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We investigate the structure of crystalline particle arrays on constant mean curvature (CMC) surfaces of
revolution. Such curved crystals have been realized physically by creating charge-stabilized colloidal arrays
on liquid capillary bridges. CMC surfaces of revolution, classified by Delaunay in 1841, include the 2-sphere,
the cylinder, the vanishing mean curvature catenoid (a minimal surface), and the richer and less investigated
unduloid and nodoid. We determine numerically candidate ground-state configurations for 1000 pointlike particles
interacting with a pairwise-repulsive 1/r3 potential, with distance r measured in three-dimensional Euclidean
space IR3. We mimic stretching of capillary bridges by determining the equilibrium configurations of particles
arrayed on a sequence of Delaunay surfaces obtained by increasing or decreasing the height at constant volume
starting from a given initial surface, either a fat cylinder or a square cylinder. In this case, the stretching process
takes one through a complicated sequence of Delaunay surfaces, each with different geometrical parameters,
including the aspect ratio, mean curvature, and maximal Gaussian curvature. Unduloids, catenoids, and
nodoids all appear in this process. Defect motifs in the ground state evolve from dislocations at the boundary
to dislocations in the interior to pleats and scars in the interior and then isolated sevenfold disclinations in the
interior as the capillary bridge narrows at the waist (equator) and the maximal (negative) Gaussian curvature
grows. We also check theoretical predictions that the isolated disclinations are present in the ground state when
the surface contains a geodesic disk with integrated Gaussian curvature exceeding −π/3. Finally, we explore
minimal energy configurations on sets of slices of a given Delaunay surface, and we obtain configurations and
defect motifs consistent with those seen in stretching.
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I. INTRODUCTION

Much has been learned in the past decade about crystalline
particle packings on a wide variety of curved two-dimensional
surfaces [1]. The surfaces studied include the 2-sphere (con-
stant positive Gaussian curvature) [2–5], the 2-torus (variable
positive and negative Gaussian curvature with vanishing
integrated Gaussian curvature) [6–9], the paraboloid (variable
Gaussian curvature and a boundary) [10,11], the Gaussian
bump (positive and negative Gaussian curvature) [12–14], and
the catenoid minimal surface [15–17]. Although the nature
of condensed matter order on surfaces is applicable to many
different physical settings, the richest comparison between
theoretical and numerical predictions and experiments has
been made with micron-scale colloidal systems. In these
systems, solid colloidal particles self-assemble at the interface
of two distinct immiscible liquids, either in particle-stabilized
(Pickering) emulsions [18–20] or charge-stabilized emulsions
[21,22]. The case of ordering on the 2-sphere (the surface of
a ball) is realized by particles self-assembling at the surface
of a droplet held perfectly spherical by surface tension [4].
The ordered configurations of particles may be imaged with
confocal microscopy and the particles even manipulated with
laser tweezers [23]. In charge-stabilized emulsions, particles
do not even wet the surface, and so the intrinsic shape of
the droplet is preserved. The natural range in size R of the
droplets allows one to explore the effect of the Gaussian
curvature, which varies as 1/R2, on the ordering. The ground
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state has been found to exhibit qualitatively different types of
defect arrays as the size changes [4,24]. Small droplets have
12 isolated fivefold-coordinated disclinations (5s), whereas
for larger droplets the isolated 5s sprout additional chains
of dislocations (a dislocation is a tightly bound disclination-
antidisclination or 5-7 pair) to become 12 grain boundary
scars, each of which has a net disclination charge of +1
(i.e., one excess 5) and freely terminates within the medium.
Free termination of a grain boundary is possible in curved
space because Bragg rows are curved along the converging
geodesics of the 2-sphere, eventually healing the 30◦ mismatch
in crystallographic axes found at the center of the grain
boundary.

