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Two and three electrons on a sphere: A generalized Thomson problem

Liu Yang and Zhenwei Yao*

School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

(Received 28 April 2018; revised manuscript received 4 June 2018; published 21 June 2018)

Generalizing the classical Thomson problem to the quantum regime provides an ideal model to explore the
underlying physics regarding electron correlations. In this work, we systematically investigate the combined
effects of the geometry of the substrate and the symmetry of the wave function on correlations of geometrically
confined electrons. By the numerical configuration interaction method in combination with analytical theory, we
construct symmetrized ground-state wave functions; analyze the energetics, correlations, and collective vibration
modes of the electrons; and illustrate the routine for the strongly correlated, highly localized electron states
with the expansion of the sphere. This work furthers our understanding about electron correlations on confined
geometries and shows the promising potential of exploiting confinement geometry to control electron states.
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I. INTRODUCTION

Inquiry into the physics of geometrically confined electrons
is a prominent research theme in modern physics and chemistry
[1–3], and it can be traced back to the classical problem of
determining the ground state of classical charged particles
confined on the surface of a sphere, which is known as the
Thomson problem [4–12]. The Thomson problem and its
various generalized versions arise in diverse physical sys-
tems [3,6,13–19], ranging from surface ordering of liquid-
metal drops [20], colloidal particles [8], and protein subunits
over spherical viruses [21,22] to mechanical-instability-driven
wrinkling crystallography on spherical surfaces [23]. Recently,
due to advances in semiconductor technology and spectro-
scopic probes, geometrically confined few-electron systems
have been experimentally accessible, and they bring a host of
scientific problems related to understanding electron correla-
tions [24–28]. Generalizing the classical Thomson problem
to quantum regime provides an ideal model to explore the
underlying physics regarding electron correlations. In com-
parison with the classical Thomson problem, its quantum
version can exhibit richer physics beyond minimization of
Coulomb potential energy. For example, even a single elec-
tron will interfere with itself when confined on the sphere.
Furthermore, the Heisenberg uncertainty principle requires
that the electrons are always restless even in the ground
state.

Past studies have shown the crucial role of system size
on electron states [29–33]. On large spheres, the confined
electrons become strongly correlated, which is closely related
to Wigner crystallization of uniform electron gas [34]. Further-
more, studies of multiple-electron systems have revealed the
fundamental role of symmetries of the wave function under
rotation, inversion, and permutation and its noninteraction
feature on the nodal structure of electron states [32,35].
Electron states of two- or three-electron systems on the sphere
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have been extensively studied using the approaches of approx-
imate Schrödinger equations [30,33,36] and the configuration
interaction (CI) method [29,31,33,37]. Notably, the system
of two electrons on a hypersphere has been quasiexactly
solved, and the analytical results are useful in the development
of correlation functionals within density-functional theory
[38–40]. In this work, we focus on the combined effects of
the geometry of the sphere and the symmetry of the wave
functions on energetics and correlations of confined electrons.
The model of the quantum version of the Thomson problem
provides the opportunity to address fundamental questions
with broader implications, such as the following: How do the
electrons become correlated with the expansion of the sphere?
What are the dynamic behaviors of the strongly correlated
electrons?

To address these questions, we resort to the CI method
in combination with analytical theory to construct and an-
alyze the ground-state wave functions of two- and three-
electron systems [29,33]. Note that the CI method allows us
to analyze the variation of the components composing the
ground-state wave functions, and it provides insights into
the enhancement of electron correlations. In this work, we
construct symmetrized ground-state wave functions for both
two- and three-electron systems. Energetics analysis shows
the degeneracy of wave functions with distinct symmetries
and the domination of the potential energy over the kinetic
energy with the expansion of the sphere. In this process, eigen-
states with larger angular momentum quantum numbers are
excited under the increasingly important Coulomb interaction.
Consequently, strongly correlated, highly localized electron
states are established in the large-R regime, as revealed in the
probability analysis. In this regime, we propose a semiclassical
small-oscillation theory to quantitatively analyze the vibration
modes and determine the symmetry-dependent quantum num-
ber of the harmonic oscillations. The results presented in this
paper further our understanding about electron correlations
in confined geometries and show the promising potential
of exploiting confinement geometry to manipulate electron
states.
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II. MODEL AND METHOD

