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ABSTRACT: Understanding and controlling vesicle shapes is a
fundamental challenge in biophysics and materials design. In this
paper, we design dynamic protocols for enlarging the shape space of
both fluid and crystalline vesicles beyond the equilibrium zone. By
removing water from within the vesicle at different rates, we numerically
produced a series of dynamically trapped stable vesicle shapes for both
fluid and crystalline vesicles in a highly controllable fashion. In crystalline
vesicles that are continuously dehydrated, simulations show the initial
appearance of small flat areas over the surface of the vesicles that
ultimately merge to form fewer flat faces. In this way, the vesicles
transform from a fullerene-like shape into various faceted polyhedrons.
We perform analytical elasticity analysis to show that these salient
features are attributable to the crystalline nature of the vesicle. The
potential to use dynamic protocols, such as those used in this study, to
engineer vesicle shape transformations is helpful for exploiting the richness of vesicle geometries for desired applications.
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The spontaneous formation of closed vesicles from
microscopic units in aqueous solutions is a fundamen-
tal process in biology and materials science,1,2

occurring in phenomena ranging from the assembly of viruses3

to the fabrication of various cage-like structures in materials
design.4 The rich morphologies of the resulting vesicles create a
multitude of possibilities for functionalization in diverse fields,
notably in drug delivery,5 encapsulation,6 and the realization of
relevant biological processes like endocytosis via the shape
transformations of cell membranes.1 Understanding the
underlying principles of vesicle organization is fundamental to
solving a host of problems in materials geometry and biology.
For example, deciphering the self-assembly of viral shells from
capsid proteins may ultimately lead to the cure of many viral
diseases.3 The synthesis of fluid vesicles from various surfactant
molecules has been extensively studied experimentally7−13 and
theoretically,14 and the governing force behind such vesicle
formation is believed to be the amphiphilic nature of the
constituting molecules. In addition, crystalline vesicles,
occurring in both natural and artificial systems, represent
another important class of vesicles that can exhibit
morphologies not found in fluid vesicles.15,16

The equilibrium shapes of both fluid and crystalline vesicles
have been studied using several theoretical models, including
the bilayer coupling model,17 the spontaneous curvature
model,17 and the area-difference elasticity model.18 In addition
to analytical models and experiments, computer simulations

based on coarse-grained molecular dynamics (CGMD)19−21

and dissipative particle dynamics22 can provide detailed
information about the vesicle formation process. These tools
can help us derive valuable insights into the physics of vesicles.
The equilibrium vesicle shape space is significantly expanded by
introducing extra structures into vesicle systems, such as
embedding in-plane orders,23−25 inclusion of electric
charges,26,27 and introduction of multiple components,16,28

resulting in geometries not found in structureless vesicles.
However, the vesicle shape space beyond the equilibrium zone
has not been fully explored through designed, controllable
dynamic protocols.
The objective of this work is to design a controllable dynamic

protocol for enlarging the vesicle shape space beyond the
equilibrium zone, in both fluid and crystalline vesicle systems.
We employ computer simulations based on the CGMD,19−21 as
well as elasticity analysis. Specifically, we design a model system
composed of ionic amphiphiles [−1 palmitic acid (C15−
COOH) and +3 trilysine (C16−K3)] and water molecules. The
spontaneous formation of closed bilayer vesicles from the ionic
amphiphilic molecules is numerically observed. Simulations
capture the permeation of water molecules through the
membrane and the consequent vesicle shape transformations.
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By controlling the rate of dehydration from within the vesicle,
mimicking the outward permeation of water molecules at
different rates, we numerically obtained a variety of shapes. For
fluid and crystalline vesicles, we found a distinct series of shapes
by utilizing different dehydration rates. Notably, and in sharp
contrast with fluid vesicles, simulations revealed that the
dynamically driven deformations of the originally spherical
crystalline vesicles followed a unified pattern regardless of size.
The surface areas that initially emerged as small flat areas
coalesced to form larger flat faces, and consequently, the entire
vesicle transformed from a fullerene-like shape into various
faceted polyhedrons. The deformation mechanism provided by
the collective dynamics of the initially small flat areas is
reported here for the first time. The trapped states of both fluid
and crystalline vesicles that result from our dynamic protocols
turned out to be very stable at room temperature, suggesting
that they belong to a class of metastable states sitting deep in
the energy valleys. We propose an analytical elasticity model to
account for the appearance of the small flat areas on the
crystalline vesicles. This model is a key to understanding these
areas’ eventual merge, reshaping the originally spherical vesicles
into polyhedrons. This study could open new possibilities for
obtaining vesicle geometries not accessible (or not sufficiently
efficient) by spontaneous equilibration processes.