Recently, a very rich and flexible experimental system has
been developed [15] in which charge-stabilized emulsions are
created in the form of capillary bridges—these are structures
in which a drop of liquid A, immersed in liquid B, spans
the gap between two parallel flat glass surfaces. The surface
separating the two liquids has the topology of a cylinder and
necessarily has a constant mean curvature (CMC) determined
by the Laplace pressure difference between the inside (A) and
the outside (B) liquids. These CMC surfaces of revolution
were classified in the 19th century by Charles Delaunay and
come in five classes: the sphere, the cylinder, the catenoid, the
unduloid, and the nodoid [25–27]. Negative Gaussian curva-
ture is expected to give rise to quite different structures from
surfaces with positive Gaussian curvature [2,15–17,28–32].
The simplest negative curvature surface is the constant negative
curvature hyperbolic plane H 2, the negative curvature analog
of the 2-sphere S2, but the isometric embedding of H 2 as a
complete subset of Euclidean 3-space is not differentiable [33]
and may not be realizable physically. A geodesic triangulation
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FIG. 1. (Color online) A geodesic triangulation of a negative
Gaussian curvature nodoid: note the large departure of individual
geodesic triangles from their Euclidean analogs where the interior
angles add to π .

of a negative Gaussian curvature nodoid is shown in Fig. 1.
One readily sees that the geodesic edges are diverging and
that the geodesic triangles in the highly curved regions of
the surface have interior angles whose sum is less than
180◦—in fact some of the triangles have an interior angle sum
around 140◦!

In this paper, we explore the structure of the crystalline
ground state of particles strictly confined to a Delaunay CMC
surface and interacting with a pairwise-repulsive short-range
power-law potential. Such surfaces have varying negative
Gaussian curvature and are thus technically more challenging
to analyze and simulate numerically. We are particularly
interested in the defect structure of the ground state and how
distinctive defect motifs emerge as the integrated Gaussian
curvature is varied within one class of CMC surface as well
as the evolution of the ground state as one quasistatically
varies the manifold by increasing the height of the capillary
bridge: the sequence of Delaunay surfaces studied corresponds
to the physical experiment of pulling the bounding plates
slowly apart or pushing them slowly together and hence
stretching or compressing the capillary bridge.

II. GEOMETRY OF DELAUNAY SURFACES

Delaunay surfaces are variationally determined by being
constant mean curvature surfaces of revolution with minimum
lateral area and fixed volume. The characterization that most
directly gives rise to a simple and useful parametrization,
however, is to consider them as the surfaces of revolution
whose meridians are the roulettes of the foci of the conics,
that is, the curves traced by the foci of the conics as they
roll on a conic tangent without slip (for a detailed study,
see [34]). Besides the extreme limiting cases of the sphere
and the cylinder, these surfaces are catenoids, unduloids, and
nodoids, generated by the roulettes of parabolas, ellipses, and
hyperbolas, respectively.

The roulette of the focus of the parabola is the catenary; the
surface of revolution, the catenoid, is the best known nontrivial
Delaunay surface. Its parametrization is (see Fig. 2)

xxx(t,v) =
(

c cosh

(
t

c

)
cos(v),c cosh

(
t

c

)
sin(v),t

)
, (1)

where c is the radius of the waist, v ∈ (0,2π ), and t ∈ IR.

FIG. 2. (Color online) A catenoid.

The parametrization of an unduloid is given by

yyy(t,v) = (fu(t) cos(v),fu(t) sin(v),gu(t)),

where fu(t) = b[a − c cos(t)]√
a2 − c2 cos2(t)

,

gu(t) =
∫ t

t0

√
a2 − c2 cos2(z) dz

− c sin(t)[a − c cos(t)]√
a2 − c2 cos2(t)

, (2)

a and b are the semiaxes of the ellipse, c = √
a2 − b2, and v ∈

(0,2π ). If t ∈ (−π
2 , π

2 ), the roulette generated by the closest
focus to the tangent to the ellipse generates unduloids of the
type shown in Fig. 3 (left) with negative Gaussian curvature.
Taking, instead, t ∈ (π

2 , 3π
2 ), the same focus generates the

unduloids with positive Gaussian curvature, such as the one
shown in Fig. 3 (right). The same surfaces are obtained by
using the other focus, but this time in the reverse order.

