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Abstract – Understanding string dynamics yields insights into the intricate dynamic behaviors
of various filamentary thin structures in nature and industry covering multiple length scales. In
this work, we investigate the planar dynamics of a flexible string where one end is free and the
other end is subject to transverse and longitudinal motions. Under transverse harmonic motion,
we reveal the propagating pulse structure in the stress profile over the string, and analyze its
role in bringing the system into a chaotic state. For a string where one end is under longitudinal
uniform acceleration, we identify the wiggling transition, derive the analytical wiggling solution
from the string equations, and present the phase diagram.

Copyright c© EPLA, 2018

Introduction. – An inextensible flexible string is
the backbone of many complicated quasi–one-dimensional
thin objects, and represents one of the simplest orga-
nization of matter [1–3]. Interest in inextensible flexi-
ble strings can be traced back to the beginnings of the
calculus [4]. When in motion, a flexible string can ex-
hibit a number of counterintuitive dynamic behaviors,
ranging from the acceleration of a string when striking
a table [5–7], the formation of the chain fountain struc-
ture [8–11], to the spontaneous rise-up and lift-off of a
pulled string in the plane [12,13] and on a pulley [14,15].
Understanding the intricate dynamics of the filamentary
string structure is important as they are ubiquitous in na-
ture and industry covering length scales of several orders
of magnitude [3,16–18]. Much has been learnt about the
string dynamics by analyzing the equations of motion of
the string [4,15,19–22]. However, the analytical solution to
the coupled, nonlinear string equations is only limited
to some special cases [13,23,24]. Particle simulation based
on the spring-bead model has proven to be a powerful tool
to study the dynamic states of the string [3,12,25,26].

The goal of this work is to explore the planar dynamics
of the string where one end is free and the other end is
in transverse and longitudinal motion, respectively. This
model system provides the opportunity to clarify a host
of questions with broader implications, such as: How will
the motion at one end of the string propagate to the other

end? Will any dynamic instability occur in the string?
What kinds of featured dynamic states will emerge? To
address these questions, we resort to the combination of
particle simulations and theoretical analysis of the string
equations. The main results of this work are presented
below. When shaking the string at one end in harmonic
motion, we find that the propagation of stress is realized
by the oscillating stress-pulse structure across the string.
The back-and-forth movement of the stress-pulse induces
more pulses and ultimately leads the whole string to a
chaotic state. For a traveling string in uniform accelera-
tion, we find a new dynamic state of the string in which it
starts to wiggle and deviate from the straight shape after
finite duration. We derive an analytical wiggling solution
from the string equations which can substantiate the nu-
merical observation. We further characterize the wiggling
transition, and present the phase diagram.

Model and method. – An inextensible flexible string
can be modeled by the geometric curve �X(s, t), where s is
the natural parameter of the curve and t is the time. The
inextensibility condition is ∂s

�X(s, t) · ∂s
�X(s, t) = 1. The

dynamics of the flexible, inextensible string with uniform
mass density µ is governed by the following equation of
motion [4,19]:

µ∂2

t
�X(s, t) = ∂s[σ(s, t)∂s

�X(s, t)], (1)
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Fig. 1: (Colour online) The propagating stress-pulse structure in the string when one end is under transverse harmonic oscillation
with amplitude A = 2.5ℓ0 and period T = 100τ0. Panels (a)–(d) show the distribution of the bond length. The labeled numbers
indicate the temporal sequence: from 1 to 12, t/τ0 = 42, 56, 70, 98, 112, 126, 140, 154, 182, 196, 210, 224. t/τ0 = 700 in the
rightmost figures. Panels (e)–(g) show the distribution of curvature κ in the typical conformations of the string. Note that only
a small part of the straight segment is shown in the insets for visual convenience. Anoise = 10−5ℓ0.

where the stress σ arises as a Lagrangian parameter to
keep neighbouring parts of the string at a fixed dis-
tance [4]. By projecting eq. (1) along the tangent and nor-
mal vectors, we obtain the following string equations [24]:

σκ2 − ∂2

s
σ = µ∂tt̂ · ∂t t̂, (2)

2κ∂sσ + σ∂sκ = µ∂2

t t̂ · n̂, (3)

where (t̂, n̂) is the dyad of unit tangent and normal vec-
tors on a planar curve, and κ is the curvature. It is a
challenge to analytically solve the coupled nonlinear dif-
ferential equations [4]. Furthermore, due to its flexibility,
the string may exhibit shapes that are beyond the func-
tional space of �X(s, t) ∈ C2(QT ) and σ(s, t) ∈ C1(QT ),
where QT = Js×Jt, s ∈ Js = [0, L], and t ∈ Jt = [0, T ] [4].
The above string equations lay the foundation for the the-
oretical analysis of relevant simulation results.