The ground-state wave function and energy of N elec-
trons on the sphere are determined by the time-independent
Schrödinger equation:

Ĥ�({�ri}) = E�({�ri}), (1)

where Ĥ = K̂ + V̂ and �ri is the position of electron i. The
kinetic-energy term K̂ = ∑N

i=1 L̂2
i /2R2, R is the radius of

the sphere, and L̂i is the angular momentum operator of the
electron i. The potential-energy term V̂ = ∑

i<j 1/|�ri − �rj |.
We resort to the CI method to construct the ground-

state wave functions with certain symmetries [37]. The CI
wave function consists of a linear combination of basis
wave functions, whose expansion coefficients are variationally
determined. This method can provide highly accurate wave
functions, especially for systems with a small number of
particles. The CI method has extensive applications in quantum
chemistry due to the simple structure of the wave function [41].
In practice, a truncated Hilbert space spanned by dominant
eigenstates provides a good approximation for performing the
diagonalization of the Hamiltonian.

We first construct the basis wave function �n({�ri}), where n
represents a complete set of quantum numbers to characterize
the state of the system. For the two-electron system, |n〉 =
|l1,l2,l,m〉, which is the common eigenstate of L̂2, L̂z, and L̂2

1.
For the three-electron system, |n〉 = |l12,l1,l2,l3,l,m〉, which is
the common eigenstate of the mutually commuting L̂2

12, L̂2
1, L̂2

2,
L̂2

3, L̂2, and L̂z. From the linear combination of �n({�ri}), we

construct wave functions �
Xp

n ({�ri}) with certain symmetries.
The superscriptXp indicates that the wave function is exchange
symmetric (X = S) or exchange antisymmetric (X = A) and
has even (p = e) or odd (p = o) parity. The relevant matrix
elements of the kinetic and potential energies are K

Xp

nn′ =
〈�Xp

n |K̂|�Xp

n′ 〉 and V
Xp

nn′ = 〈�Xp

n |V̂ |�Xp

n′ 〉.
In this work, the units of length, energy, and angular

momentum are the Bohr radius aB = 4πε0h̄
2/mee

2,
e2/4πε0aB , and h̄, respectively. R/rB � 1 and R/rB � 1 in
the small- and large-R regimes, respectively.

III. RESULTS AND DISCUSSION

A. The case of two electrons

For a two-electron system, the construction of the ground-
state wave function must obey the Pauli exclusion principle.
The orbital wave function of the two-electron system is either
exchange symmetric or exchange antisymmetric depending on
the spin state of the electrons. We discuss both cases in this
section.

1. Construction of symmetrized ground-state wave functions

For the two-electron system, the common eigenstates
|l1,l2,l,m〉 of L̂2, L̂z, L̂2

1, L̂2
2 constitute the bases of the

complete Hilbert space, denoted as H . Note that |l1,l2,l,m〉
can be constructed by direct products of single-particle states
using Clebsch-Gordan coefficients [42]. From the basis wave
function �n(�r1,�r2), where n = (l1,l2,l,m), one can construct
wave functions �

Xp

n (�r1,�r2) with a certain symmetry Xp.

To implement the CI method, we first notice that the Hilbert
space H can be reduced to the sum of the subspaces H (l,m):
H = ⊕

l,m
H (l,m). The subspace H (l,m) is spanned by the

bases ε(l,m): ε(l,m) = {|l1,l2,l,m〉|l1,l2 = 0,1,2, . . . }, where
|l1 − l2| � l � l1 + l2 and −l � m � l. We search for the
ground-state wave functions in the subspaces of H (0,0) and
H (1,0). According to angular momentum algebra, all the
basis wave functions in H (0,0) are exchange symmetric with
even parity [33]. That is, ε(0,0) = εSe (0,0) = {|i,i,0,0〉|i =
0,1,2, . . . }. The bases of the subspace H (1,0) can be clas-
sified according to their parity and exchange symmetry:
ε(1,0)=εSo (1,0)⊕εAe (1,0)⊕εAo (1,0). Specifically, εSo (1,0)=
{ 1√

