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Directing individual motions of many constituents to a coherent dynamical state is a fundamental
challenge in multiple fields. Here, based on the spherical crystal model, we show that topological defects in
particle arrays can be a crucial element in regulating collective dynamics. Specifically, we highlight the
defect-driven synchronized breathing modes around disclinations and collective oscillations with strong
connection to disruption of crystalline order. This work opens the promising possibility of an organizational
principle based on topological defects, and may inspire new strategies for harnessing intriguing collective
dynamics in extensive nonequilibrium systems.
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Understanding self-organization of individual motions of
many constituents into coherent motions is a fundamental
and practical problem in multiple fields ranging from
many-body problems [1,2], active matter [3–6], to biologi-
cal processes [7,8]. Highly ordered collective motions in
far-from-equilibrium many-body systems can be driven by
active processes [4,5], physical interactions [9–11], and
exchange of signals [7,12,13]. Recently, carefully designed
lattice structures have been used to guide collective motions
of particles [14], and host exotic unidirectional sound
modes [15,16]. These studies suggest an organizational
principle based on establishing lattice structure among
constituents. While the connection of particle density
and collective motion has been extensively studied in
various active matter systems [17–20], the question of
how the crystallographic structures in particle arrays,
particularly the defects therein, regulate the collective
dynamics has not yet been fully explored. Since collective
motions can be characterized by singularities in the velocity
vector field [20], elucidating the interplay of the of defects
in particle arrays and the vector field may inspire new
strategies for harnessing intriguing collective dynamics in
extensive nonequilibrium systems.
The spherical crystal model provides a suitable tool to

address these questions. A spherical crystal refers to a two-
dimensional crystal lattice wrapping the entire sphere.
Crystallographic defects, known as topological defects,
are inevitable in the spherical crystal as demanded by
topological constraints [21–23]. Repulsive point particles
on the sphere spontaneously form a crystal. Determining its
ground state is a 100-year-old puzzle known as the
Thomson problem [24], which has strong connections with
virus morphology [25,26] and various geometric frustra-
tions of condensed matters [22,27–31]. In our model, we
introduce dynamics by imposing random disturbance
to the lowest-energy spherical crystal composed of long-
range repulsive particles. By numerically integrating the

equations of motion at high precision, we reveal highly
symmetric singularity structures in the velocity vector field.
The crucial element for shaping such a well-organized
velocity field is the synchronized breathing modes around
the twelve disclinations. We further identify a collective
oscillation mode that is closely related with disruption of
crystalline order. These two kinds of collective dynamical
modes are generic in spherical crystals of distinct sym-
metries at varying strength of disturbance. These results
demonstrate how dynamical order can be achieved by
topological defects in particle arrays, and may have
implications in commanding the nonequilibrium dynamics
of active matters.
In our model, we consider a collection of point particles

confined on the sphere interacting by the Coulomb poten-
tial VðrÞ ¼ β=r, where r is the Euclidean distance between
two particles, and β is a constant. According to the Euler’s
theorem, topological defects are inevitable in the spherical
crystal [23]. The elementary topological defects in two-
dimensional triangular lattices are n-fold disclinations,
which are vertices whose coordination number n is deviated
from 6. Euler’s theorem states that on a closed triangulated
surface M,

X
i

qi ¼ 2πχðMÞ; ð1Þ

where qi is the topological charge of the vertex i, and χðMÞ
is Euler’s characteristic [23]. qi ¼ ð6 − nÞπ=3 for a vertex
with coordination number n. χðMÞ ¼ 2 for the sphere, so
topological defects are inevitable in the spherical crystal.
Following the Caspar-Klug scheme, we construct the basic
structure of the spherical crystal whose twelve fivefold
disclinations are located at the vertices of an inscribed
icosahedron [25]. All possible crystal lattices in the Caspar-
Klug construction are represented by a pair of non-negative
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integers ðp; qÞ. The q value reflects distinct symmetries of
the spherical crystal.
We introduce dynamics by imposing random disturbance

