
correlation (black curve) is shown in figures 8(c) and (d) in comparison with direct numerical simulations of
Cp(n, 1), Cpy(n, 1), and C o (1, ). Itcan be seen that the theoretical prediction can approximately capture
C, (n, t) particularly well at the center region around n = 0. Because the evaluated correlation (equation (12))
depends only on the local information of w# and 7 at k = N /2, this further confirms that short-wavelength
renormalized waves are responsible for the long time dynamics of the ¢* model. From above discussions, we can
see that for momentum-conserving lattices, the long time dynamics are dominated by long-wavelength
renormalized waves whereas for momentum-nonconserving ¢* lattice, the long time dynamics is dominated by
short-wavelength renormalized waves.

Finally, we provide an example to show that the scenario of such effective linear stochastic dynamics can be
extended to turbulent states in 2D wave systems. We consider a planar square lattice of the 8-FPU type with the
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Figure 9. Comparison of (a) measured dispersion relation Q% and (b) theoretical prediction of renormalized dispersion relation
“’fl, k, for the 2D 3-FPU lattice in thermal equilibrium. The logarithmic modulus In |Qry &, (@) [ with its magnitude color coded (c) at
k, = 2, 32, 64, 96, 128 and (d) at k, = 32.In panels (c) and (d), also plotted are wg, k, (dashed black line), w,fb k, (dashed—dotted blue
line), Q% (solid green line) for comparison. The parametersare N = 128, § = 1,and H/N? = 4. It can be seen that there is a good
agreement between the measured €2;;%; and the theoretical prediction w,fb .

Tton; — YN/2 1.2 ! 2, 1 24 B 4
Hamiltonian H = Enl,/nzsz/ZH Epru,nz + E(qﬂﬁrlmz o q”l,”z) + E(qnlxn2+1 - q”hnz) + Z(qnﬁ-l,nz - qﬂl»"z)
+ %(qnbn2 1 — q,,,)" Here,p  andgq,  arethemomentumand displacement of the particleat (n;, 1),
respectively, and 3 again parameterizes the strength of quartic nonlinearity. The bare linear dispersion relation
is wy, 1, = [4sin® (7 /N) + 4sin? (k7/N)]'/? . By invoking the energy equipartition theorem, the
renormalized dispersion relation wj, ;, canbe writtenas wf ; = /(K)/(U) wg,,, where

_ N2 2 _ N/2 _ 2 _ 2
K= annz:,N/ZHPnbnz /2 andU = n],m:—N/zH(qnlﬂ,nz Doyny) /2 + Qynyr1 = Dupmy) /2 are the

kinetic and quadratic potential energy, respectively. For fixed k; and k,, the measured dispersion relation Q'

corresponds to the value of won the w — k plane where the spatiotemporal spectrum |Q, kk, (W) |* reaches its
maximum value (figure 9(a)). Here, Q k,k, (W) is the spatiotemporal Fourier transform of Gy, (1)- It can be seen

from figure 9 that the theoretical prediction wy, ;, agrees well with the measured Q’$*. Therefore, it can be

expected that the turbulence of the 2D 3-FPU lattice can also be well captured by the effective linear stochastic
dynamics controlled by the renormalized dispersion relation wy, ;. .
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