2
(|i,i+1,1,0〉 + |i + 1,i,1,0〉)|i =0,1,2, . . . }, εAe (1,0) =

{|i,i,1,0〉|i = 1,2, . . . }, εAo (1,0) = { 1√
2
(|i,i + 1,1,0〉 − |i +

1,i,1,0〉)|i = 0,1,2, . . . }. Note that no base of the subspace
H (1,0) is exchange symmetric with even parity. In fact, any
wave function in H (1,0) with even parity must be exchange
antisymmetric [43].

We denote the basis states in H Se (0,0), H So (1,0),
H Ae (1,0), and H Ao (1,0) as |�Xp

i 〉, where i completely deter-
mines the values of l1,l2,l,m in ε(l,m), as shown in preceding
discussion. Any state in these subspaces can be expressed as
a linear superposition of |�Xp

i 〉: |�Xp 〉 = ∑imax
i=i0

c
Xp

i |�Xp

i 〉. In
our numerical construction of the ground-state wave functions,
i0 = 1 for |�Ae 〉, and i0 = 0 for |�Se 〉, |�So〉, and |�Ao〉. Here,
imax = 100. We obtain the values for the coefficients {cXp

i } by
expanding the Hamiltonian in the Hilbert space spanned by
|�Xp

i 〉 and solving for the equation
∑

i ′ H
Xp

ii ′ c
Xp

i ′ = Ec
Xp

i .

2. Analysis of ground states

In Fig. 1(a), we show the monotonous decrease of the
ground-state energy E0 with the radius R of the sphere for the
four kinds of wave functions with distinct symmetries. Among
these four cases, the �Se state, which is in the Hilbert subspace
of H (0,0), has the lowest energy. Note that our numerically
solved energy of the �Se state agrees well with the previously
reported exact values [33,43].

Figure 1(a) also shows the degeneracy of the �So and �Ao

states in the small-R regime and the degeneracy of the �Se and
�Ao states in the large-R regime. As R → ∞, all four energy
curves in Fig. 1(a) tend to converge towards 1/(2R). This
result is consistent with the following scaling argument. Since
the kinetic energy is inversely proportional to 1/R2 and the
potential energy is inversely proportional to 1/R, the potential
energy will dominate, and the total energy will scale with R in
the form of 1/R in the large-R limit.

To show the relative contributions of the potential and
kinetic energies to the total energy E0, we plot the V0/K0 vs R

curve in Fig. 1(b). With the increase of R, the potential energy
will dominate over the kinetic energy. We also see the merging
of the �Se and �Ao and �So and �Ae curves in the large-R
regime. The V0/K0 curves in the small-R regime are shown
in the inset. Since the �Se state is in the subspace H (0,0),
whose zeroth-order wave function has zero kinetic energy, the
�Se curve is obviously above all the other three states in the
H (1,0) space.

235431-2



TWO AND THREE ELECTRONS ON A SPHERE: A … PHYSICAL REVIEW B 97, 235431 (2018)

FIG. 1. Energetics analysis of the two-electron ground states of
distinct symmetries. In the notation �Xp for the ground-state wave
function, the superscript Xp indicates that it is exchange symmetric
(X = S) or exchange antisymmetric (X = A) and has even (p = e)
or odd (p = o) parity. (a) Plot of the ground-state energy E0 vs the
radius R of the sphere. Energy degeneracies are found in the large-
and small-R regimes. (b) The potential energy V0 dominates over the
kinetic energy K0 in the large-R regime. Solid lines are from the CI
method. Dashed lines are from the small-oscillation theory.

We further show the contribution of each |�Xp

i 〉 compo-
nent in the constructed ground state |�Xp 〉 by analyzing the
coefficients |cXp

i |. In Figs. 2(a)–2(d), we present the values of

|cXp

i | for the first ten angular momentum quantum numbers
i. The four kinds of wave functions exhibit uniform behavior
with the increase of R. The value of the dominant i, which is
zero at R = 0.1, increases with R. Meanwhile, increasing R

widens the |cXp

i | curves. The underlying physics is as follows:

|�Xp

i 〉 components of larger i are excited under the increasingly
important Coulomb interaction with the expansion of the
sphere.