Similarly, the parametrization of a nodoid is given by

zzz1(t,v) = (
f 1

n (t) cos(v),f 1
n (t) sin(v),g1

n(t)
)
,

where f 1
n (t) = b[c cosh(t) − a]√

c2 cosh2(t) − a2
,

g1
n(t) =

∫ t

t0

√
c2 cosh2(z) − a2 dz

− c sinh(t)[c cosh(t) − a]√
c2 cosh2(t) − a2

, (3)

where a and b are the semiaxes of the hyperbola, c =√
a2 + b2, v ∈ (0,2π ), and t ∈ IR. The expressions in (3) treat

the roulette generated by the closest focus to the tangent to the
hyperbola and yield nodoids with negative Gaussian curvature,
as shown in Fig. 4 (left). Taking the roulette generated by the
other focus yields the expressions (4) and nodoids with positive

FIG. 3. (Color online) Unduloid with negative Gaussian curva-
ture (left) and positive Gaussian curvature (right).
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FIG. 4. (Color online) Nodoid with negative Gaussian curvature
(left) and positive Gaussian curvature (right).

Gaussian curvature, as illustrated in Fig. 4 (right),

zzz2(t,v) = (
f 2

n (t) cos(v),f 2
n (t) sin(v),g2

n(t)
)

where f 2
n (t) = b[c cosh(t) + a]√

c2 cosh2(t) − a2
,

g2
n(t) =

∫ t

t0

√
c2 cosh2(z) − a2 dz

− c sinh(t)[c cosh(t) + a]√
c2 cosh2(t) − a2

. (4)

All the fundamental properties of the Delaunay surfaces can
be obtained easily using these parametrizations. In particular,
the mean curvature of catenoids, unduloids, and nodoids is
given by

Hc = 0, Hu = 1

2a
, H 1

n = H 2
n = −1

2a
, (5)

respectively, where a is the semimajor axis of the related conic.
The Gaussian curvatures of catenoids, unduloids, and nodoids
are given by

Kc = −1

c2 cosh4(t)
, Ku = −c cos(t)

a[a − c cos(t)]2
,

(6)

K1
n = −c cosh(t)

a[c cosh(t) − a]2
K2

n = c cosh(t)

a[c cosh(t) + a]2
.

III. NUMERICAL SIMULATION: FINDING A MINIMUM
ENERGY CONFIGURATION ON A

DELAUNAY SURFACE

To determine candidate minimum energy configurations,
we use the forces method [35,36]. The basic structure of the
forces method is classical and explained in detail in [36]. For
completeness, we give a brief description here. It can be viewed
as a local relaxation-gradientlike descent algorithm where each
step consists of finding the update direction and the step size
in a predefined way. It consists of four steps:

(i) Choose a certain number of particles and an initial
configuration for them.

(ii) Update the positions of the particles in three-
dimensional space.

(iii) Project the positions on the surface.
(iv) Repeat steps (ii) and (iii) until a given threshold is

reached.
Briefly, these are as follows:
Initial configuration. The initial configuration is chosen to

be as uniformly distributed on the given Delaunay surface as
possible, with the restriction that the particles are not near the
two boundaries. Many independent runs (order 10) are made

starting from different initial configurations, and the lowest
energy configuration is selected.

Update and projection. For one particle,

�̂xk+1 = �xk + λk �wk,

where �xk , �wk , and λk are the position, update direction, and

step size at the kth step, respectively. �̂xk+1
would be the new

location of the particle if this location were on the surface.
Since it is generically off the surface after the update, the

actual position �xk+1 is obtained by projecting �̂xk+1
onto the

surface.
The update direction is in the direction of the net force on

the particle following from the gradient of the potential. In
this paper, as noted before, we use a 1/r3 power-law potential.
For a system of N charge 1 particles, �xi ∈ IR3,i = 1, . . . ,N,

the potential energy is then given by IN = 1
2

∑N
i=1 Vi , where

Vi = ∑N
j=1
j �=i

1
|�xi−�xj |3 is the potential created at �xi by all the other

particles. We denote by �Fi minus the gradient of Vi in terms
of the position of the ith particle.

