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ABSTRACT: We propose an anisotropic stochastic growth
model to rationalize the anisotropic self-assembly of supra-
molecules to form elongated two-dimensional ribbon
structures in a recent experiment. The model exhibits distinct
growth scenarios that are critically controlled by the ratio of
the transverse and the longitudinal growth rate. In the regime
of suppressed transverse growth, the model generates the
experimentally observed elongated structures through layer-by-
layer growing. We further observe the convergence of rough clusters toward smooth regular elliptic patterns by averaging over a
number of independent growth processes. Remarkably, these resulting elliptic clusters are self-similar in each instantaneous
moment in the growth process. Statistical analysis suggests that the realization of such ordered patterns does not rely on the
delicate coordination of different parts in the cluster growth. The self-similarity phenomenon derived from this idealized model
may have wider implications, notably in the designed clustering of various elementary building blocks with anisotropic
interactions.

■ INTRODUCTION

Self-assembly phenomena are widely seen in natural and
artificial systems, and they provide an efficient and reliable
routine to synthesize materials with desired properties down to
the nanometer scale.1,2 Of special interest is the design of
anisotropic self-assembly routines that can produce phases not
found in isotropic growth processes. New technologies have
been developed to introduce the elements of anisotropy
through the design of anisotropic interactions3−6 and the
fabrication of anisotropic particles like Janus particles,7 patchy
particles,4,8 branched particles,9 and dimpled particles.10 In
supramolecular self-assembly, highly anisotropic molecular
components represent the majority of building blocks,
including peptide amphiphiles,11 DNA-coated nanoparticles,3

polymers,12 lipid-DNA complexes,13 and nanofibers.14 Re-
cently, perylene monoimide (PMI) based chromophore
amphiphiles (CA) have been synthesized and observed to
self-assemble into highly elongated ribbon structures whose
length L ∼ several microns, width w = 40 ± 7 nm and thickness
t = 2.3 ± 0.4 nm.15 These self-assembled complexes of soft
materials, inspired by the internal structure of chloroplasts in
plants, integrate the necessary chemically functioning compo-
nents and have many potential applications in complex devices,
materials design, and renewable energy.16 Using dynamic
simulations to investigate the resulting ribbon structures from
the CA molecules is a grand challenge given the large size of
the system and the considerable computational resources
required to simulate the structured molecular components
whose anisotropic property is indispensable in accounting for
the elongated structures.
The self-assembly of CA molecules into the highly coherent

structures observed in the above-mentioned experiment inspired

us to propose an idealized growth model to rationalize the
anisotropic self-assembly process.15 Among stochastic17,18 and
deterministic19,20 growth models, the fluctuations in the
convoluted aggregation of CA molecules justify a probability
description. In comparison with the computationally demanding
large scale dynamic simulations required to address the growth
phenomena in far-from-equilibrium conditions, a stochastic
model can provide valuable insights into the formation
mechanism of featured patterns in a growth process by capturing
the essential physics without diving into irrelevant finer details.
As one of the earliest models of stochastic growth, the Eden

growth model17 and its variations18,21−23 have successfully
described a variety of biological growth processes like the
growth of bacterial colonies and tumor proliferation.24 The
Eden growth model is a lattice model where one particle is
added at a time in randomly chosen sites adjacent to the
occupied sites. To explore the highly elongated structures
fabricated from the elementary CA molecules in the experiment
it is necessary to generalize the original Eden growth model to
account for the anisotropic force that pulls the molecules
together in the form of the relatively stronger longitudinal π−π
stacking and the transverse edge−edge stacking.15 The
anisotropic case of the Eden growth model has been briefly
discussed in ref 17 and 24 where snapshots of a growing
elongated cluster have been shown but further detailed analysis
has not been done to reveal the pattern in these configurations.
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In this work, we study the anisotropic stochastic growth
process in the frame of the generalized Eden growth model.
The objective of this work is to understand the principle of self-
organization in the fabrication of the ribbon structures out of
the elementary CA molecules15 and, more broadly, to seek the
patterns hidden in the convoluted indeterministic growth
processes not found in the preceding works.17,24

In our growth model, we introduce two probabilities pl and pt
to characterize the differential in the growth rates along the
longitudinal and the transverse directions, respectively. The
model successfully produces highly elongated ribbon structures
when the longitudinal growth dominates over the transverse
growth. The entire growth process is a history dependent
stochastic process. The occupation of a site in any previous step
will influence the landing of a future particle onto the cluster.
Simulations reveal that summation over a number of such
highly indeterministic processes can ultimately lead to smooth
elliptic clusters. Remarkably, we find the self-similarity in each
instantaneous shape of an averaged growing cluster. The aspect
ratio of the elliptic cluster in the entire growth process is an
invariant for given pl and pt. We further show the statistical
independence in the transverse growth underlying the self-
similarity phenomenon, suggesting that the realization of the
self-similar growth process does not require the coordinated
growth of different parts in the cluster. This work may provide
a new dimension to interpret the clustering of various
elementary building blocks that interact with anisotropic
interaction potentials and have implications in the design of
both 2D and 3D aggregates for desired exterior shapes.