To characterize the correlation of the two electrons on
the sphere, we compute the reduced two-electron probability
density ρ2(γ ) as a function of their angular distance γ [29]:

ρ2(γ ) =
∫∫

P (�r1,�r2)δ(�̂r1 · �̂r2 − cos γ )dS1dS2, (2)

where P (�r1,�r2) is the probability density of finding electron 1
and electron 2 simultaneously at �r1 and �r2 on the sphere. Ac-
cording to Born’s statistical interpretation of quantum mechan-
ics, P (�r1,�r2) = |�Xp (�r1,�r2)|2. Since

∫∫
P (�r1,�r2)dS1dS2 =

1, the normalization condition for ρ2(γ ) is
∫ π

0 ρ2(γ ) sin
γ dγ = 1.

In Figs. 2(e)–2(h), we plot the ρ2(γ ) curves for all four kinds
of �Xp (�r1,�r2). We see that when R is small, the correlation
between the two electrons is relatively weak. With the increase
of R, sharp peaks on the ρ2(γ ) curves are developed at γ = π

[see Figs. 2(e) and 2(f)] or near γ = π [Figs. 2(g) and 2(h)],

which indicates the enhanced electron-electron correlation.
These two kinds of electron localization at and near diametric
poles correspond to different vibration modes, as will be shown
in the next section. A comparison of Figs. 2(a)–2(d) and
2(e)–2(h) shows that the localization of the electrons at the
diametric poles accompanies the widening of the |cXp

i | curves.
In other words, a strongly correlated electron state results
from a combination of multiple monochromatic states. The
configuration of two highly localized diametric electrons found
on a large sphere is consistent with the preceding energetics
analysis, and it has connections to Wigner crystallization
occurring in the two-dimensional electron gas in a uniform,
neutralizing background when the electron density is less than
a critical value [34].

The correlation between the two electrons can also be
characterized by the mean inverse separation d̃−1

12 , which is
defined as d̃−1

12 = ∫∫
R

|�r1−�r2| |�(�r1,�r2)|2dS1dS2. It is recognized

that d̃−1
12 = V0R. For all four kinds of �Xp (�r1,�r2), we nu-

merically show that d̃−1
12 decreases monotonously with R and

asymptotically to 1/2 in the large-R limit.

3. Asymptotic behaviors in the small- and large-R regimes

In this section, we perform perturbation analysis in the
small-R regime and propose small oscillation theory (which
is also called “strong-coupling perturbation theory” [36]) in
the large-R regime to discuss the asymptotic behaviors of the
two-electron system. The presented theoretical results can also
be used to rationalize the energy curves in Fig. 1.

We first apply perturbation theory to analyze the ratio of
the potential and kinetic energies V0/K0 for all four kinds of
wave functions �Xp (�r1,�r2) in the small-R regime. The total
angular momentum quantum number in the unperturbed state
(Coulomb interaction is turned off) is denoted i0. The ground-
state energy and wave function can be written as

E0 = E
(0)
0 + E

(1)
0 + E

(2)
0 + · · · , (3)

|�Xp 〉 = |�Xp(0)〉 + |�Xp(1)〉 + |�Xp(2)〉 + · · · , (4)

where E
(0)
0 = K

Xp

i0i0
and E

(1)
0 = V

Xp

i0i0
. �Xp(1)(�r1,�r2) =∑

i>i0
c

(1)
i �

Xp

i (�r1,�r2), where c
(1)
i = V

Xp

i0i
/[i0(i0 + 1) −

i(i + 1)].
Keeping up to the first-order term, we have

V0

K0
= R2V

Xp

i0i0

i0(i0 + 1) + ∑
i>i0

i(i + 1)
∣∣c(1)

i

∣∣2 . (5)

Note that both RV
Xp

i0i0
and c

(1)
i /R are independent of R.