If the particles lie on a regular surface S, then equilibrium
is reached when the component of �Fi tangential to S,
�FT
i , vanishes at �xi . Then we choose w = ( �w1, . . . , �wN ) as

the step direction, where �wi = �FT
i

|Fmax| (we normalize by the
maximum force). The magnitude of the step size is then
λk(�xi) = d(min 1�j�N

j �=i
{|�xk

i − �xk
j |})2, where the coefficient d is a

constant positive scalar. The existence of a minimum distance
between particles makes it possible to adjust the step size
to most efficiently access the various configurations that
arise during the iterative process. The error at iteration k

is wmax = max1�i�N | �wi |. The algorithm stops when wmax

reaches a certain prescribed threshold value ε > 0.
The 1000 particle simulations are performed on an Intel

core i7 processor at a speed of 36.5 iterations/s. We simulate 23
distinct particle systems in all requiring a total of 5.522 × 106

iterations for a total CPU time of 42 h.1

IV. CONSTANT VOLUME RESULTS

In this section, we analyze the evolution of defect motifs
on a capillary bridge as it is stretched while preserving the
volume and the contact area with both bounding parallel flat
plates (corresponding to the boundary disks of the Delaunay
surface). At each stage of stretching, the capillary bridge is
a distinct Delaunay surface with different mean and Gaussian
curvatures. Thus, in the experimental setting, the particles must
continuously reequilibrate to a new ground state. Numerically,
we minimize the energy on each Delaunay surface separately.
This analysis allows one to explore the structure of an entire
sequence of Delaunay surfaces, one for each stage of the
stretch. We study two types of constant volume stretching:
one starts from a fat cylindrical capillary bridge and the other
from a square cylindrical capillary bridge.

1Coordinates and energies for the configurations analyzed
in this paper may be obtained by contacting Mark Bowick
(bowick@phy.syr.edu).
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FIG. 5. (Color online) Representative members of the family of
surfaces obtained by stretching a fat cylinder. From the outside in:
cylinder (black, dashed lines at the utmost left and right sides),
unduloids (green, dashed lines at the utmost left and right sides),
catenoid (red, dotted lines at the utmost left and right sides), nodoids
(blue, solid), catenoid (red, dotted lines near the neck), and unduloids
(green, dashed lines near the neck).

A. Stretching from an initial fat cylindrical capillary bridge

The initial fat cylinder has a contact radius rc = 1 and height
h = 1/π , so both the volume and the aspect ratio [the ratio ρ

of the radius of the surface at an equatorial plane (waist) to
the radius of the contact disk at the plates] are unity. In our
numerical study, starting from a fat cylindrical capillary bridge
yields a rich family of surfaces that begins with the cylinder and
subsequently deforms to a series of unduloids, the catenoid,
and then a series of nodoids. Thus all the classes of Delaunay
surfaces, apart from the well-studied 2-sphere which can be
generated by other simpler means, are explored in this single
process. Minimum energy configurations for charged particles
interacting via a Yukawa potential and confined to Delaunay
surfaces were obtained in [32], but only for catenoids and
unduloids. As is clear from Fig. 5, the predominant surfaces
in stretching are nodoids. The proper treatment of nodoids is
therefore essential to a comparison with the experiments of
Ref. [15]. Planar sections that contain the common revolution
axis of several surfaces from this family are shown in Fig. 5.
The final unduloid has an aspect ratio ρ = 0.198.

We obtain minimum energy states for N = 1000 particles
interacting via a pairwise-repulsive 1/r3 potential. Short-range
potentials (decaying faster than 1/r2) produce more uniform
ground-state configurations because long-range potentials
(decaying slower than 1/r2) drive particles to the boundary

FIG. 6. (Color online) Left: Equilibrium configuration for a
nodoid with aspect ratio ρ = 0.97. Some Bragg rows are highlighted
in white to illustrate the insertion of half-lines of particles defining
a dislocation. Right: Equilibrium configuration for a nodoid with
ρ = 0.95. Some dislocations are parallel to the nodoid’s boundary.

FIG. 7. (Color online) Left: Appearance of pleats at aspect ratio
ρ = 0.81. The distortion of the crystallographic rows corresponds
to that of a chain of dislocations. Right: at ρ = 0.78, pleats and
dislocations begin to proliferate.

circles to maximize the average separation. This can lead to
defect structures that are influenced by the boundary. While
of intrinsic interest as a boundary-driven phenomenon, this is
not our primary focus in this paper. We found that long-range
effects may also be reduced, but not eliminated, by adding a
line of neutralizing charge along the central axis of the surface.
Here we focus on the role of variable Gaussian curvature in
the interior of Delaunay surfaces.