RESULTS AND DISCUSSION
We first considered the case of fluid vesicles. Figure 1a shows
the mean-squared radius of gyration ⟨Rg

2⟩ of the fluid vesicle, a
measure of its shape, as a function of the percentage of
removed water (PRW), as well as some typical shape snapshots.
The radius of gyration is calculated from the positions of the
lipid tail terminals. Bifurcation of the vesicle radius using the
protocols I and M occurs when the PRW exceeds about 40%, as
can be seen in Figure 1a. Dehydration leads to reduction of the
vesicle volume. Consequently, the vesicle has to change its
shape to conserve surface area. This volume-driven shape
deformation mechanism applied to both fluid and crystalline
vesicles in our study. Notably, the I protocol leads to a
pronounced non-monotonous variation of ⟨Rg

2⟩. Closer
examination showed that the vesicle experienced a morpho-
logical transition from sphere to elliptocyte (or prolate), cigar
(or dumbbell), and finally to a curved disc with the increase of
PRW, as shown in the Figure 1a insets. In sharp contrast,
Figure 1a also shows that the overall size of the obtained vesicle
shapes after bifurcation was significantly smaller in protocol M
than in protocol I. Therefore, protocol M leads to a distinct
series of shapes. Specifically, by directly removing half of the
water within the vesicle, nearly half of the vesicle collapsed to
form a whistle-like object, while the vesicle well maintained an
elliptocyte shape at PRW = 30%. The M protocol even led to
the inward collapse of the vesicle at larger PRW, including the
shape resembling a stomatocyte obtained at PRW = 70%, and
the inward budding phenomenon at PRW = 90%, as shown in
the insets of Figure 1a. Some of these shapes found in fluid
vesicles have also been reported in experiment,13 theory,17,18

and MD simulation, based on implicit solvent and a one-
particle-thick membrane model,21 though this was under
distinct constraint conditions.
Simulations showed that fluid vesicles obtained using both

protocols are stable, at least over the entire simulation run time
of up to 50 ns. Energy analysis in Figure 1b shows that the
shapes obtained from protocol I have much higher energy than
those caused by protocol M at high PRW, where the potential

energy contains the Lennard-Jones and Coulomb interactions
between all the lipid particles. It suggests that these shapes
belong to the metastable states at the bottom of sufficiently
deep energy valleys. The employed dynamic protocols are
essential for exploring the rich metastable states in the shape
space of the vesicle. While it is not uncommon to encounter
metastable states in generic many-body systems,29 it is a
challenge to realize specific metastable states in a controllable
fashion. It seems that, in the context of our vesicle system,
dynamically controlling the vesicle volume provides a
promising protocol for achieving this goal. We will illustrate
this point further in our study of crystalline vesicles.
In comparison with fluid vesicles, crystalline vesicles can

exhibit various polyhedral shapes, as shown in both theory,15,16

experiments30 and our own previous simulations.31 However, it
remains a challenge to obtain faceted crystalline vesicles in a
controllable fashion. Our proposed methodology, based on the
protocol of dynamically varying the vesicle volume, seems
promising for creating desired faceted shapes. Figure 2a shows
the mean-squared radius of gyration of the crystalline vesicles as
a function of the PRW. We see that the shape bifurcation due
to the distinct dynamic protocols also exists for the crystalline
vesicle, occurring at about PRW = 50%. Standard error bars are