Here, i0 = 1 for �Ae (�r1,�r2), and i0 = 0 for �Se (�r1,�r2). For
�Se (�r1,�r2), V0/K0 ∼ 1/R. For �So (�r1,�r2), �Ae (�r1,�r2), and
�Ao (�r1,�r2), V0/K0 ∼ R. These scaling laws are consistent with
the inset in Fig. 1(b).

On a large sphere, the localized electrons at diametric poles,
as shown in Figs. 2(e)–2(h), are inevitably subject to small
vibration due to Heisenberg’s uncertainty principle. The two-
particle case has been analyzed in the quantum regime [30].
However, it is a challenge to generalize the quantum treatment
to multiple-particle cases. Here, we perform a semiclassical

235431-3



LIU YANG AND ZHENWEI YAO PHYSICAL REVIEW B 97, 235431 (2018)

FIG. 2. Analysis of the ground-state wave functions for the two-electron system constructed based on the CI method. The number near each
curve indicates the value of R. (a)–(d) Plot of the amplitude of the angular momentum quantum number i at varying R. (e)–(h) Distribution of
the reduced probability density ρ2(γ ), which is defined in Eq. (2). γ is the angular distance of the two electrons.

analysis of the small vibration of the electrons that can be
readily extended to the three-electron case.

The classical Hamiltonian to describe the small vibration
of two particles around the diametric equilibrium positions at
(θ̄1 = π/2,φ̄1 = 0) and (θ̄2 = π/2,φ̄2 = π ) on the sphere is

H = 1

2
R2

2∑
i=1

(
δθ̇2

i + δφ̇2
i

)

+
2∑

i,j=1

(
δθiδθjD

1
ij + δφiδφjD

2
ij

) + 1

2R
, (6)

where

D1 = 1

8R

(
1 1
1 1

)
, D2 = 1

8R

(
1 −1

−1 1

)
.

With the orthogonal transformation

ϑ1 = 1√
2

(δθ1 + δθ2), ϑ2 = 1√
2

(δφ2 − δφ1),

ϑ3 = 1√
2

(δθ1 − δθ2), ϑ4 = 1√
2

(δφ2 + δφ1),

Eq. (6) becomes

H = 1

2
R2

4∑
r=1

ϑ̇2
r + 1

2

2∑
r=1

ω2R2ϑ2
r + 1

2R
, (7)

where ω = R− 3
2 /2. ϑ1 and ϑ2 describe the relative vibration of

the two electrons. The vibrational energy [the second term in
Eq. (7)] is proportional to R− 3

2 . ϑ3 and ϑ4 describe the rotation
of the whole system around the y and z axes, respectively.
The rotational energy is proportional to L(L + 1)/R2, where
L is the angular momentum. The energy contribution from the
rotation of the whole system [i.e., the terms associated with
ϑ3 and ϑ4 in the first sum term of Eq. (7)] can be ignored in
comparison with that from the vibration of the electrons. We

focus on the relative vibration of the electrons in the following
discussion.

Quantization of the reduced Hamiltonian in Eq. (7) leads to
the expression for the energy level of the two-electron system
in the large-R regime [42]:

E{n} = (n + 1)h̄ω + 1

2R
. (8)

From Eq. (8), by the virial theorem, we obtain the asymptotic
expression for V0/K0 at large R: V0/K0 ∼ R

1
2 . Our numerical

results based on the CI method conform to this scaling law, as
shown in Fig. 1(b).

The value of the quantum number n in Eq. (8) can be
obtained from the number of peaks in the ρ2(γ ) curve in
Figs. 2(e)–2(h). For the cases of �Se and �Ao in Figs. 2(e)
and 2(h) (see the curves for R = 1000), the most probable
positions of the electrons are at the diametric poles, which
correspond to the state of n = 0. In contrast, n = 1 for the other
two systems, as shown in Figs. 2(f) and 2(g) (see the curves
for R = 1000), where the most probable angular distance of
the two electrons slightly deviates from π . Therefore, by their
vibration modes, the four kinds of states �Xp can be classified
into two categories with n = 0 and n = 1. This conclusion
derived from small-oscillation theory is consistent with the
result of perturbative analysis of Schrödinger’s equation in the
large-R regime [30]. The classification of the states �Xp by
the vibration modes can account for the degeneracies between
�Se and �Ao and �So and �Ae in the large-R regime, as shown
in Fig. 1(a).

