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PACS 61.72.Lk – Linear defects: dislocations, disclinations

Abstract – We study the defect structure of crystalline particle arrays on negative Gaussian
curvature capillary bridges with vanishing mean curvature (catenoids). The threshold aspect ratio
for the appearance of isolated disclinations is found and the optimal positions for dislocations
determined. We also discuss the transition from isolated disclinations to scars as particle number
and aspect ratio are varied.
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Two-dimensional ordered phases of matter on spatially
curved surfaces have several features not found in the
corresponding phase for planar or flat space systems [1].
For crystalline order on surfaces of spherical topology
where disclination defects are required by the topology
itself, Gaussian curvature can drive the sprouting of discli-
nation defects from point-like structures to linear grain
boundary scars which freely terminate in the crystal [2–5].
Even for surfaces such as tori which admit completely
defect-free crystalline lattices, the energetics in the pres-
ence of Gaussian curvature can favor the appearance of
isolated disclination defects in the ground state [6,7]. For
the axisymmetric torus with aspect ratio between 4 and
10, isolated 5-fold disclinations appear near the line of
maximal positive Gaussian curvature on the outside and
isolated 7-fold disclinations appear near the line of maxi-
mal negative Gaussian curvature on the inside [8]. The
ground states in these systems are thus distinguished by
a defect structure that would be energetically prohibitive
in flat space. It is certainly worthwhile to explore as many
settings as possible in which there are qualitative changes
in the fundamental structure of the ground state, within
a given class of order, purely as a consequence of spatial
curvature.
The richest confluence of theoretical and experimental

ideas in the area of curved two-dimensional phases of
matter has been in colloidal emulsion physics in which
colloidal particles self-organize at the interface of two
distinct liquids, either in particle-stabilized (Pickering)
emulsions [9,10] or charge-stablized emulsions [11,12].
Two-dimensional (thin-shell) spherical crystals form at
the surface of droplets held almost perfectly round by
surface tension. The ordered configurations of particles

(a)E-mail: zyao@syr.edu

may be imaged with confocal microscopy and the particles
manipulated with optical tweezers [5,13,14]. Macroscopic
examples of crystalline order on variable positive Gaussian
curvature surfaces have been constructed by forming a
soap bubble raft on a spinning liquid [15] and the nature
of the order has been analyzed theoretically [16].
Glassy liquids on negative Gaussian curvature mani-

folds have also received considerable attention [17–21].
The simplest such manifold conceptually is the constant
(negative) curvature hyperbolic plane H2 and it even
appears that the hyperbolic plane can be isometrically
embedded as a complete subset of Euclidean 3-space,
although not differentiably [22]. Physical realizations of
negative Gaussian curvature manifolds in condensed-
matter physics will almost always have variable Gaussian
curvature. The inner wall of the axisymmetric torus
(S1×S1) has integrated Gaussian curvature equal
to −4π, balancing an equal and opposite integrated
Guassian curvature on the outer wall. This is responsible
for the novel ground states noted above. Gaussian bumps
have regions of both positive and negative Gaussian
curvature and the minimal-type surfaces found in bicon-
tinuous phases of amphiphilic bilayers have spatially
extended variable Gaussian curvature that is negative on
average [23].
Recently crystalline particle arrays on variable Gaussian

curvature surfaces have been studied by assembling parti-
cles on capillary bridges formed by glycerol in bulk oil
spanning two flat parallel plates [24]. Configurations may
be imaged by confocal microscopy and even manipulated
with laser tweezers. The interface between the inner fluid
of the capillary bridge and the outer bulk fluid is a surface
of revolution with a constant mean curvature (CMC)
determined by the pressure difference between the two
fluids [25,26]. Capillary bridges minimize the surface area
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at fixed volume and perimeter and appear in the classical
work of Delaunay [27,28]. The value of the mean curva-
ture and hence the underlying surface may be changed by
varying the spacing between the plates.
Three classes of the Delaunay surfaces have nega-

tive Gaussian curvature —the nodoids, unduloids and
catenoids. We will focus on the most analytically tractable
case of a catenoidal capillary bridge in which the mean
curvature is everywhere zero. Capillary bridges themselves
have wide-ranging application. They play an essential role
in adhesion, anti-foaming, the repelling coffee-ring effect
and in the origin of attractive hydrophobic forces [29–32].
The shape of a capillary bridge with mean curvature H

follows by solving

2H =
−r′′

(1+ r′2)3/2
+

1

r
√
1+ r′2

= const, (1)

where 2H ≡ 1/R1+1/R2, r= r(z) is the representation of
a surface of revolution with symmetry axis z and R1 and
R2 are the two principal radii of curvature at any point.
The solution corresponding to the special case H = 0
(a minimal surface) is