Figure 1. (a) Mean-squared radius of gyration and (b) potential
energy of a fluid vesicle as a function of the percentage of removed
water. The two dynamic protocols, I and M, lead to bifurcation in
the shape evolution. Along the black curve (protocol I), the vesicle
experiences transformations from elliptocyte, elliptocyte, elongated
elliptocyte, to curved bilayer disc. Along the red curve (protocol
M), the typical shapes are elliptocyte, whistle, stomatocyte, and
inwardly buckled stomatocyte. At PRW = 30%, the two protocols
result in similar shapes but with slightly different size and potential.
The error bars (around 1%) are even smaller than the data symbols
and are not shown for clarity. The outer diameter of the vesicle is
28 nm.
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estimated by the last 50 ns (50 samples) MD trajectory. It turns
out that all of the error bars in the curves of vesicle size and
energy are within about 1%. This observation confirms that the
vesicle shape evolution is a robust process that is under the full
control of the adopted dynamic protocols. In comparison with
fluid vesicles, a salient feature of the crystalline vesicle
deformation is that the initial deformation occurs locally,
resulting in a flattened face whose size increases with PRW.
This local deformation is closely related to the crystalline
nature of the vesicle that inhibits the even distribution of
curvature around the surface. In protocol I, the vesicle
approaches the shape of a half-sphere with a flat crystalline
face at PRW = 50%, and it evolves toward a flattened disk at
PRW = 90%, as shown in Figure 2a. In contrast, Figure 2a
shows that protocol M can generate smaller vesicles with
distinct shapes. This is similar to the fluid vesicle case. With
PRWs as large as 30%, the vesicle remains in a perfect spherical
shape, as the result of competition between surface tension and
the strain and bending energies according to our elasticity
analysis, which will be discussed later in detail. When PRW =
50%, the vesicle forms a tetrahedron with rounded edges and
vertices that are not found in protocol I (see Figure 2a). The

formation of the tetrahedral shape seems insensitive to the
ionization level of the palmitic acid molecules; our simulations
show that the vesicle maintains the tetrahedral shape by
changing the ionization of the palmitic acid molecules from 30
to 50%. This suggests that the dynamic protocol utilized plays a
decisive role in shaping the vesicle. When PRW = 70% in the M
protocol, the tetrahedral vesicle becomes even more faceted
with four perfectly flat faces. With further reduction in volume,
we numerically observe inward buckling at one of the four faces
in the tetrahedral vesicle, as shown in Figure 2a (PRW = 90%).
Note that the M protocol generally leads to a reduction in
system energy alongside an increase of PRW for both fluid and
crystalline vesicles (see the red curves in Figure 1b and Figure
2b). The slight increase of energy in the deformed crystalline
vesicle when PRW = 90%, observed in Figure 2b, may be
caused by repulsion between the bilayers in the inward collapse
event.
We next studied how vesicle size influenced the kinetically

driven shape transformation. In cases of larger vesicles with
outer diameters of 39, 47, and 52 nm, Figure 3 demonstrates

how the M protocol drives the shape evolution of these vesicles
at levels of PRW ranging from 30 to 90%. We see that larger
vesicles are easier to deform. For example, when PRW = 30%,
these larger vesicles have obviously deviated from the spherical
shape assumed by smaller vesicles at the same level of PRW.
Remarkably, flat areas, absent in smaller vesicles, emerge on the
surface of the larger vesicles. The number of flat areas are 3, 10,
and 18 for R = 39, 47, and 52 nm and PRW = 0.3, respectively.
The latter two are fullerene-like shapes. Limited available free
space prevents these flat areas from growing. Simulations
capture the coalescence of these small flat areas into few larger
ones that ultimately form various polyhedrons as shown for
PRW = 50 and 70% in Figure 3. These polyhedrons stably exist
during the entire simulation runs of the last 50 ns, and further
reduction of volume drives their collapse, starting from the flat
faces (PRW = 70 and 90%). A dotted line distinguishes the
inwardly collapsed vesicle shapes in Figure 3. It seems that a
larger vesicle is easier to collapse with the increase of PRW. To

Figure 2. (a) Mean-squared radius of gyration and (b) potential
energy of a given crystalline vesicle as a function of the percentage
of removed water. The two dynamic protocols, I and M, lead to
bifurcation in the shape evolution. Along the black curve (protocol
I), the vesicle experiences transformations from sphere, buckled
half-sphere, oblate half-sphere, to disc. Along the red curve
(protocol M), the typical shapes are sphere, tetrahedron with a
rounded face, tetrahedron, and inwardly buckled tetrahedron.
When PRW = 30%, the two protocols result in similar shapes but
with slightly different size and potential. The error bars (around
1%) are smaller than the data symbols and are not shown for
clarity. The outer diameter of the vesicle is 28 nm.