B. The case of three electrons

For the three-electron system, we focus on the case of
identical spin states. The ground-state wave functions must
be exchange antisymmetric. We consider both odd and even
parities. These ground-state wave functions are denoted as
�Ap , where p = e (even parity) or p = o (odd parity). In
comparison with the two-electron system, we find richer
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FIG. 3. Energetics analysis of the three-electron ground states of
distinct symmetries. (a) Plot of the ground-state energy E0 vs the
radius R of the sphere. (b) The potential energy V0 dominates over
the kinetic energy K0 in the large-R regime. Solid lines are from
the CI method. Dashed lines conform to a power law of exponent
3/2, as derived from the small-oscillation theory. Dot-dashed lines (in
inset) are linear functions of R according to perturbation theory for
small R.

vibration modes for the three-electron system in the large-R
regime.

1. Construction of symmetrized ground-state wave functions

For the three-electron system, L̂2
12, L̂2

1, L̂2
2, L̂2

3, L̂2,
and L̂z commute with each other. Their common eigenstate
|l12,l1,l2,l3,l,m〉 is denoted as |n〉. These eigenstates constitute
the basis set ε(l,m) of the Hilbert space H . H = ⊕

l,m
H (l,m).

ε(l,m) = {|l12,l1,l2,l3,l,m〉|l1,l2,l3,l12 = 0,1,2, . . . }, where
|l1 − l2| � l12 � l1 + l2,|l12 − l3| � l � l12 + l3, − l � m �
l [43]. We construct the ground-state wave functions in the
subspace H (0,0). ε(0,0) = {|l12 = l3,l1,l2,l3,l = 0,m = 0〉},
where the first equality is due to the zero total angular
momentum. The basis set ε(0,0) is completely determined by
L = (l1,l2,l3).

By the standard coupling of three angular momenta, we
obtain the eigenstate wave function of the three-electron
system [43]:

�L(�r1,�r2,�r3) =
l1∑

m1=−l1

l2∑
m2=−l2

(
l1 l2 l3
m1 m2 −m1 − m2

)

× 1

R3
Y

m1
l1

(�n1)Ym2
l2

(�n2)Y−m1−m2
l3

(�n3). (9)

Note that by Eq. (9), �l1l2l3 (P̂ijk{�r1,�r2,�r3}) =
(−1)s(l1+l2+l3)�P̂ −1

ijk {l1l2l3}(�r1,�r2,�r3). P̂ijk is a permutation

FIG. 4. Distribution of the reduced probability density ρ3(γ ) in
the three-electron system. ρ3(γ ) is the probability of finding any two
of the three electrons with angular separation γ .

operator that changes the subscripts 1, 2, 3 of rm to i,
j , k, respectively. P̂ −1

ijk changes the subscripts i, j , k of
m to 1, 2, 3, respectively. s = 0 and 1 for even and odd
permutations, respectively. This equation indicates that the
new wave function is still in the basis set ε(0,0) under
the permutation of the three electrons. In the numerical
construction of symmetrized ground-state wave functions, we
use 1360 allowed odd-parity bases from �

Ao

l1,l2,l3
(l1 ∈ [1,29],

l2,l3 ∈ [1,30]) and 1120 allowed even-parity bases from �
Ae

1,2,3
(l1 ∈ [1,27], l2, ∈ [2,29], l3 ∈ [3,30]).

2. Analysis of ground states

In Fig. 3(a), we show the monotonous decrease of the
ground-state energy E0 with R for both cases of �Ao and
�Ae . In the large-R limit, both curves tend to converge towards√

3/R, which is the potential energy of three classical electrons
sitting on the vertices of a regular triangle circumscribed by
the equator. In this asymptotic process up to R = 10 000, the
ground-state energy of the �Ao state is always slightly lower
than that of the �Ae state.