In our simulations, the string is modeled by N +1 mas-
sive beads connected by high stiffness linear springs lying
on the plane. The balance length of each spring is ℓ0 ≡ 1.
The mass of each bead is m0 ≡ 1. In the initial state, the
string is free of stress, and lies along the x-axis. The posi-
tion of each bead is subject to a small quantity of noise δ�x
whose x- and y-components conform to the uniform dis-
tribution in the interval [−Anoise, Anoise]. The introduc-
tion of this noise is to trigger the possible instability of a
string in longitudinal motion, and also reflects the small
fluctuation of the string under various noise sources in re-
ality. We implement the Verlet integration to construct
the trajectory of each bead in the discretized string (see
the Supplemental Material Supplementarymaterial.pdf
(SM)) [26]. We work in the regime of highly inexten-
sible string with large k0. Specifically, T̃ ≡ T/τ0 =
T

√
k0/

√
m0 ≫ 1 in the transverse harmonic oscillation

of period T , and ã ≡ a/a0 = am0/(ℓ0k0) ≪ 1 in the case
of longitudinal uniform acceleration. τ0 =

√

m0/k0 = 1,
a0 = ℓ0/τ2

0 = 1.

Transverse harmonic oscillation. – In this section,
we present the main results about the planar dynamics
of the string when one end is under transverse harmonic
oscillation. The motion of the shaking end (labeled as
i = 0) is {x0(t) = 0, y0(t) = A sin (2πt/T )}.

We tune the amplitude of the noise in the position
of each bead to be a very small fraction of the balance
length ℓ0 of the spring, and work in the regime of large T
(i.e., highly inextensible string). Simulations with vary-
ing shaking amplitude A from ℓ0 to 5ℓ0 show that in gen-
eral the harmonic motion at the head of the string can
propagate in the form of a cosine-like wave by only a few
wavelengths. In fig. 1(e)–(g), we present the typical case
of A = 2.5ℓ0 and T = 100τ0. The entire string consists
of the straight and the wavy segments. The horizontal
orientation of the tangent vector at the connection of the
straight and the wavy parts of the string seems crucial for
maintaining the straight segment of the string. Continu-
ously shaking the string finally leads to the chaotic state
as shown in fig. 1(h), which is characterized by the large
deformation of the waves in the head part and the growing
transverse fluctuation in the remaining part of the string.

The formation of the wave structure near the shaking
end reduces the longitudinal length of the string due to
the rigidity of the spring. The realization of the geometric
shrinking of the string relies on the propagation of stress.
The question of how the stress propagates across the string
naturally arises. In the following, we analyze the evolution
of the stress profile over the string in this process. The
results are summarized in fig. 1.

44002-p2
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Figures 1(a)–(d) show the variation of the stress distri-
bution over the string as it evolves towards the chaotic
state. The shaking bead is at i = 0. The labeled num-
bers at the peaks indicate the temporal sequence, some
of which correspond to the labeled shapes in fig. 1(e)–(g).
Simulations reveal the peak structure in the stress pro-
file. It indicates that the stress propagates in the manner
of pulses. The peak structures in the stress profile are
named as stress-pulses. The stress-pulse region, where
l − l0 > 0, is stretched much more than the remaining
part of the string. From fig. 1(a), we see that the region
from the location of the stress-pulse to the free end is free
of stress. The stress-pulse sharply separates the stretched
and the stress-free regions. Here, we emphasize that the
word “pulse” specifically refers to the peak structure in the
stress profile in fig. 1(a)–(d), but not the wave structure
in the string shape as shown in fig. 1(e)–(g). Simulations
show the steady propagation of the stress-pulse across the
string in a rate that is much faster than the propagation
of the wave in the string shape, as shown in fig. 1(a).
From fig. 1(a), we obtain the value of the pulse speed to
be the characteristic speed of the string ℓ0/τ0, which is
proportional to

√
k0. Further simulations for the case of

T/τ0 = 1000, which is ten times the value for T/τ0 in
fig. 1, confirm that the pulse speed is the same as that in
fig. 1 (see SM). Therefore, the pulse propagates infinitely
fast in the inextensible limit.