Figure 3. Shape evolution of crystalline vesicles with different sizes
under protocolM. The deformation of the vesicles follows a pattern
with the increase of the percentage of removed water: the initially
emergent small flat areas over the surface (at PRW = 30%) coalesce
to form a few larger flat faces (at PRW = 50%), and the entire
vesicle transforms from a fullerene-like shape to various faceted
polyhedrons (see the shapes at PRW = 50%). These polyhedrons
are inwardly collapsed with the further removal of water. The
dotted line indicates the shape transition of the inward collapse.
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conclude, the shape transformation of the crystalline vesicle,
regardless of its size, follows a specific pattern. The initially
formed small flat areas, as well as their coalescence, are crucial
to understanding the ensuing formation of various polyhedrons,
whose number of faces is determined by the vesicle size.
The shapes listed in Figure 3 were obtained after sufficiently

long MD runs. We run independent MD simulations for some
of these cases and ultimately obtained similar shapes. For
example, starting from two distinct initial states, the vesicles
with a radius of 28 nm at T = 300 K and PRW = 0.5 uniformly
evolve toward barely distinguishable tetrahedral shapes. We also
increased the degree of ionization (up to 50%) with
counterions (Na+). It turned out that the 50% ionization
condition also exhibits a similar tetrahedron shape but with
more flat areas and sharper angles for the ionization-dependent
electrostatic interactions between lipids. For larger vesicles, it
seems that the number and specific position of the flat areas
over the vesicles are weakly dependent on the initial
conformations. For example, for the case of R = 47 nm, T =
300 K, and PRW = 0.5, we count out a similar number of flat
areas (around 8−9) over the same vesicle for two independent
simulation runs. The resultant shapes of these larger vesicles,
however, are still uniformly polyhedral like the smaller vesicles.
In contrast with fluid vesicles, crystalline vesicles preserve the

spherical geometry well, until the amount of removed water
exceeds some critical value. Among the subsequent symmetry-
breaking deformations, the appearance of the flat areas
scattered over the vesicle surface is of particular interest.
Understanding the emergence of these areas constitutes a
foundation for explaining the ensuing and more sophisticated
tetrahedral shape. In the following, we propose an elastic free
energy and perform perturbation calculations to analyze these
salient features of crystalline vesicles. The crystalline vesicle is
modeled as a continuum elastic medium. The elasticity of the
crystalline vesicles is explicitly exhibited in the vesicle shape
fluctuations observed in simulations. The continuum repre-
sentation of the vesicle provides an analytically tractable tool to
calculate its shape deformation; the crystalline structure and the
topological defect structure therein are smeared out.32 A few
phenomenological elastic parameters encode the microscopic
information about the interactions between the elementary
units composing the vesicle.
The free energy cost for the deformation u ⃗ (θ, ϕ) of an

originally spherical elastic vesicle of radius R is

σ γ= + + − + −F F F A A V V( ) ( )s b 0 w (1)

where the stretching energy ∫ μ λ= +F A u ud (2 )ij kks
1
2

2 2 and the

bending energy ∫= −κF A H Hd ( )b 2 0 . Here, μ and λ are the

Lame ́ coefficients.33 These phenomenological elastic moduli
can be determined experimentally by scattering techniques.34

The elastic moduli of the specific vesicles investigated in this
work are not experimentally measured yet.31,36 Determining
their values is a very important but nontrivial problem. For
example, the bending rigidity κ can be renormalized by thermal
fluctuations, and discretized models of a membrane show that
its value is dependent on the shape of the membrane.35

Furthermore, the electrostatic interaction can make a long-
range contribution to the elastic moduli. We therefore study the
deformation pattern on the crystalline vesicle over a wide range
of the values for the elastic moduli. The strain tensor uij