to the lowest-energy configuration of the spherical crystal
obtained by the steepest descent method [32,33].
Specifically, we pull each particle away from its balance
position by a displacement δx⃗. δx⃗ ¼ Γaðcos α; sin αÞ in the
unit basis vectors fêθ; êϕg. a is the lattice spacing. Γa and α
are the magnitude and direction of the particle displace-
ment. α is a uniform random variable in ½0; 2πÞ. The
ensuing evolution of the system is governed by the
following equations of motion in spherical coordinates:

mR2θ̈i ¼ mR2 _ϕ2
i sin θi cos θi −

X
j≠i

∂VðrijÞ
∂θi ;

mR2
d
dt

ðsin2θi _ϕiÞ ¼ −
X
j≠i

∂VðrijÞ
∂ϕi

: ð2Þ

We numerically integrate Eqs. (2) for the particle trajecto-
ries with various given initial conditions at high precision
(see Supplemental Material [34] for technical details). The
approach based on the equations of motion allows us to
explore the regime of large disturbance that is beyond the
scope of perturbation analysis. The length, mass, and time
are measured in the units of the spherical radius R, particle
mass m, and τ0 ¼ R

ffiffiffiffiffiffiffiffiffiffiffi
m=ϵ0

p
, where ϵ0 ¼ β=R.

We first track the temporally varying total kinetic and
potential energies, as shown in Fig. 1. In the spherical
system, the relation between the kinetic and potential
energies does not conform to the Virial theorem because
of the extra contribution from the constraint of the sphere to
the force on a particle [35]. From Fig. 1, we see that for
small Γ, where the initial displacements of the particles
from their balance positions are small in comparison with
the lattice spacing, the energy curves are sinusoidal. With
the increase of Γ, the energy curves exhibit double-peak
structures as shown in the red curves for Γ ¼ 40%. Note
that in even longer simulation time (up to 1.5 million
simulation steps; t ¼ 1.5) the energy curves still exhibit
oscillating behaviors featured with the double-peak

structure, and the crystalline order of the system is well
preserved. The periodic oscillation of the energy curves
suggests ordered dynamical modes underlying the particle
motions.
Prior to examining the dynamical modes on the sphere,

we first present general discussions about the topology of a
vector field on the sphere. As a classical problem of
differential topology, an even-dimensional sphere admits
no regular tangent vector field, and singularities are
inevitable as a topological constraint [36]. A singularity
at point p in the vector field V is characterized by its index
IndpV,

IndpV ¼ 1

2π

I
γ

dθ; ð3Þ

where θ specifies the direction of the vector field along a
closed contour γ. IndpV ∈ Z. Remarkably, there is a deep
connection between vector fields and topology illustrated
by the Poincaré-Hopf index theorem [37]. It states that,
over a compact manifold M without boundary, regardless
of the chosen vector field V,

X
p∈M

IndpV ¼ χðMÞ: ð4Þ

Applying Eq. (4) on the 2-sphere, we obtain the hairy ball
theorem:

P
p∈S2IndpV ¼ 2. The name of this theorem is

related to the fact that it is impossible to comb the hairs
without creating a cowlick. Equation (4) dictates a topo-
logical constraint on the configuration of the vector field on
the sphere. It is natural to ask how the defects in the
spherical crystal will shape the velocity field and regulate
the topologically required singularities therein.
In Fig. 2, we present a typical snapshot of the instanta-

neous velocity vector field. The red dots are the preexistent
fivefold disclinations in the spherical crystal; they are
located at the vertices of an inscribed icosahedron.
Remarkably, the entire velocity field is equally compart-
mented into identical subfields in the spherical triangles
spanned by three neighboring disclinations. We identify
three types of singularities in the velocity field: sources (red
dots), sinks (blue dots), and saddle points (green dots),
whose indices are þ1, þ1, and −1, respectively. The entire
velocity field is characterized by the highly symmetric
arrangement of these singularities. Specifically, the 20 blue
dots and 30 green dots are located at the vertices of the
inscribed dodecahedron and icosidodecahedron, respec-
tively. We also present the evolution of the velocity field
and the slight displacement of the singularity structure in
Supplemental Material [34]. We count the total index value
to be exactly þ2. Notably, the vector field configuration in
Fig. 2 has been used to prove the hairy ball theorem [36].
For spherical crystals with nonzero q, the velocity fields
exhibit identical defect structure as in Fig. 2; the typical