�x(u, v) =


c cosh(

v
c
) cosu

c cosh( v
c
) sinu
v


, (2)

where u∈ [0, 2π) and v ∈ (−zm, zm). This surface is the
well-known catenoid parameterized by the radius of the
waist c located in the z = 0 plane (see fig. 1). From
the non-zero metric components guu = c

2cosh2(v/c) and
gvv = cosh

2(v/c), one can obtain the Gaussian curvature
K ≡ 1/(R1R2) =−sech4(v/c)/c2 =−1/g, where g is the
determinant of the metric tensor. We see explicitly that
the metric completely determines the Gaussian curvature.
The solution to eq. (1) for H �= 0 is [33]

�x(u, t) =


 γ∆(θ, t) cosu

γ∆(θ, t) sinu
α+ γ(E(θ, t)+F (θ, t) cos θ)


 , (3)

where t∈ [t0, t1], u∈ [0, 2π), E(θ, t)=
∫ t
0
∆(θ, t̃)dt̃, F (θ, t)=∫ t

0
1/∆(θ, t̃)dt̃ and ∆(θ, t) =

√
1− sin2 θ sin2 t. γ plays

the role of a scale factor. The curves generated are
periodic in t with period π and have maxima at t= kπ
and minima at t= (k+1/2)π for integer k. The value of θ
controls the shape of the profile: it generates an unduloid
for θ ∈ [0, π/2), a nodoid for θ ∈ (π/2, π); and a semi-circle
for θ= π. The shapes of the capillary bridges in the work
of [24] can be fit by eq. (3), the general CMC expression
with H �= 0.
Here we study crystalline order on the simplest case

of a catenoidal capillary bridge (H = 0) in the framework
of continuum elasticity theory [1,2,34]. For simplicity, we
measure all lengths in units of the radius of the contact
disk.
The topology of the capillary surfaces we study is that

of the annulus, with Euler characteristic zero, since the

(a)

(b)

Fig. 1: (Colour on-line) (a) The three dimensional shape of a
catenoid with aspect ratio c= 0.85. (b) A catenoid with aspect
ratio c= 0.9 (green) deforms to c= 0.7 (blue).

liquid bridge makes contact with the plates at the top
and bottom. Such a surface admits regular triangula-
tions with all particles having coordination number 6.
Although defects (non–6-fold-coordinated particles) are
not topologically required they may be preferred in the
crystalline ground state for purely energetic reasons since
negative Gaussian curvature will favor the appearance of
7-coordinated particles (−1 disclinations). To determine
the preferred defect configuration we map the microscopic
interacting particle problem to the problem of discrete
interacting defects in a continuum elastic background. The
defect free energy Fel, in the limit of vanishing core ener-
gies, may be expressed in the form [1,16]

Fel =
1

2
Y

∫
M

G2L(�x , �y )ρ(�x )ρ(�y ) d
2�xd2�y. (4)

Here G2L(�x, �y ) is the Green’s function for the covariant
biharmonic operator on the surface M , Y is Young’s
modulus for the crystalline packing, and �x and �y are
position vectors on the surface. The effective topological
charge density is ρ(�x ) = (π/3) q(�x )− γij∇jbi(�x )−K(�x ),
in which the first term is the disclination charge density
q(�x ) =

∑
α qαδ(�x− �xα), the second term is the dislocation

density bi(�x ) =
∑
β b
β
i δ(�x− �xβ) and K(�x ) is the Gaussian
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curvature. In this expression γij = εij/
√
g. By introducing

