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Curvature-driven stability of defects in nematic textures over spherical disks

Xiuqing Duan and Zhenwei Yao*

School of Physics and Astronomy, and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
(Received 22 March 2017; published 26 June 2017)

Stabilizing defects in liquid-crystal systems is crucial for many physical processes and applications ranging
from functionalizing liquid-crystal textures to recently reported command of chaotic behaviors of active matters.
In this work, we perform analytical calculations to study the curvature-driven stability mechanism of defects
based on the isotropic nematic disk model that is free of any topological constraint. We show that in a growing
spherical disk covering a sphere the accumulation of curvature effect can prevent typical +1 and +1/2 defects
from forming boojum textures where the defects are repelled to the boundary of the disk. Our calculations reveal
that the movement of the equilibrium position of the +1 defect from the boundary to the center of the spherical
disk occurs in a very narrow window of the disk area, exhibiting the first-order phase-transition-like behavior.
For the pair of +1/2 defects by splitting a +1 defect, we find the curvature-driven alternating repulsive and
attractive interactions between the two defects. With the growth of the spherical disk these two defects tend to
approach and finally recombine towards a +1 defect texture. The sensitive response of defects to curvature and the
curvature-driven stability mechanism demonstrated in this work in nematic disk systems may have implications
towards versatile control and engineering of liquid-crystal textures in various applications.
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I. INTRODUCTION

Functionalizing the rich variety of self-assembled liquid-
crystal (LC) structures represents a trend in LC research
[1–4]. Confining LCs in various geometries in the form of
droplets [5–7], shells [8–10], and fibers [11,12] using modern
microfluidic technology and characterization methods opens
the prospect of many application opportunities, and brings new
scientific problems related to the creation and engineering of
complex director arrangements [4,13–15]. LC textures can be
strongly affected by the distribution and type of topological
defects, which are singularities in the otherwise continuous LC
director field [16–18]. The extraordinary responsiveness of LC
makes the manipulation of defects a challenge in applications.
Stabilizing defects in two-dimensional LC systems is directly
related to arrangement of LC textures [13,16,19,20], fabri-
cation of controllable valency in colloid-LC-based artificial
atoms [21–23], modulation of coupled geometries where
LC lives [24–30], and relevant applications in active matter
systems [31–35]. A prototype model to study the stability
mechanism of defects in LC is the isotropic two-dimensional
LC disk model with a single elastic constant [36–38]. In a
flat freestanding LC disk, defects tend to move swiftly to
the boundary to form a boojum texture, which is a two-
dimensional version of its namesake in superfluid helium-3
[36,39,40]. A virtual boojum texture with a topological defect
outside the sample has been predicted in planar circular LC
domains by Langer and Sethna [36], and it has been found to
be a local energy extremal [37,38]. Sufficiently strong pinning
boundary conditions can stabilize a defect within a circular LC
domain [36–38].

Exploring other stability mechanisms of defects in LC sam-
ples in addition to imposing boundary conditions constitutes
an underlying scientific problem towards versatile control and
engineering of LC director arrangement. Confining LC over
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spherical surfaces can generate various regularly arranged
stable defect patterns [8,23,25,41–45]. Vitelli and Nelson have
studied two-dimensional nematic order coating frozen surfaces
of spatially varying Gaussian curvature, and found the instabil-
ity of a smooth ground-state texture to the generation of a single
defect using free boundary conditions [46]. These results of
LC order on closed spheres and topographies with varying
curvature show that curvature suffices to provide a stability
mechanism for defects even without imposing any pinning
boundary condition. However, for LC order on a closed sphere,
it is unknown to what extent the appearance of defects is
energetically driven, while they must appear as a consequence
of the spherical topology. To remove the topological constraint,
we study nematic order, the simplest LC order, on a spherical
disk. Here we emphasize that, due to the fundamentally distinct
topologies of sphere and disk, the appearance of defects on
spherical disks is not topologically required; the emergence of
defects therein is purely geometrically driven. According to the
continuum elasticity theory of topological defects in either LC
or crystalline order, the stress caused by defects can be partially
screened by Gaussian curvature [17,18,44,47]. Therefore, one
expects the appearance of defects on a sufficiently curved
spherical disk. It is of interest to identify the transition point for
a defect to depart from the boundary of the disk, and illustrate
the nature of the transition by clarifying questions such as: Will
the defect move rapidly or gradually with the accumulation of
curvature effect? Will the defect split as the nematic texture be-
comes more and more frustrated by the curvature? Once split,
will the resulting defects become stable on the spherical disk?