Figure 3(b) shows the ratio of the potential and kinetic
energies for both kinds of wave functions. Similar to the case
of the two-electron system, the potential energy will dominate
over the kinetic energy with R, suggesting the Coulomb-
potential-driven localization of electrons in the large-R limit.

In Fig. 4, we show the distribution of the probability density
ρ3(γ ) for both �Ao (�r1,�r2,�r3) and �Ae (�r1,�r2,�r3). ρ3(γ ) is the
probability of finding any two of the three electrons with angu-
lar separation γ . ρ3(γ ) = 8π2R4P (�r1,�r2), where P (�r1,�r2) =∫

P (�r1,�r2,�r3)dS3 and P (�r1,�r2,�r3) = |�Ap (�r1,�r2,�r3)|2. The fac-
tor 8π2 arises from the normalization of ρ3(γ ). From Fig. 4(a)
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for the case of �Ao , with the increase of R, we see the
movement of the peak towards γ = 2.1 ≈ 2π/3 and, simul-
taneously, the shrinking width of the peak. The value of 2π/3
for γ is recognized as the angular distance between any neigh-
boring vertices in a triangular configuration of electrons on the
equator. It signifies the enhanced correlation and localization of
the electrons with R. In contrast, the �Ae state exhibits distinct
behaviors. From Fig. 4(b), we see three peaks on the curve
of R = 1000. These peaks correspond to distinct vibration
modes, which will be discussed in the next section.

We also define the mean inverse separation d̃−1
ee of

any two electrons to characterize their correlation. d̃−1
ee =∫∫

R
|�ri−�rj |P (�ri,�rj )dSidSj . We recognize that d̃−1

ee = V0R/3.

It is numerically shown that d̃−1
ee decreases monotonously

with R and approaches 1/
√

3 ≈ 0.577 in the large-R limit.
Specifically, for R increasing from 5000 to 10 000, d̃−1

ee

decreases slightly from 0.582 to 0.581 for �Ao and from 0.586
to 0.584 for �Ae .

3. Asymptotic behaviors in the small- and large-R regimes

In this section, we present asymptotic analysis of the ground
states of the three-electron system in the small- and large-R
regimes. The relevant theoretical results are consistent with
the energy curves in Fig. 3.

For small R, we perform perturbation analysis around
the zeroth-order wave function �

Ap

L0
, where the subscript

refers to the state of L0 = {l1 = 1,l2 = 1,l3 = 1} for �Ao and
L0 = {l1 = 1,l2 = 2,l3 = 3} for �Ae . For both cases, l = 0,
and m = 0. The zeroth- and first-order corrections to the
ground-state energy E0 are E

(0)
0 = K0 = [l1(l1 + 1) + l2(l2 +

1) + l3(l3 + 1)]h̄2/R2 and E
(1)
0 = V

Ap

L0L0
. Specifically, V Ao

L0L0
≈

2.4/R, V Ae

L0L0
≈ 2.6/R. Therefore, up to the first-order correc-

tion, we have V0/K0 = E
(1)
0 /E

(0)
0 ∝ R. This linear dependence

of V0/K0 on R agrees well with the numerical result presented
in the inset of Fig. 3(b). For R � 1, the maximum deviation of
E0 from the CI method and the perturbation analysis up to the
first-order correction is less than 1% [43].

We proceed to analyze the small vibration of the three
strongly correlated electrons in the large-R regime. The
equilibrium positions of the electrons are at the vertices
of a regular triangle circumscribed by the equator of the
sphere: (θ̄1 = π/2,φ̄1 = 0), (θ̄2 = π/2,φ̄2 = 2π/3), and (θ̄3 =
π/2,φ̄3 = 4π/3). By introducing a set of collective coordi-
nates ηr (r = 1,2, . . . ,6) like in the treatment of the two-
electron system, the classical Hamiltonian of the three-electron
system is