2 = uiju
ij,

ukk
2 = (uk

k)2, where uk
k is the trace of the strain tensor uij

(summation convention is applied). The mean curvature

= +( )H
R R

1
2

1 1

1 2
and H0 = 1/R. Vw = V0 − δV, where δV is

the volume of removed water; V0 =
π4
3
R3; A0 = 4πR2; κ is the

bending rigidity. The last two terms in eq 1 are due to the
conservation of area and volume, respectively. Here, we ignore
the contribution from the inevitable topological defects in
spherical crystals in the perturbation calculation.32 For axis-
symmetric deformation of u⃗ = ur(θ)er⃗ with uθ,uϕ ≪ ur, we
have37
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where the integration is over the unperturbed sphere of radius
R. Note that the ur term in Fb results from the spherical
geometry of the vesicle; this term vanishes in the large R limit.

The shape equation in the limit of Γ = →σ
πσ

π μ λ κ+ +
0R

R
2

4 ( )

2

2 is

θ θ θ+ ″ + + Γ =μu u u( ) ( ) (1 ) ( ) 01
4 r

(4)
r r , where Γμ = 4(μ + λ)

R2/κ reflects the competition between in-plane strain and
bending. The volume and area constraints, which may be
explicitly imposed, are relaxed in the derivation for the shape
equation. The existence of the high-order term ur

(4) implies the
rich stable (or metastable) shapes that a crystalline vesicle can
exhibit.
Equation 2 provides the theoretical basis for analyzing the

stability of the vesicle with removal of water and the featured
resulting deformation patterns. We first analyze the well-
preserved spherical geometry of the vesicle with the initial
removal of water. The change of the free energy in the uniform
shrinking of the vesicle is obtained by equating ur = −a (a > 0):

= + Γ − Γσ σF a a a R[ ] [(1 ) 2 ] (3)

where the value for a is determined by the amount of removed
water for the volume conservat ion. Specifical ly ,

ο δ= − − = +δ
π

δ
π( )a V1 1 ( )R V

R
V
R2 4

2
3 2 . Equation 3 shows

the competition between the decreasing surface energy (the
second term) and the increasing strain/bending energy Fs + Fb
(the first term). Consequently, the free energy of the system
becomes positive for a > 2RΓσ/(1 + Γσ), which provides a
plausible criterion to predict the vesicle instability at sufficiently
large shrinking. In term of the amount of removed water δV,

this instability condition becomes δ δ π> = Γ
+ Γ

σ

σ
V V R8c

3
1

. This

equation may be used to estimate the relevant materials
parameters directly from the instability of the vesicle. We
proceed to analyze the origin of the emergent flat areas over the
vesicle surface in simulations. We propose an ansatz shape with
three indefinite parameters:
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Such an ansatz shape is able to capture both curved and flat
areas over the vesicle, as shown in Figure 4. The coordinate
system is shown in Figure 4a. The derivative of f(x) at x = 0
automatically vanishes. To make a smooth connection at x = x0

with the circular curve, we require θ= −
=

( ) tandf x
dx x x

( )
0

0

,

which leads to the relation between β and α, β = θ
α+

x
x

tan
2

0 0

0
. The

volume conservation condition can be implemented by varying
x0. To examine the influence of the crystalline structure on the
profile of the deformed vesicle, we consider the case in which
the strain energy dominates over the surface tension

Γ = →σ
πσ

π μ λ κ+ + )( 0R
R

2
4 ( )

2

2 . Figure 5 shows that the flattened

configurations are always preferred in a wide range of the value
for Γμ. Due to the lack of the experimental data for the elastic
moduli of the vesicle, here we specify the value for Γμ covering
six magnitudes from 10−3 to 103. This result suggests that the
flattened buckling mode may be a generic feature of crystalline
vesicles subject to dynamic protocols exemplified by the M and
I protocols investigated in this work.
The schematic phase diagram of both fluid and crystalline

vesicles in Figure 6 summarizes their controllable shape
transformations in the M and I protocols. The bifurcation of

their shape evolution in these two protocols is clearly seen. Of
particular interest, in contrast to fluid vesicles, the crystalline
vesicles under protocol I can exhibit the remarkable faceting
phenomenon that is crucial for formation of polyhedrons; the
associated pattern in the shape deformation discussed in the
previous sections is schematically plotted in Figure 6. It is

Figure 4. Plot of the ansatz shape f(x) that is proposed to analyze the deformation of the vesicle. The expression for f(x) is given in the text.
(a) Coordinate system where the function f(x) is plotted as a solid green curve. (b,c) Ansatz shape f(x;α) can well represent both curved and
flat areas; α = 1 and 5 in (a) and (b), respectively; θ0 = 0.8; R = 1.