FIG. 1. Evolution of total kinetic and potential energies of
disturbed spherical crystals. The total energy is well conserved.
The amplitude of disturbance Γ ¼ 1% (blue), 10% (black), and
40% (red). ðp; qÞ ¼ ð10; 0Þ.
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velocity fields for q ¼ 2, 3, and 6 are presented in
Supplemental Material [34]. It indicates that the highly
symmetric singularity structure is a generic feature in the
velocity field of the spherical crystals.
Spatiotemporal analysis of the velocity field reveals

alternating inward and outward movement of the five
neighboring particles surrounding each disclination. Such
a breathing mode is crucial for fabricating the highly
symmetric velocity field. We quantitatively characterize
the breathing mode by introducing the quantity rBðtÞ,
which is the temporally varying average distance from
the disclination to the five neighboring particles. The
coincidence of the rB − t curves of the twelve disclinations
in Fig. 3(a) indicates the spontaneous synchronization of
the local breathing modes. And the transition to this
ordered dynamical state is a fast process (in comparison
with the breathing period). This salient feature is also found
in spherical crystals with distinct symmetries; a typical case
of q ¼ 2 is shown in Fig. 3(b).
We further inquire under which conditions the breathing

mode will emerge. We examine spherical crystals of all
kinds of symmetries for q ∈ ½0; p�, and vary the value of Γ
from 0.1% up to 25%. It turns out that both the frequency
and amplitude (measured by the lattice spacing) of the
breathing mode are independent of the Γ and q values. It is
noteworthy that changing the q value leads to the variation
of the number of particles. So the emergence of the
breathing mode is also independent of particle density,
which is due to the lack of a length scale in the potential

VðrÞ. Furthermore, we disturb the system in various ways,
such as using a series of random initial states with randomly
distributed Γ, disturbing randomly picked particles, dis-
turbing only the disclinations, etc. In all these cases, the
system quickly enters the dynamical state of synchronized
breathing modes.
To explore the origin of the breathing mode, we perform

normal mode analysis for the elementary pentagonal
configuration, and find that the radial eigenmode is exactly
the mode selected by the system to fabricate the breathing
mode (see Supplemental Material [34], which includes
Refs. [38,39]). Furthermore, from the perspective of
symmetry, such a mode preserves the local fivefold rota-
tional symmetry around the disclination. As a numerical
observation to substantiate this viewpoint, we find that once
an isolated fivefold disclination is converted to a scar that is
composed of alternating five- and seven-disclinations, i.e.,
the local fivefold symmetry is broken, the breathing mode
also vanishes [22]. Note that in this disclination-scar
conversion, the bond-orientational order is still preserved
[23]. From the perspective of energetics, the symmetry-
broken dynamical mode around the disclinations seems
unfavored. We design a symmetry-broken dynamical mode
by moving a disclination and a randomly picked undefected
particle towards their neighboring particles, respectively. In
this process, the system energy of the former case increases
much faster, indicating that a symmetry-broken dynamical
mode around the disclination is energetically unfavored.

FIG. 2. Highly symmetric velocity vector field regulated by the
twelve disclinations (indicated by red dots) in the spherical crystal.
The particle configuration is represented in the spherical coor-
dinates ðθ;ϕÞ. The entire velocity field is equally compartmented
into identical subfields in the spherical triangles spanned by three
neighboring disclinations; a zoomed-in plot of a subfield is shown
in the lower right panel. The three types of singularities are also
schematically shown. Γ ¼ 1%. t ¼ 0.735. ðp; qÞ ¼ ð10; 0Þ.