Various defect motifs emerge as the capillary bridge
becomes higher and thinner (decreasing aspect ratio with our
definition). Basically, we identify the following sequence: at
ρ = 0.984, individual dislocations (tightly bound 5-7 pairs)
appear at the boundary, resulting from the repulsion between
dislocations of identical orientation.

As ρ decreases, these dislocations migrate to the interior of
the surface and occasionally form multiple dislocation clusters.
In Fig. 6 (left, right), we show minimum energy configurations
for ρ = 0.97 and 0.95. The dual pentagons and heptagons
shown here are obtained by first performing a Delaunay trian-
gulation of the configuration and then connecting the barycen-
ters of adjacent triangles. In Fig. 6 (left), we also highlight the
Bragg rows on each side of two pairs of dislocations so that one
can see the removal (insertion) of a half-line of particles char-
acteristic of a dislocation (antidislocation). In Fig. 6 (right),
we highlight the Bragg rows surrounding two dislocations
oriented almost tangentially to the boundary (and thus with
Burgers vector almost parallel to the boundary). At ρ = 0.81,
pleats appear attached to the boundary, as shown in Fig. 7 (left).
Pleats are neutral grain boundaries with a fivefold disclination
at one end and a sevenfold disclination at the other end. A pleat
can freely terminate at one or both ends and so they are easy to
recognize. Below ρ = 0.78, pleats and dislocations proliferate
both in the interior and at the boundaries [see Fig. 7 (right)].

FIG. 8. (Color online) Left: Nodoid with aspect ratio ρ = 0.774.
Note the appearance of an isolated 7-disclination. The white circle
is the geodesic circle centered on the 7 that encloses an integrated
Gaussian curvature of − π

3 . Right: Nodoid with aspect ratio ρ = 0.64.
The geodesic circle, centered on the 7, that encloses a − π

3 integrated
Gaussian curvature (white circle) is compared to its lattice analog.
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FIG. 9. (Color online) Left: Catenoid (vanishing mean curvature)
with aspect ratio ρ = 0.28. Note the appearance of several isolated
7s in the region of the waist. The white contour is that of a geodesic
circle centered on the 7 inside and enclosing an integrated Gaussian
curvature of − π

3 . Right: Unduloid with aspect ratio ρ = 0.198. Three
geodesic disks enclosing an integrated Gaussian curvature of − π

3 are
also shown.

At ρ = 0.774, one sees isolated sevenfold disclinations
(7s). In the figures these are seen clearly in the form of their
dual heptagons. This is the true hallmark of the prevailing
negative Gaussian curvature in the interior of the surface.
Sevenfold disclinations may arise by the unbinding of a 7
from a pleat, which typically ends with a 7 oriented toward
the central interior of the surface. Indeed there are usually
compensating scars with a net positive disinclination charge
near an isolated 7 in this regime of aspect ratios. As the
negative Gaussian curvature increases, however, isolated 7s
are typically farther away from the positive scars that compen-
sate them topologically.

In Fig. 8 (left), we show a minimal energy configuration,
with aspect ratio ρ = 0.774, containing an isolated sevenfold
disclination. We also show the geodesic circle, �, with radius
r = 0.293, which is the boundary of a disk D whose integrated
Gaussian curvature is −π

3 . � was determined by constructing
a geodesic polygon with enough edges that the integrated
curvature coincides with the total exterior angle deficit and
applying the Gauss-Bonnet theorem∫

D

KdA +
∑

i

γi = 2π, (7)

where K is the Gaussian curvature and γi is the exterior
angle deficit at vertex i. Since disclinations naturally couple to
Gaussian curvature in the effective Hamiltonian that controls

their energetics [1,2,15,16], a natural criterion for the ground
state to admit a defect with a net −1 disclination charge is
that there be a domain of the surface, centered on the defect,
with integrated Gaussian curvature matching the disclination
charge −π/3.