H = 1

2
R2

6∑
r=1

η̇2
r + 1

2

3∑
r=1

ω2
r R

2η2
r +

√
3

R
, (10)

where ω1 = 3− 1
4 R− 3

2 , ω2 = ω3 = (
√

5/2)ω1 [43]. These six
collective coordinates describe three types of vibrations: the
relative in-plane vibration between any two electrons (by η1

and η2), the out-of-plane vibration (by η3), and the rotation
of the whole system along three mutually perpendicular axes
(by η4, η5, and η6). In the large-R regime, the vibrational
energy is proportional toR−3/2, and the rotational energy scales
with R in the form of R−2 [43]. By ignoring the rotational
motion, quantization of the Hamiltonian in Eq. (10) leads to
the following asymptotic expression for the energy levels in
the three-electron system in the large-R regime:

E{n1,n2} =
(

n1 + 1

2

)
h̄ω1 + (n2 + 1)h̄ω2 +

√
3

R
. (11)

Applying the virial theorem to Eq. (11), we obtain the
asymptotic expression for V0/K0: limR→∞ V0/K0 → R

1
2 . The

numerically solved V0/K0-R curves as shown in Fig. 3(b) are
in good agreement with this power law.

FIG. 5. Probability density distribution Pc(θ,φ) of any electron when the other two electrons are fixed at two vertices of a regular triangle
circumscribed by the equator of the sphere. The fixed electrons are indicated by the red dots. The in-plane and out-of-plane vibrations of the
electrons in the �Ao and �Ae states are characterized by {n1 = 1, n2 = 0} and {n1 = 0, n2 = 3}, respectively. See text for more information.
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To characterize the correlation of the three electrons on
the sphere, we calculate the probability density distribu-
tion Pc(θ,φ) of any electron when the other two electrons
are fixed at �r∗

2 = (θ̄2 = π
2 ,φ̄2 = 2π

3 ) and �r∗
3 = (θ̄3 = π

2 ,φ̄3 =
− 2π

3 ). Pc(θ,φ) = P (�r,�r∗
2 ,�r∗

3 )/P (�r∗
2 ,�r∗

3 ), where P (�r∗
2 ,�r∗

3 ) =∫
P (�r1,�r∗

2 ,�r∗
3 )|dS1 and P (�r,�r∗

2 ,�r∗
3 ) = |�Ap (�r,�r∗

2 ,�r∗
3 )|2. A strik-

ing feature in the profiles of Pc(θ,φ), as shown in Fig. 5,
is the appearance of the double peaks. For the odd-parity
case in Figs. 5(a)–5(d), the peaks near θ = 0 are out of
the plane of the equator. In contrast, for the even-parity
case shown in Figs. 5(e)–5(h), the peaks are in the plane
of the equator. These two classes of ground-state vibration
modes are completely determined by the parity of the wave
function.

To determine the values for n1 and n2 in Eq. (11) in the
ground states, we compare a series of V0/K0-R curves using
trial values for n1 and n2 with that from the CI method. It turns
out that n1 = 1, n2 = 0 for �Ao and n1 = 0, n2 = 3 for �Ae .
The difference in the vibration modes is related to the distinct
nodal structures caused by the opposite parities of �Ao and �Ae

[32]. Here, it is of interest to note the appearance of the peaks
in the Pc(θ,φ) profiles even at relatively small R, as shown in
Figs. 5(b) and 5(e). This observation suggests that the vibration
modes are determined by the symmetry of the wave function
instead of the size of the system. Increasing R enhances these
preexisting vibration modes.

IV. CONCLUSION

In summary, we generalized the classical Thomson problem
to the quantum regime to explore the underlying physics in
electron correlations. We constructed symmetrized ground-
state wave functions based on the CI method, systematically
investigated the energetics and electron correlations, and pro-
posed a small-oscillation theory to analyze the collective vibra-
tion modes of the electrons. As a key result of this work, we il-
lustrated the routine to the strongly correlated, highly localized
electron states with the expansion of the sphere. These results
provide insights into the manipulation of electron states by ex-
ploiting confinement geometry. Finally, it is of interest to spec-
ulate on the connection of theN -electron system to the classical
Thomson problem [6,14]. Despite the challenge in theory to
construct the ground-state wave function of the N -electron
system, experimentally, the spontaneous convergence of the
electron state to the highly localized configuration with the
expansion of the sphere may lead to a global solution to the 100-
year-old, still unsolved classical Thomson problem [6,16,40].
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