FIG. 3. Two kinds of dynamical modes revealed in the collective
dynamics of the spherical crystalswith distinct symmetries. (a) and
(b) show the synchronization of the breathing modes around the
twelve disclinations. rB is the average distance from the discli-
nation to the five neighboring particles. (c) and (d) show the
collective oscillationmode.Rc is the location of the center of mass
on the z axis. The amplitude of oscillation is only at the order of
ten-thousandth of the lattice spacing a. Γ ¼ 1%. p ¼ 10.
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The double-peak structure in the red energy curves in
Fig. 1 implies a new dynamical mode supported in the
spherical crystal system. To identify this mode, extensive
data analysis of the numerical results leads us to examine
the trajectory of the center of mass of the system. It turns
out that the center-of-mass trajectory coincides with the
twofold axis of the icosahedron spanned by the twelve
disclinations that passes through the midpoints of the two
opposite edges. By setting this line to be the z axis, we
reveal a small-amplitude collective oscillation of the system
along the z axis, as shown in Figs. 3(c) and 3(d). This
dynamical mode is pervasive in spherical crystals with
distinct symmetries, with scars (which are line defects out
of isolated point disclinations), and even with disrupted
crystalline order. In contrast, the breathing mode is sup-
pressed in the latter two cases. The ubiquity and the small-
amplitude features of the collective oscillation mode imply
that this is a fundamental dynamical mode in the spherical
crystal system. A systematic survey in the parameter space
of q and Γ (prior to disruption of crystalline order) shows
that the ratio of the frequencies of the temporally varying
kinetic energy, the breathing mode, and the collective
oscillation mode is a constant,

wE∶wB∶wO ¼ 1∶
1

2
∶
1

4
: ð5Þ

In comparison with Fig. 1, we identify the collective
oscillation as the dynamical mode underlying the dou-
ble-peak structure in the energy curves.

We proceed to discuss the connection of the collective
oscillation mode and the disruption of the spherical crystal.
The failure of the particles to be restored at sufficiently
large disturbance is the microscopic origin of the Γ-driven
disruption of crystalline order. As a signal of phase
transition, we find the abrupt increase of the amplitude
of the collective oscillation, as shown in the left upper panel
in Fig. 4 when Γ ¼ 50%. The system is softened in the
sense of the significantly enhanced oscillation amplitude.
What is the origin of the softening effect? Frame-by-frame
analysis of the Delaunay-triangulated particle configura-
tions shows that the softening of the system occurs exactly
upon the appearance of topological defects [23]. In a static
system, the appearance of crystalline defects tends to
reduce stress [23,40]. Here, through the softening phe-
nomenon, we show the dynamic effect of topological
defects.
From the characteristic snapshots in the disruption

process of crystalline order at larger Γ as shown in
Fig. 4, we see the migration of the emergent defects
(indicated by colored dots) from the poles of the sphere
to the equatorial region during a few collective oscillations.
The connection of the collective oscillation mode and the
characteristic events in the disruption process, such as the
softening of the system and the global migration of defects,
may be attributed to its long-wavelength nature; long-
wavelength fluctuations make dominant contribution in
phase transition [23]. The snapshots in Fig. 4 also show that
in the disruption process the relative positions of the
preexistent disclinations (in green dots) are subject to large
deviation due to the softening of the crystal lattice

FIG. 4. Γ-driven disruption of crystalline order in the spherical crystal. Left panels show the collective oscillation at Γ ¼ 50% and
Γ ¼ 60%. Rc is the location of the center of mass on the z axis. The three snapshots of particle configurations at Γ ¼ 60% plotted in the
spherical coordinates and on the sphere show the migration of the emergent defects (colored dots) from the poles of the sphere to the
equatorial region during a few collective oscillations. Green dots represent the preexistent twelve disclinations. Red and blue dots are
five- and sevenfold disclinations. ðp; qÞ ¼ ð10; 0Þ.
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(see Supplemental Material [34] for quantitative analysis of
the drift process of the disclinations).
In summary, by combination of numerical simulations

and analytical normal mode analysis, we have shown that
topological defects in particle arrays can be a crucial
element in regulating collective dynamics and achieving
dynamic order. Specifically, we highlight two generic
dynamical modes: synchronized breathing modes around
disclinations that induce highly symmetric singularity
structures in the velocity vector field, and collective
oscillation with strong connection to disruption of crystal-
line order. These results suggest an organizational principle
based on crystalline defects, and may inspire new strategies
for harnessing intriguing collective dynamics in extensive
nonequilibrium systems.
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