Figure 1(b) shows that when the stress-pulse labeled 4
in fig. 1(a) reaches the free end of the string, it is
bounced back, becoming the pulse labeled 5. Remark-
ably, the stress-pulse is inverted in this process. In other
words, the pulse region that is originally stretched be-
comes compressed. Consequently, the stress distribution
over the string is divided into a number of compressed
and stretched regions; the shaking end is always stretched.
In contrast, for a pulse whose dynamics is governed by
the wave equation, no inversion occurs when reflecting
off a free end of the medium [27]. Here, the behav-
ior of the stress-pulse in the highly inextensible string
system is governed by the coupled string equations in
eqs. (2) and (3) rather than the law of the wave equa-
tion. Figure 1(b) shows that the negative stress-pulse con-
tinues propagating towards the shaking end. It is finally
reflected back, and becomes inverted again (see the pulse
labeled 9 in fig. 1(c)). It is of interest to note that propa-
gation and reflection of small waves along a hanging chain
subject to an initial velocity have been studied [21] and
an interesting pattern of kicks at the free end has been
revealed [28].

With the back-and-forth movement of the stress-pulse,
we numerically observe the continuous retreat of the free
end towards the shaking end along the axis of the string.
More information about the axial retreat of the free end
is provided in the SM. Furthermore, the oscillation of the
stress-pulse across the string induces more pulses as shown
in fig. 1(c). Repeating this process ultimately destroys the
wavy shape near the shaking end, and the shape of the

Fig. 2: (Colour online) Wiggling of the string when one end is
under longitudinal uniform acceleration. (a) yi is the transverse
displacement of the beads. a/a0 = 10−4 (green), 10−3 (blue),
and 10−2 (red). t = 1000τ0. Anoise = 10−3ℓ0. (b) Plot of the
wiggling solution derived from the string equations. θ(s, t) =
θ0 exp(−qs) cos(wt), where q = 1, w = 1, and θ0 = 1.

string becomes chaotic as shown in fig. 1(h). The tran-
sition to the chaotic state is also reflected in the stress
profile. From fig. 1(d), we see that the stress is highly
concentrated in the chaotic segment of the string, and
the stress level at the straight segment is significantly re-
duced. The screening of the stress by the highly curved
segment in the chaotic string can be rationalized by the
first term in eq. (2). Equation (2) is recognized as the

screened Poisson’s equation ( d
2

dx2 − k2)ψ = f(x) for con-
stant κ; the source term is the temporally varying tan-
gent vector [27]. The corresponding Green’s function is
G(x1, x2) = 1

2k
e−k|x1−x2| under the boundary condition

that the Green’s function vanishes for x → ±∞. There-
fore, the effect of curvature in the string is to screen
the stress.

Longitudinal uniform acceleration. – We proceed
to discuss the planar dynamics of the string under lon-
gitudinal uniform acceleration based on simulations and
theoretical analysis. The head bead of the string is pulled
and maintained in uniform acceleration along the x-axis:
x0(t) = 1

2
at2. For a straight string in longitudinal uniform

acceleration, the string equations show that the stress is
linear with s, increasing from zero to µaL from the tail
(s = 0) to the head (s = L) of the string. However,
simulations reveal that the traveling string will suddenly
deviate from the straight shape after finite duration, and
the shape fluctuation persists thereafter. We name such a
dynamic transition as the wiggling transition.

In fig. 2, we present typical snapshots of wiggling
strings. yi is the transverse displacement of each bead.
The head bead is labeled as i = 0. The magnitude of ac-
celeration increases from the green to the red lines. From
fig. 2, we see that the tail of the string is generally subject
to a stronger shape fluctuation than the head part. In-
creasing the acceleration enhances the strength of string
wiggling. Wiggling transition still occurs by reducing the
noise level to as low as Anoise = 10−5ℓ0.