■ MODEL
It is experimentally characterized that the elementary CA
molecules form a slightly distorted 2D rectangular crystalline
lattice.15 We therefore design a rectangular lattice as shown in
Figure 1, where an occupied site represents a CA molecule. The

colored bars in Figure 1 represent the CA molecules that grow
along both the longitudinal (the axis of i in Figure 1) and the
transverse (the axis of j) directions. The aggregation process of
CA molecules starts from the central red bar in Figure 1. One
CA molecule is added in each step. So the total number of the
occupied sites is equal to the frame number in this dynamic
growth. To account for the chemical asymmetry of CA
molecules, we introduce two probabilities: pl and pt, the
probability of adding a new molecule in the longitudinal and
transverse directions around an isolated occupied site in the
lattice, respectively. These distinct probabilities characterize the
effect of the anisotropic forces that pull the molecules together
in the form of the longitudinal π−π stacking and the transverse
edge−edge stacking. Here, pl > pt, because the π−π stacking is

stronger than the edge−edge stacking. The charge screening by
adding salt is expected to reduce this difference. Without loss of
generality, we set pl = 1. Therefore, the only parameter in the
model to control the morphological evolution of the occupied
area is pt.
The rule to occupy a new site in the update of the configura-

tion is first to calculate the probability of each available
unoccupied site and then identify the specific site to be
occupied. Specifically, the probability of occupying an available
site i is

∑=p si
i j

j
, (1)

where the summation is over the four nearest neighbors around
the site i. The state of an occupied site is sj = 1; otherwise,
sj = 0. According to eq 1, an available site with both longitudinal
and transverse neighbors (like the empty box below the red bar
in Figure 1) has the probability of pl + pt to be occupied in a
new step. In simulations, vacancies may appear that are
surrounded by four occupied sites. These vacancies have the
highest probability to be filled in the update of the system.
The rule of eq 1 prescribes that only the empty sites (labeled
from k = 1 to m) adjacent to the occupied ones are assigned
with a nonzero probability pk (k = 1, 2, 3...m). In order to
identify the specific site to be occupied, we first normalize the
values for pk by redefining

̃ =
∑ =

p
p

pk
k

j
m
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where the summation is over all the possible sites adjacent to
the occupied region. Then we pick up a random number r
between zero and unity from a uniform distribution. According
to the interval where the value of r falls, say r ∈ (pk, pk+1), we
decide the site to be occupied is k.
In comparison with the diffusion-limit aggregation where a

new particle is added to the cluster by random walk, the
randomness of adding a new particle in our model is defined in
terms of pl and pt.

18 Consequently, we obtain compact clusters
as observed in experiment15 instead of less compact fractal
configurations.18 The complexity in the seemingly simple rules
by eqs 1 and 2 lies in the long-range temporal correlations in
the construction of a growing cluster. The occupation of a site
in any previous step influences the landing of a future particle
onto the cluster. Therefore, the growth of the cluster in our
model is a history-dependent stochastic process.

■ RESULTS AND DISCUSSION
Figure 2 shows distinct growth scenarios in the morphological
evolution of the growing cluster at different values for pt.
A cluster is composed of elementary blue squares. N is the total
number of occupied sites as well as the frame number, because
one site is occupied in each step. From Figure 2, we clearly see
that a highly elongated ribbon structure forms at low pt. For
pt = 0.01 (the upper three figures in Figure 2), in the initial
growth stage when the line becomes sufficiently long a lateral
site gains an appreciably high probability to be occupied.
Quantitatively, the probability that any of the 2n lateral sites
(n is the length of the line) is occupied is

α = −
+ ⎜ ⎟

⎛
⎝

⎞
⎠

n
n

( ) 1
1

1
p

p
t

l (3)