χ and Γ such that ∆2χ(�x ) = Y ρ(�x ) and Γ(�x ) =∆χ(�x ),
eq. (4) can be written in a more compact form,

Fel =
1

2Y

∫
M

Γ2(�x ) d�x, (5)

in which Γ(�x )/Y =
∫
GL(�x, �y )ρ(�y )d�y+U(�x ) with

∆U(�x ) = 0 and GL(�x, �y ) is the Green’s function
for the covariant Laplacian on M which satisfies
∆GL(�x, �y ) = δ(�x, �y ); �x, �y ∈M with the boundary
condition GL(�x, �y ) = 0; �x, �y ∈ ∂M . By conformally
mapping the surface parameterized by {u, v} onto an
annulus in the complex plane via z = ρ(u, v)eiu, the
Green’s function GL is found to be [16] GL(�x, �y ) =
(1/(2π)) ln |(ρ−10 z(�x )− z(�y ))/(1− ρ−10 z(�x )z̄(�y ))|, in
which ρ0 is the radius of the outer circle of the annulus
in the complex plane. For a catenoid, the confor-
mal mapping is given by ρ(u, v) = c exp(|v|/c) and
ρ0 = c exp(arcsech(c)).
Disclinations are expected to appear in the crystalline

ground state when the Gaussian curvature is sufficient
to support them. Consider therefore a putative isolated
disclination of strength q=−1 (coordination number 7)
at the waist of a catenoid. The curvature condition above
requires that there exists a disk of geodesic radius rc,
centered on the 7-disclination, for which [1,24]

∫
disk

KdA=−π
3
. (6)

Clearly rc must be less than the geodesic distance l from
the waist to the boundary [24]. For a given size catenoid c,
we calculate l and the integral of the Gaussian curvature
over the geodesic disk of radius l. The value of c for which
the integrated curvature equals −π/3 is the critical value
of c for the appearance of 7-disclinations. We compute
the integral of the Gaussian curvature numerically. We
first construct a family of geodesics radiating from the
core 7-disclination (at u= 0, v= 0) by solving the geodesic
equation:

d2xµ

dλ2
+Γµρδ

dxρ

dλ

dxδ

dλ
= 0, (7)

in which x1 = u, x2 = v and Γµρδ is the Christoffel symbol
of the second kind. This second order differential equation
has a unique solution given an initial position and an
initial velocity. The initial conditions are x1(0)= x2(0) = 0,
(dx1/dλ)|0 = (1/c)cos θ, and (dx2/dλ)|0 = sin θ, where θ
is the angle of the initial velocity with respect to �e u.
Given a geodesic radius r, the coordinates of the end
point of the geodesic curve can be found. These end points
form the boundary of a disk in {u, v} coordinates (see
fig. 2(a)). We then integrate the Gaussian curvature over
the prescribed disk numerically. The critical value of c is
found to be c∗ = 0.85 and the corresponding critical radius
is rc = 0.53. Note that integrated Gaussian curvature for
this critical catenoid is quite large [24]:

∫
KdA=−6.6.

The critical value c∗ can also be estimated as follows. By
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Fig. 2: (Colour on-line) (a) A family of geodesics in {u, v}
coordinates centered at a point on the waist of a catenoid
with c= 0.85. (b) The |K(0)|πr2 (dashed curve) and numerical
result (solid curve) of the integrated Gaussian curvature over
a geodesic disk of radius r vs. r. c= 1/2.

introducing Gaussian normal coordinates (r, θ) centered
on a 7-disclination at height z0 above or below the waist
of the catenoid, the effective (screened) disclination charge
at distance r is given by [2,35]

ρeff (r) = −π
3
−
∫ 2π
0

dθ

∫ r
0

dr′
√
gK(r′)

= −π
3
+π
r2

c2
sech4

(z0
c

)
+O(r3). (8)

The critical radius is reached when the effective discli-
nation density vanishes: ρeff (rc) = 0. For a 7-disclination

on the waist (z0 = 0) this gives rc/c≡ θc =
√
1/3≈ 33◦.