In Fig. 8 (right), we show a configuration, with aspect ratio
ρ = 0.64, containing a completely isolated 7 along with the
geodesic circle centered on the 7 and enclosing an integrated
Gaussian curvature of −π

3 . We have also inscribed a seven-
sided geodesic polygon as determined by the triangulation. The
exterior angles grow from 2π/7 at the sevenfold disclination
to 2π/6 at the inscribed geodesic heptagon. This nodoid has a
vanishing contact angle at the boundary, corresponding to com-
plete wetting of the capillary bridge at the plates; it corresponds
to the nodoid with parameter t covering all IR. For a smaller
aspect ratio, the contact angle grows to a maximum of 22◦.

As the capillary bridge is stretched to have a very narrow
waist (the equatorial section t = 0 of the Delaunay surface)
with large negative maximal Gaussian curvature, we observe
a proliferation of sevenfold disclination defects (heptagons).
Two examples are displayed in Fig. 9 (left, right). In both
configurations there are a total of 11 isolated 7s plus scars,
which have the same net disinclination charge. The 7s
preferentially occupy the waist of the capillary bridge,
whereas scars and pleats are found throughout the surface.

The sequence of defect motifs revealed by our simulations
conforms remarkably closely to that found experimentally
in [15] (see, in particular, their Fig. 4). The initial compressed
bridge is free of defects. As the bridge is stretched, both
experimentally and numerically, one observes the appearance
of dislocations, neutral disinclination dipoles, polarized with
the sevenfold disclinations toward the maximally negatively
curved neck (see Fig. 6 and Fig. 4(i) of [15]). Further
stretching leads to the appearance of pleats (see Fig. 7 and
Fig. 4(j) of [15]). Finally, yet more stretching leads to the
appearance of isolated sevenfold disclinations and scars (see
Fig. 8 and Fig. 4(k) of [15]). These comparisons were also
noted in [32], but we note that all the stretched manifolds
displaying defects are nodoids (as clearly established in Fig. 5)
whereas the simulations in [32] are only for catenoids and
unduloids.

FIG. 10. (Color online) Square cylindrical capillary bridges. (a) Positive Gaussian curvature nodoid with aspect ratio ρ = 1.30. Observe
the encircled 5-7-5-7-5 scar separated by a lattice spacing from an isolated 7. The geodesic disk enclosed by the circle has integrated Gaussian
curvature π

3 . (b) Positive Gaussian curvature unduloid with aspect ratio ρ = 1.24. Observe isolated dislocations and pleats. (c) Null Gaussian
curvature cylinder with aspect ratio ρ = 1. (d) Negative Gaussian curvature nodoid with aspect ratio ρ = 0.86. Note the long 7-5-7-5-7-5 pleat
situated left center. (e) Negative Gaussian curvature unduloid with aspect ratio ρ = 0.77. Observe the prominent 7-5-7-5-7 scar. The geodesic
disk enclosed by the circle has integrated Gaussian curvature − π

3 .
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FIG. 11. (Color online) Different slices of the nodoid with parameters a = 0.5 and b = 0.1. (a) tmax = 0.02, (b) tmax = 0.05, (c) tmax = 0.2,
and (d) tmax = 0.3.

B. Stretching from an initial square cylindrical capillary bridge

In this section, we discuss the appearance of defects
upon stretching through another family of Delaunay surfaces
preserving volume and contact radius. This family is generated
by starting from a positive Gaussian curvature nodoid with
an aspect ratio ρ = 1.30 and is designed to pass through the
square cylindrical capillary bridge with rc = 1 and h = 2
(aspect ratio ρ = 1). It terminates in an unduloid with an
aspect ratio ρ = 0.77. Representative configurations for this
sequence are shown in Fig. 10. The central cylinder exhibits
very few defects. Increasing or decreasing the aspect ratio
leads first to the appearance of pleats and then to longer pleats
and scars. Geodesic disks with total curvature ±π

3 are shown
surrounding scars and are completely contained in the interior
of the surface. Note that the defect structure in Fig. 10(a) is
a pleat with the top sevenfold disinclination separated by one
lattice spacing from the rest of the pleat.