We perform analytical calculations based on the isotropic
nematic disk model to address these fundamental problems.
This theoretical model may be realized experimentally in
Langmuir monolayers [38,48–50] and liquid-crystal films
[36,51] deposited at the surface of water droplets whose cur-
vature is controllable by tuning the droplet size [4]. Flat space
experiments in these two-dimensional monolayer systems at
air-water interface have revealed stable liquid-crystal phases
[48,50,51].
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In this work, we first discuss the two instability modes of
a +1 defect over a flat disk, either sliding to the boundary
or splitting to a pair of +1/2 defects. By depositing the
nematic order over a spherical surface, we analytically show
that bending deformation of a director field is inevitable
everywhere, which implies the appearance of defects to release
the curvature-driven stress. By comparing a flat and a spherical
nematic disk of the same area, both containing a +1 defect
at the center, we derive for the analytical expression for the
difference of the Frank free energy, and show that the spherical
disk always has higher energy. However, when the +1 defect
deviates from the center of the disk, the free energy curves
become qualitatively different for flat and spherical disks when
the disk area exceeds some critical value. Specifically, the
equilibrium position of the +1 defect rapidly moves from the
boundary to the center of the spherical disk in a narrow window
of the disk area, exhibiting the first-order phase-transition-like
behavior. For the pair of +1/2 defects by splitting a +1 defect,
we further show the curvature-driven alternating repulsive
and attractive interactions between the two defects. When the
spherical cap occupies more area over the sphere, the pair of
+1/2 defects tend to approach until merging to a +1 defect
texture. The recombination of the pair of +1/2 defects into a
+1 defect is consistent with the result of the +1 defect case.
These results demonstrate the fundamentally distinct scenario
of defects in a spherical disk from that on a planar disk. We also
briefly discuss the cases of nematic order on hyperbolic disks.
In this work, the demonstrated distinct energy landscape of
LC defects created by curvature is responsible for the stability
of defects, and may have implications in the design of LC
textures with the dimension of curvature.

II. MODEL AND METHOD

In the continuum limit, the orientations of liquid-crystal
molecules lying over a disk are characterized by a director
field n(x) that is defined at the associated tangent plane at x.
The equilibrium nematic texture is governed by minimizing
the Frank free energy [17]

F =
∫

D

f dA + λ(n2 − 1), (1)

where the integration is over the disk D. The Frank free energy
density

f = 1
2K1(div n)2 + 1

2K3(n × curl n)2, (2)

where K1 and K3 are the splay and bending rigidities,
respectively. The Lagrange multiplier λ is introduced to
implement the constraint of n · n = 1. In general, λ is a
function of coordinates. The twist term (n · curl n)2 vanishes
in nematics confined on a sphere (see Appendix B). Equation
(2) has been widely used to analyze the deformation in nematic
phases. For nematics on curved surfaces, the operators of
divergence and curl in the Frank free energy are promoted to
be defined on the curved manifold and carry the information
of curvature. Note that the curl operator relies on the extrinsic
geometry of the surface [52]. Note that the Frank free energy
model in Eq. (2) describes the distortion free energy of uniaxial
nematics. A formalism based on the tensorial nematic order

parameter has been proposed to characterize the distortion of
both uniaxial and biaxial nematics and defects therein [53,54].

We work in the approximation of isotropic elasticity with
K1 = K3. Under such an approximation, one can show that the
free energy is invariant under the local rotation of the director
field by any angle, whether the disk is planar or curved (see
Appendix A). In other words, the energy degeneracy of the
system becomes infinite when K1 = K3. Such configurational
symmetry is broken when the ratio K1/K3 is deviated from
unity. While the states selected by the differential in the values
for K1 and K3 are of interest in other contexts such as in the
ground states of spherical nematics [44], here we work in the
isotropic regime to highlight the curvature effect of substrates
on the configuration of nematics.

The general Euler-Lagrange equation of the Frank free
energy on a curved surface x(u1,u2) is

∂j

∂f

∂
(

∂ni

∂uj

) + ∂j

√
g√

g

∂f

∂
(

∂ni

∂uj

) − ∂f

∂ni

= −λni, (3)

where i,j = 1,2, and g is the determinant of the metric tensor.
The second term in Eq. (3) is due to the spatially varying g. The
nematic textures studied in this work are solutions to Eq. (3).

To characterize defects that are named disclinations in
a two-dimensional director field, we perform integration of
the orientation θ of the director n with respect to any local
reference frame along any closed loop �:∮

�

dθ = kπ, (4)

where k is nonzero if � contains a defect. Unlike in a vector
field where k can only be integers, two-dimensional nematics
supports both integer and half-integer disclinations due to the
apolarity of liquid-crystal molecules, i.e., n ≡ −n.

III. RESULTS AND DISCUSSION

We first discuss the case of nematics on a planar disk.
It is straightforward to identify the following solution to the
Euler-Lagrange equation:

n = cos(ϕ + θ0)e1 + sin(ϕ + θ0)e2, (5)

where ϕ = arctan(y/x) is the polar angle, θ0 is a constant,
and ei is the unit basis vector in Cartesian coordinates.
The strength of the defect located at the origin of the
coordinates is +1. The associated Lagrange multiplier is
λ = K1/(x2 + y2). The contributions to the splay and bending
terms in the free energy density are K1cos2θ0/[2(x2 + y2)] and
K3sin2θ0/[2(x2 + y2)], respectively. When θ0 increases from 0
to π/2, the +1 defect transforms from the radial (pure splay) to
the azimuthal (pure bending) configurations. In this process,
the sum of the splay and bending energies is an invariant
under the isotropic elasticity approximation. The total free
energy of the configuration in Eq. (5) is