Now on the catenoid the geodesic length from the waist
to the boundary is

∫ zm
0
cosh(v/c)dv=

√
1− c2. The criti-

cal catenoid size c∗ is then given by rc∗ =
√
1− c∗2. This

yields c∗ =
√
3/2≈ 0.87. This estimate for c∗ is very close

to the numerical value 0.85. Why are these two values so
close? In calculating the effective disclination charge, we
use K(0)πr2 to approximate the integral of the Gaussian
curvature over a geodesic disk of radius r. The Gaussian
curvature is overestimated as its magnitude is maximum
at r= 0 (on the waist). On the other hand, since K(0) =
limr→012(πr2−A(r))/(πr4)< 0, the real area A(r) of the
disk with geodesic radius r is bigger than πr2, i.e., the disk
area is underestimated in our approximation. These two
approximations tend to cancel each other out. For a typi-
cal value of c= 1/2, |K(0)|πr2 and the numerical result
of the integral of the Gaussian curvature vs. r is plot-
ted in fig. 2(b). As expected the flat space approximation
K(0)πr2 is good for small r (r < 0.2).
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Fig. 3: (Colour on-line) (a) The geometric potential of an
isolated disclination for three different values of c: c= 0.8 (red
line), c= 0.75 (green line) and c= 0.7 (blue line). The optimal
position of an isolated disclination moves from the boundary
to the waist of the catenoid in the rather narrow window c
between 0.8 and 0.75. (b) The geometric potential of an isolated
disclination for catenoids with c= 0.5 (red line) and c= 0.6
(green line).

The critical waist size c∗ can also be estimated from
energetic arguments. From the free energy of eq. (5) one
can analyze the geometric potential describing the inter-
action between disclinations and the intrinsic Gaussian
curvature of the surface. The result is shown in fig. 3. We
see that the optimal position of a disclination shifts from
the boundary to the waist as c decreases. The transition
point for the emergence of a disclination in the interior
of a catenoidal capillary bridge is c∗ ≈ 0.8, again consis-
tent with the value obtained above based on geometrical
arguments.
Net disclination charges may appear either in the form

of point-like isolated disclinations or extended linear grain
boundary scars. Scars result from the screening of an
isolated disclination by chains of dislocations and typically
arise when the number of particles exceeds a threshold
value beyond which the energy gained exceeds the cost
of creating excess defects [1]. Here we semi-quantitatively
construct the phase diagram for isolated disclinations vs.
scars on a catenoidal capillary bridge characterized by the
number of particles and the aspect ratio of the catenoid c.
Consider a disclination on a capillary bridge (for c <

0.85) radiating m grain boundaries (scars). The spacing
of neighboring dislocations is l= am/seff [2], where
a is the lattice spacing. As seff → 0, the dislocation
spacing within a scar diverges and the grain boundary

0.5 0.6 0.7 0.8
c

200

400

600

800

1000

1200

1400
V

Scars

Isolated
Disclinations

Fig. 4: (Colour on-line) The phase diagram in the particle
number-aspect ratio plane for isolated disclinations vs. scars
for c < c∗.

terminates. If the disclination can be completely screened
by Gaussian curvature within a circle of radius r≈ 3a,
then grain boundaries will not form around the core
disclination. The condition for isolated disclinations is
therefore |Kmaxπ(3a)2| ∼ π/3, where |Kmax|= 1/c2 is the
Gaussian curvature at the waist of the bridge. On the other
hand, the number of particles N is related to the surface
area A between z ∈ [−zm, zm] via A(c) = (

√
3/2)a2N . The

curve separating isolated disclinations from scars is thus
given by N = 18

√
3 A(c)/c2, as plotted in fig. 4. The phase

boundary reveals two basic types of transitions in the
topological structure of the ground state as the particle
number and the geometry (aspect ratio) of the capillary
bridge are varied. For a fixed catenoid aspect ratio below
the critical value for the appearance of excess 7’s in the
interior there is a transition from isolated 7’s to linear
grain boundary scars with one excess 7 as the number of
particles increases. For a fixed number of particles above
a threshold value (Nc ≈ 300) there is a transition from
isolated disclinations to scars as the capillary bridge gets
fatter and the decreasing Gaussian curvature is insufficient
to support isolated 7-disclinations.
Disclinations and anti-disclinations attract and may

form dipole bound states (7-5 pairs). Such dipole config-
urations are themselves another type of point-like topo-
logical defect in two-dimensional crystals —dislocations.
Dislocations on a triangular lattice correspond to two
semi-infinite Bragg rows 60◦ apart both terminating
at a common point —the location of the dislocation.
Since they are tightly bound states of disclinations
the energetics of dislocations may be derived from the
governing energetics of disclinations on a curved geometry
—eq. (5). Dislocations, unlike disclinations, are oriented.