V. MINIMUM ENERGY CONFIGURATIONS ON SLICES

For an isolated sevenfold disclination (heptagon) to be
present in minimum energy configurations of crystalline
arrays on a negative curvature surface, a reasonable criterion
is that the integrated Gaussian curvature over the geodesic
disk centered at the disclination be more negative than −π

3 ,
the deficit angle corresponding to the topological charge of
a sevenfold disclination [1]. To check that it is the integral
of the Gaussian curvature, instead of the Gaussian curvature
itself, that determines the character of defect motifs, we
examine minimum energy configurations on slices of a given

Delaunay surface with steadily increasing values of tmax, the
maximal value of the meridian coordinate t . Each slice has
t spanning the interval [−tmax,tmax]. The shape of a nodoid is
completely determined by the parameters a and b. We merely
restrict to a growing set of slices by varying tmax. The first
surface we investigate is the nodoid with a = 0.5 and b = 0.1.
This capillary bridge has maximal Gaussian curvature at the
t = 0 waist (equator) of K(0) = −10 401. In Fig. 11(a), we
take a slice with tmax = 0.02 and the behavior is completely
equivalent to a cylinder. For completeness, we note that this
surface encloses a volume V = 6.11 × 10−7 and has a lateral
area A = 1.23 × 10−4 and an equilibrium potential energy
E = 1.17 × 1013.

In Fig. 11(b), we show a slice with tmax = 0.05. For
this slice, dislocations are found in the interior just as in
the case of stretching within the fat cylinder family. The
evolution of defect motifs continues with the appearance
of pleats and, in Fig. 11(c), where tmax = 0.2, disclination
charge −1 scars sitting inside disks of integrated Gaussian
curvature −π

3 . The first appearance of an isolated sevenfold
disclination (heptagon) is for a slice with tmax = 0.3. In
Fig. 11(d), we show the geodesic disk of geodesic radius
r = 0.0061, the same value as in the previous slice, because the
surfaces are the same except for their height. This last surface
encloses a volume of V = 1.17 × 10−5 and has a lateral area
A = 3.39 × 10−3.

As we increase the parameter b, the Gaussian curvature in
the waist is strongly reduced and yet the sequence of defect
motifs is essentially the same. To be concrete, we show the
family of slices with a = 0.5 and b = 0.4. Now the Gaussian
curvature in the waist is K(0) = −65.

FIG. 12. (Color online) Different slices of the nodoid with a = 0.5 and b = 0.4. (a) tmax = 0.1, (b) tmax = 0.3, (c) tmax = 0.6, and
(d) tmax = 0.8.
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FIG. 13. (Color online) Left: nodoid with a = 0.5, b = 0.1, and
tmax = 0.6 with a geodesic disk of total curvature − π

3 in one of the
isolated 7s in the waist. Right: The same nodoid but with a larger
slice, now tmax = 0.9.

In Fig. 12(a), we display a slice with tmax = 0.1 and the
pattern is again equivalent to a cylinder. Its volume is 2.17 ×
10−3 and the lateral area is 3.1 × 10−2. In Fig. 12(b), we
again observe the formation of dislocations in the interior. In
Fig. 12(c), we have enclosed a dislocation with a polygon to
show the associated Burgers’ vector. In Fig. 12(d), we see an
isolated sevenfold disclination with a nearby dislocation.

Finally, in Fig. 13 we include the evolution of defects for
the nodoid with parameters a = 0.5 and b = 0.1, when tmax

increases and the slices contain most of the nodoid. In both
cases there are 11 total defects counting isolated 7s and scars.
In Fig. 13 (right), the isolated 7s are more concentrated in the
waist.

Thus we find the full range of phenomena explored
experimentally in [15] by simulating the full range of Delaunay

surfaces generated in stretching. We emphasize that catenoids
and unduloids alone are insufficient in making a proper
comparison with experiment [32] since the majority of surfaces
encountered in stretching are nodoids with negative mean
curvature as opposed to the positive mean curvature of
unduloids.

The presence of isolated sevenfold disclinations (or equiv-
alently their dual heptagons) or scars in the ground state offers
new possibilities for supramolecular chemistry via function-
alization of crystalline arrays on these surfaces, provided one
can chemically detect the sevenfold disclination (or scars) and
attach ligands there just as smectic disclinations are functional-
ized by place-exchange reactions for nanoparticles coated with
an equal mixture of short and long chain alkanethiols in the
work of DeVries et al. [37]. Isolated sevenfold disclinations,
scars, and pleats may also be sources of material weakness
or perhaps improved performance through capturing material
dislocations and thus limiting plastic deformation.
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