Figure 1. Schematic plot of the stochastic growth model. A cluster
forms with the occupation of empty sites.
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where the second term is the probability that either of the two
end sites are occupied. Equation 3 shows that the probability for
the appearance of an occupied lateral site increases with the exten-
sion of the line, suggesting the instability of a sufficiently long
linear cluster toward the transverse propagation. For pt = 0.01 and
pl = 1, we have α(10) = 9%, α(50) = 33%, and α(100) = 50%.
In the limit of pt → 0, eq 3 shows that the probability of any
transverse growth vanishes as expected. The directional growth
to form a linear structure in the condition of pt → 0, realizable
in systems with strong directional bonding, corresponds to the
filamentous growth.25 For larger pt (or n), the probability
of occupying a lateral site is significantly increased: α(n = 10;
pt = 0.1) = 50%, and α(n = 10; pt = 1) = 91%. For pt = 1, Figure 2
shows the isotropic growth of the cluster; the radial extension of
the boundary roughness is suppressed in a larger system by
comparing the clusters of 2000 and 5500 occupied sites.
In the growing cluster, we numerically observe the

emergence of two types of defects: step defects and vacancies.
These defect structures can guide the growth process toward
the formation of compact clusters instead of fractal configu-
rations.18 The occupied lateral sites attached to a growing line
create the step defects (see the configuration of pt = 0.01,
N = 20 in Figure 2). According to the model [see eq 1], the
corners at the step defects have relatively high probability to be
occupied in the update of the configuration. Consequently, the
step defects lead to the scanning-like growth to finish the layer
created by the newly occupied lateral sites, where the step
defects become the fronts of the longitudinal growth. Such a
growing mode is responsible for the suppressed lateral growth
at low pt. With the increase of pt, the probability of the
simultaneous growth of multiple layers increases, which pro-
motes the lateral growth of the cluster. Furthermore, as the
consequence of the scanning growth occurring at neighboring
layers, vacancies start to appear as shown in the cases of pt = 0.1
and 1.0 in Figure 2. These vacant sites surrounded by three or
four occupied neighboring sites have an even higher probability
of being occupied than a step defect according to the rule of
the model. We numerically observe that these vacancies, once
appear, are filled within a few subsequent steps. The removal
mechanism of vacancies prevents the formation of fractal
configurations.

Simulations show that the roughness in the contour of a
growing cluster is greatly reduced by summing over a number of
statistically independent configurations. We obtain sufficiently
smooth averaged clusters over 20 independent simulation runs as
shown in Figure 3; the brighter region is of higher density. Note
that averaging over only 10 independent simulation runs can
generate sufficiently smooth clusters; increasing the number of
simulation runs can lead to even sharper clusters. By averaging
out the boundary roughness, all the oval shapes in Figure 3 are
found to converge to the elliptic curves

−
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x x
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y y

b
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2
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The values for the fitting parameters (a, b) in the configurations
in Figure 3 are (120, 13), (170, 18), and (210, 23) for pt = 0.01
and (66, 23), (95, 32), and (115, 40) for pt = 0.1, respectively.
As a history-dependent stochastic process in our model, the
occupation of a site in any previous step influences the landing of
a future particle onto the cluster. Such a convoluted growth
process imposes a formidable challenge for explicit analytical
analysis of the system.17 Here, computer simulations reveal that
the sum of independent growth processes with long-range
temporal correlations can eliminate the uncertainties in the
model represented by various rough boundaries and ultimately
converge to deterministic elliptic patterns.
Remarkably, we further find that a/b is an invariant in each

instantaneous moment in the growth process for given pt by
analyzing the clusters in Figure 3. The invariance of the ratio
a/b is also confirmed in systems with other typical values for pt,
and the results are summarized in Figure 4a. Figure 4a shows
that all the simulation data at the same pt uniformly fall on the
same fitting line. To conclude, all the averaged growing clusters
at the same pt derived from our model are self-similar; a scaling
transformation bridges a cluster at different growing stages. The
degree of the ovalness reflects the ratio of the transverse to the
longitudinal growth probabilities pt/pl as well as the relative
strength of the physical interactions along these two directions.
Figure 4b shows the nonlinear dependence of the ratio a/b

versus pt. A striking feature in the a/b−pt curve is the high
steepness occurring at pt/pl ≈ 0.1, which signifies a phase
transition-like behavior at this critical value for pt. The
significant deviation of the averaged cluster from a circular
shape occurs for pt/pl < 0.1. It is in the regime of low pt/pl that
can generate the experimentally observed elongated ribbon
structures for the much stronger π−π stacking and the weaker
edge−edge stacking in the longitudinal and transverse directions,
respectively.15 It is interesting to note that experimentally, a
change from ribbons to sheets occurs as noted in ref 15 when
the ionic concentration changes, suggesting that the ratio of pl
to pt can be modified by the solvent conditions. At this point,
our approach cannot be directly compared with this experiment
because further systematic studies are required and it is
experimentally challenging to tune these molecular interactions.
In Figure 4a, for the data points along each line from left to
right, N starts from 1000 at the increment of 1000. The denser
point distribution approaching the right-hand side of each line
indicates the slow-down of the growth. Figure 4c,d shows the
growth of the width and length of the cluster along the vertical
and horizontal central lines, respectively. We see that for a
smaller pt the cluster grows faster in the longitudinal direction
and slower in the transverse direction. Figure 4c,d shows that
the slopes of both growth curves are reduced in time,