The Burgers vector�bα characterizing a dislocation at posi-
tion xα is perpendicular to the 5-7 bond. An analysis of
eq. (5) shows that the preferred orientation of the Burgers
vector is along �e u. This is clear from the fact that the
7-disclination has minimum energy when located at
the waist with the accompanying 5-disclination in the
direction of the boundary where the negative Gaussian
curvature drops most rapidly. Thus the 7-5 bond should
along a meridian and the Burgers vector along a line of
latitude. From here on we restrict ourselves to this case.
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Fig. 5: (Colour on-line) (a) The geometric potential of isolated
dislocations as a function of height for four different values of c:
c= 0.7 (black line), c= 0.68 (red line), c= 0.66 (blue line) and
c= 0.65 (green line). The optimal position moves from near
the boundary towards the waist as c decreases. Panel (b) is an
enlarged view of the blue curve to show the transition from the
red to the green curve.

The variable Gaussian curvature of a catenoidal capil-
lary bridge also leads to optimal positions for isolated
dislocations. Figure 5 shows the geometric potential for
isolated dislocations as a function of height above the
waist. As the waist radius c decreases the optimal position
of an isolated dislocation moves from the boundary to the
interior of the capillary bridge since the increasing maxi-
mal negative Gaussian curvature increasingly attracts
7-disclinations with their tightly bound 5-disclinations.
The boundary-to-interior transition occurs for c∗∗ ≈ 0.68.
The corresponding integrated Gaussian curvature∫
KdA≈−9.0 [24]. This detachment transition is also
observed in experiments with capillary bridges [24] —in
the experimental case the capillary bridges are generally
nodoids with non-vanishing mean curvature and the
analysis is corresponding more elaborate. The optimal
position of a single dislocation for small c, say c= 0.3,
is z (c= 0.3) = 0.25zm. Thus, the optimal position of a
single dislocation is far from the waist, even for a strongly
curved catenoidal capillary bridge, in contrast to the case
of disclinations. This result can be understood in terms
of the Peach-Koehler forces acting on the individual
positive and negative disclinations that make up a
dislocation [24,36]. While the 7-disclination prefers to be
at the waist the 5 prefers to be at the boundary —the
competition results in an optimal dislocation position
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Fig. 6: (Colour on-line) The interaction of defects. (a) The
dislocation-dislocation interaction Vdd of two dislocations along
�e u at the same height. z = 0.5 zm (black line), z = 0.3 zm
(red line) and z = 0.1 zm (green line). (b) The disclination-
dislocation interaction VDd as a function of their longitudinal
separation. The disclination is fixed on the waist (c= 1/2).

somewhere in between the two extremes. Here we treat
only single dislocations but it is possible for chains of
dislocations to appear in the form of pleats, as elegantly
discussed in ref. [24].
Finally we turn to the interaction between defects

themselves. Figure 6(a) shows the dislocation-dislocation
interaction along �e u. Two dislocations at the same height
feel a short-range repulsion. Note that near the waist
shallow local minima appear. This differs from the inter-
action in flat space where parallel dislocations always
repel to each other with a logarithmic potential [37]. The
attractive interaction between a disclination and a nearby
dislocation is shown in fig. 6(b) with the disclination fixed
on the waist.
The influence of spatial curvature and topology on two-

dimensional phases of matter continues to yield surprises.
The presence of 7-disclinations in negative curvature crys-
tals may offer unique opportunities for functionalization
of micron-scale crystallized “superatoms” via chemistry
that recognizes the unique crowded environment of a
7-disclination [1,38].
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