Considering that the string in simulations is not strictly
inextensible, is it possible that the wiggling of the string
is caused by the extensibility of the string? To clarify this
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Fig. 3: Characterization of the wiggling phenomenon of the
traveling string in uniform acceleration. (a) and (b): plots
of the longitudinal length X and the averaged transverse dis-
placement δy of the string. X(t) = |xN (t) − x0(t)|. δy =
√

∑

N

i=0
y2

i
/N . t is measured in the unit of 200τ0. Anoise =

10−5ℓ0. a/a0 = 10−3. N = 50.

question, we perform theoretical analysis based on eqs. (2)
and (3) for inextensible strings. Furthermore, theoretical
analysis based on the string equations allows us to explore
the inextensible regime which is beyond the applicability
of our numerical simulations. Here, we emphasize that our
numerical simulations are based on the spring-bead model
with large spring constant (but not strictly inextensible),
and the string equations are for inextensible strings.

We focus on the behavior of the string at the onset of
wiggling transition when the shape fluctuation is small and
varies slowly over the string. This justifies a continuum
description of the string based on the equations of mo-
tion. The main results are presented below. The detailed
information is provided in the SM. The stress distribution
can be written as σ(s, t) = f(t)s + α(t). The requirement
of a stress-free end at s = 0 sets α to be zero. The shape of
the string is represented by the orientation of the tangent
vector which makes angle θ with respect to the x-axis. The
shape of the string is represented by θ. θ(s, t) = θ1(s)θ2(t),
where θ1(s) = θ10 exp(−qs), and θ2(t) satisfies

θ̈2(t) + qg(t)θ2(t) = 0, (4)

where g(t) = 2f(t)/µ and q is a constant. It is of interest
to note that eq. (4) has the same mathematical form as
the Schrödinger equation; g(t), the time-dependent part
of the stress σ(s, t), corresponds to the physical poten-
tial in the Schrödinger equation. Equation (4) suggests
the rich dynamics of the string even in the perturbation
regime.

Now, consider the case of interest: g(t) = g0. g0 is a
constant, and g0 > 0 without loss of generality. Such a
distribution of stress is identical to that over a straight
string in uniform acceleration a = g0/2. By inserting
θ2(t) = θ20 exp(iwt) into eq. (4), we obtain the dispersion
relation: (iw)2 = −qg0. For real positive q, w =

√
qg0.

Such a solution is plotted in fig. 2(b). The tail of the
string wiggles, and the spatial extension q−1 of the wig-
gling segment is linear with the magnitude of accelera-
tion at fixed frequency w. Therefore, in addition to the
trivial straight-string solution, the tail of a uniformly ac-
celerating, inextensible string can wiggle. This analyt-
ical result and the preceding simulation results suggest

Fig. 4: (Colour online) Phase diagram of the string in uniform
acceleration. The curves of N = 50 (bottom, blue) and N =
100 (top, red) indicate the transition of the dynamic state of the
string from the straight to the wiggling state. Anoise = 10−5ℓ0.

that the extensibility of the string is not a necessary con-
dition for the occurrence of the string wiggling, but it
may contribute to the propagation of the wiggling de-
formation to the entire string. Here, it is of interest to
point out that the wiggling transition is an intrinsic prop-
erty of the string without dependence on any external
transverse force.

In the following, we further characterize the wiggling
transition by the evolution of its longitudinal length X
and the averaged transverse displacement δy. δy(t) =
√

∑N

i=0
y2

i
(t)/N . Figure 3 shows that the transition from

the straight to the wiggling state is well signified by the
entire decline of the oscillations in X , and the simultane-
ously occurring take-off of the δy(t) curve from the zero
line. Long-time observation up to t = 10 millions sim-
ulation steps shows the convergence of the string wig-
gling; the strength of wiggling remains in the interval of
δy ∈ [0.12, 0.20], and X ∈ [50.2, 51.0].

In fig. 4, we present the phase diagram of the dynamic
state of the string under longitudinal uniform acceleration.
The lower (blue) and upper (red) curves are for the cases of
N = 50 and N = 100, respectively. The state of the string
is characterized by the averaged transverse displacement
δy. The string is regarded to be in the wiggling state when
δy exceeds ten times the initially introduced noise Anoise.
Figure 4 shows that a longer string can stay in the straight
state for a longer time. The straight-to-wiggling transition
becomes insensitive to the magnitude of acceleration when
it exceeds about 10−3a0.

Conclusions. – To summarize, in this work we have
investigated the planar dynamics of a flexible string that
is subject to transverse and longitudinal motions at one
end. We revealed the pulse structure in the propagation
of stress when one end of the string is under transverse
harmonic motion, and identified the wiggling transition in
a traveling string in uniform acceleration. These results
may find applications in the remote control of various fil-
amentary thin structures by manipulating the end.
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