Figure 2. Typical snapshots of the morphologies of occupied sites at
different values for pt. The total number of occupied sites N is the frame
number; one site is occupied in each step in the update of the system.
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suggesting that ultimately the growth process is practically
frozen. We further find that all the curves in Figure 4c,d per-
fectly conform to a uniform power law with the exponent 1/2;
the fitting curves in the functional form of a + btγ well coincide
with the simulation data by choosing proper values for the
fitting parameters a and b.
We proceed to explore the origin of the self-similarity

phenomenon revealed in our model. It is speculated that the
self-similarity in each instantaneous shape of a growing cluster
may require the delicately coordinated growth of different parts
in the cluster. However, our calculations show the statistical
independence of the growth by analyzing the correlation
between the width w(x0) along the vertical line (at x = x0) and
the width w(x) along the line at x.
Figure 5 shows the plot of C(x) = ⟨w(0)w(x)⟩ (black curves

with larger plot markers) as well as ⟨w(0)⟩⟨w(x)⟩ (red curves
with smaller plot markers). The coincidence of these two
curves, that is, ⟨w(0)w(x)⟩ = ⟨w(0)⟩⟨w(x)⟩ indicates the
statistical independence of the growing width over the cluster.
The statistical independence also occurs for the cases of x0 =
10, 20, and 30. The lack of statistical correlation in the growth
of the cluster width suggests that the realization of the self-
similar patterns does not require the coordinated growth of
different parts in the cluster. The establishment of the specific
connection between the statistical independence and the self-
similar growth process may rely on the presently formidable
analytical analysis of the model.17

Figure 3. Plot of the averaged configurations (over 20 independent simulation runs) of a growing cluster at different values for pt. Highly elongated
ribbon structures form at low values for pt through the layer-by-layer scanning-like growth mode.

Figure 4. Geometric analysis of the growing cluster. (a) The plot of
the averaged ribbon width w versus the averaged length L during its
growth over 20 independent simulations runs. The cluster becomes
more anisotropic with the reduction of pt from 1.0 (circle, black),
0.5 (triangle, blue), 0.1 (square, orange), 0.05 (diamond, red), to
0.01 (star, green). The relation of a/b and pt in (b) is derived from (a).
⟨L⟩ = 2a. ⟨w ⟩ = 2b. (c,d) The growth of the cluster width and length,
respectively. The error bars showing the standard deviation are
obtained from 20 independent simulation runs. pt = 0.01 (star),
0.05 (diamond), 0.1 (square), 0.5 (triangle), and 1.0 (circle).
pl = 1.
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■ CONCLUSIONS
In summary, we present the anisotropic stochastic growth
model to rationalize the experimentally observed self-assembly
of the elementary CA molecules to fabricate the coherent
ribbon structures.15 Simulations show the formation of highly
elongated ribbon-like clusters by a scanning-like growth mode
in the regime of pt < 0.1, where pt is the ratio of the transverse
to the longitudinal growth rate. This model reveals the
convergence of rough clusters toward regular elliptic patterns
by averaging over a number of independent growth processes.
The nonlinear relation between the aspect ratio of the elliptic
cluster and the value for pt is established. Remarkably, the
averaged elliptic cluster is self-similar in its growth; the entire
growth process can be constructed by a scaling transformation.
Further statistical analysis suggests that the realization of the
self-similar pattern does not rely on the delicately coordinated
growth of different parts in the cluster.
The ordered self-similar patterns revealed in this work have

wider implications, notably, in using anisotropic interactions to
design both 2D and 3D aggregates with desired exterior shapes.
The conclusions derived from this idealized model, especially
the connection between the cluster shape and the anisotropic
interaction, may also be used to interpret the behaviors of active
matters. The effect of the activity in general active colloidal
and nematic systems is well characterized by the effective
interaction potential or active stress.26,27 It is therefore
speculated that in the recent work the dynamic deformation
of the cluster boundary enclosing a collection of active spinners
may result from the temporally evolving effective anisotropic
interaction between the active colloidal particles.28
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