Figure 5. Free energy versus the parameter α that characterizes the
shape of the vesicle. Γμ = 10−3 and 103 in (a) and (b), respectively.
Insets show the corresponding vesicle shapes at the optimal values
for α; R = 1; δV = 5% V0. The volume conservation has been
imposed.

Figure 6. Phase diagram of (a) fluid and (b) crystalline vesicles as a
function of PRW and removing speed. The shapes in the left and
right columns are generated under the protocol I and M,
respectively.
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important to note that the series of shapes obtained through
the dynamic protocols are controllably generated. These shapes
should belong to the metastable states of the vesicles and turn
out to be very stable over the simulation run time. The dynamic
protocols employed in this study will facilitate further
exploration of the sparsely studied, out-of-equilibrium dynam-
ically trapped states in the shape space of the vesicle.
The appearance of distinct deformation patterns over the

originally spherical vesicles under different dehydration rates is
analogous to the formation of topological defects in the two-
dimensional XY model at different quench rates from high to
low temperatures. Both emergent structures of the flat areas
over vesicles and topological defects among the ordered phase
in the XY model provide the mechanism to break the
continuous symmetry. In the two-dimensional XY model, it
has been shown that the topological defect density follows a
dynamic scaling law resulting from the balance of the quench
rate and the relaxation dynamics of the system.38−40 We
therefore speculate that the appearance of flat areas and their
coalescence over a continuously dehydrated crystalline vesicle
may also be governed by a simple dynamic scaling law.

CONCLUSION

In summary, by using large-scale explicit-solvent CGMD
simulations supplemented with analytical elasticity analysis,
this study demonstrates that by dynamically changing vesicle
volume we can controllably obtain a series of stable dynamically
trapped shapes for both fluid and crystalline vesicles.
Remarkably, simulations reveal that under protocol M (that
is, to remove water massively) the morphology of the
crystalline vesicle features emergent small flat areas across the
vesicle, and their coalescence ultimately leads to the formation
of various faceted polyhedral shapes. We propose the elastic
free energy model and show that the crystalline nature of the
vesicle is responsible for these deformation patterns. While
faceted vesicles have been created on multicomponent
vesicles41 and liquid-crystal vesicles,23 the dynamical protocol
proposed in this work represents a new path for generating
faceted shapes without introducing other structures. The tested
concept of designing dynamic protocols to extend the shape
space of both fluid and crystalline vesicles beyond the
equilibrium zone may provide guidelines for vesicle geometry
design in experiments for desired applications.

METHODS
Our previous simulation work has shown that typical ionic
amphiphiles, such as −1 palmitic acid (C15−COOH) and +3 trilysine
(C16−K3), can spontaneously form hollow vesicle structures in
aqueous environments, including experimentally observed faceted
vesicles.31 By dynamically changing the volume, these vesicles may
exhibit even richer morphologies. The technique of explicit-solvent
CGMD simulations provides an excellent tool for addressing this
question. Using −1 palmitic acid (C15−COOH) and +3 trilysine
(C16−K3) as the building blocks, we constructed an electroneutral
model system with an average ionization of 30% in the palmitic acid
molecules, leading to the pH value of about 4.31 The elementary ionic
amphiphiles were numerically observed to form bilayer, spherical
vesicles filled with water. The melting temperature for such bilayer
membrane was experimentally measured to be around 328 K.31 We
performed simulations at the temperatures of 350 and 300 K and
numerically observed the self-assembly of vesicles in fluid and
crystalline states, suggesting the reliability of our simulations. The
numerically synthesized vesicles were polydisperse in size as in
experiments.31,36,42 The value for the outer diameter ranged from 28

nm (containing 1000 +3 lipids, 3000 −1 lipids, and 7000 neutral
lipids) to 52 nm (with the number of lipids quadrupled). For the
limited size of the simulated system, we worked in a relatively high ion
concentration of 2 M NaCl. A test for a given size vesicle of 50%
ionization with counterions (Na+) did not show appreciable shape
shift (discussed below). A salient feature of these synthesized vesicles
was that water molecules could permeate through them by thermal
fluctuations.43 An imposed osmotic pressure across the membrane
especially sped up the flow of water molecules, leading to an
appreciable change of the vesicle’s volume and to the morphological
transformation observed in experiments.8,44

We changed the volume of the vesicle by explicitly removing the
water inside at different rates. New series of shapes not accessible via
thermal equilibrations were produced in a controllable fashion. The
resultant variety of morphologies represents rich potential metastable
vesicle states, which we accessed via distinct dynamic protocols. A
similar methodology to obtain various phase behaviors has been
applied to polymer systems by choosing different annealing protocols.
Here, to enlarge the shape space of both fluid and crystalline ionic
vesicles, we have designed two distinct dynamic protocols for
dehydrating the vesicle: incrementally and massively, dubbed I and
M, respectively. Specifically, in I, 10% of the water inside the vesicle
was removed in each step, and the relaxed vesicle shape was used as
the initial state for the next step until the amount of removed water
reached some preset value. In contrast, in M, a given amount of water
was removed directly. In both procedures, the water inside the vesicle
was uniformly removed to closely mimic the osmotic permeation in
experiments and to avoid any uncontrollable buckling of the vesicle.
For both fluid and crystalline vesicles, we numerically observed that I
and M led to completely different series of stable vesicle shapes. Some
of these shapes overlap with those found in previous experiments,13

theory,17,18 and simulations,21,22 suggesting the reliability of our
simulation model.

It is noteworthy that in the present work we remove the water
molecules uniformly from the whole inner water volume. This
operation corresponds to the regime where the flow of bulk water
inside the vesicle can catch the rate of the water permeation very well
through the vesicle wall. This is true if the permeation occurs
sufficiently slowly. In this way, the bilayer membrane can be relaxed
with the motion of inner water. In fact, uniformly dehydrating a fluid
vesicle in our simulation can reproduce experimental shapes on the
same condition. If we remove the surface part of the inner water
volume there will be a vacuum bubble near the bilayer wall that will
induce a sudden collapse and even rupture (for sufficiently large vesicle
and bubble size) of the vesicle. The flow of the bulk water is not fast
enough to relax the deformation of the vesicle. As a test, we selected a
vesicle (diameter R = 28 nm, T = 300 K) and directly removed the
surface water of the inner water volume (50% removed). We found
that the shape is cubic rather than tetrahedral obtained by uniformly
removing water, shown in Figure 7. Therefore, such a new way to
remove water can lead to distinct deformation modes. There are also
other methods to remove the inner water (e.g., remove some local
parts simultaneously) to reach different metastable states of the vesicle
and create richer morphologies.

Figure 7. (a) With 50% surface water removed and (b) with 50%
uniform water removed (diameter R = 28 nm, T = 300 K, and
protocol M).
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All molecular dynamic (MD) simulations were carried out using the
Gromacs 4.6.5 software package,45 and the MARTINI coarse-grained
force field (version 2.1) was used.46,47 The pressure (1 bar) and
temperature were specified by the Berendsen method.48 The periodic
boundary conditions were applied in all directions. The MARTINI
force field is generally based on the four-to-one mapping rule. That is,
four heavy atoms are represented by one single interaction bead. Four
interaction types (polar, intermediate polar, apolar, and charged) and
some subtypes are classified according to the hydrogen-bonding
capability or the degree of polarity. The mapping methodology for the
present lipids can be found in our previous work.31 For protocol I, we
conducted a 100 ns MD run for each step, and the final state was used
as the initial state of the next step. For the protocol M, we performed
200 ns MD run for each system. We checked the vesicle shape and
potential energy to ensure that the vesicles reached stable states after
dehydration.
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