F+1,p = K1

2

∫∫
x2+y2�r2

p

1

x2 + y2
dxdy, (6)

where rp is the radius of the planar disk.
We show that the +1 defect at the center of the planar disk

in Eq. (5) is unstable and tends to slide to the boundary of
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FIG. 1. The configurations and energetics of (a), (b) a single
+1 defect and (c), (d) a pair of +1/2 defects on a planar disk. The
defects are represented by red dots. The pair of +1/2 defects in (c)
are constructed out of a +1 defect by inserting a uniform direct field
between (indicated by green lines). The negative derivative of the
Frank free energy F (c) with respect to c (the position of the defects)
indicates that defects tend to slide to the boundary of a planar disk.

the disk. For simplicity, we employ a free boundary condition.
Consider a +1 defect like in Eq. (5) at (c,0), where c � rp. Its
free energy is

F+1,p(c) = K1

2

∫∫
x2+y2�r2

p

1

(x − c)2 + y2
dxdy. (7)

To avoid the singularity point at (c,0) in the evaluation for
F+1,p(c), we take the derivative of F+1,p(c) with respect to
c. Physically, this procedure returns the force on the defect.
While the free energy may diverge, a physical force must be
finite. After some calculation, we have

F ′
+1,p(c) = K1

∫∫
x2+y2�r2

p

x − c

[(x − c)2 + y2]2
dxdy

= K1

∫∫
(x ′+c)2+y2�r2

p

x ′

(x ′2 + y2)2
dx ′dy, (8)

where variable substitution is applied in the last equality. The
integral domain is shown in Fig. 1(a). The defect is located at
x ′ = 0 (i.e.,x = c) and y = 0. We see that the integration in
the red region returns zero, since the integrand x ′/(x ′2 + y2)2

is an odd function of x ′. In the rest region where x ′ < 0, the
integrand is negative. Therefore, F ′

+1,p(c) is negative when the
defect is deviated from the center of the disk. F ′

+1,p(c = 0) =
0. In other words, once deviated from the center of the disk,
the defect will slide to the boundary to reduce the free energy
of the system. Figure 1(b) shows the numerical result on the
dependence of F ′

+1,p(c) on c/rp.
An alternative instability mode of the central +1 defect

in the planar disk is to split into two +1/2 defects. Such a
process may occur when the interaction energy of the two

(b)(a) (c)
= = =

FIG. 2. Spiral +1 defect patterns subject to typical pinning
boundary conditions in a planar nematic disk.

repulsive +1/2 defects dominates over the core energy of the
defects. To analyze the energetics of the +1/2 defects, we
construct the director field containing two +1/2 defects by
cutting and moving apart an azimuthal configuration as shown
in Fig. 1(c), where the +1/2 defects are represented by red
dots. The region between the two half azimuthal configurations
is filled with a uniform director field. The Frank free energy
of such a configuration is

F+1/2,p(c) = 2K1

∫ rp−c

0
dx

∫ √
r2
p−(x+c)2

0
dy

1

x2 + y2
, (9)

where the separation between the two defects is 2c. F ′(0) =
−2K1/rp < 0. In Fig. 1(d), we plot F ′

+1/2,p(c) versus c. The
negative sign indicates the repulsive nature of the two +1/2
defects. The resulting +1/2 defects are ultimately pushed to
the boundary of the disk under the repulsive interaction.

In the preceding discussions, we employ the free boundary
condition where directors at the boundary do not have preferred
orientations. Another important class of boundary condition
is to fix the orientation of the molecules at the boundary.
Homeotropic and planar liquid-crystal samples are two typical
cases, where the directors are perpendicular and parallel to
the boundary, respectively. Imposing these pinning boundary
conditions over the aster configuration can lead to spiral
deformations [13]. Note that a recent study has demonstrated
a dynamic consequence of the radial-to-spiral transition of
a +1 defect pattern in the system of swimming bacteria
in a liquid-crystal environment [35]. It is observed that the
swimming mode of bacteria changes from bipolar to unipolar
when the +1 defect pattern becomes spiral. For the general
pinning boundary condition that the angle between n and the
tangent vector at the boundary is α (α ∈ [0,π/2]), we obtain
the solution to Eq. (3):

(nr,nϕ) = [sinθ (α),cosθ (α)], (10)

where nr and nϕ are the components of n in polar coordinates
(r,ϕ), θ (α) = α ln(r/r0)/ln(rp/r0), rp and r0 are the outer
and inner radius of the planar disk as shown in Fig. 2. The
magic spiral solution in Ref. [13] is a special case of α =
π/2. The associated Lagrange multiplier is λ = (K1/r2){1 +
α2/[ln(rp/r0)]2}. The configuration of the solution in Eq. (10)
is plotted in Fig. 2. The originally straight radial lines deform
to spiral curves to satisfy the boundary condition. The Frank
free energy of the spiral configuration is

Fspiral(α) =
⎡
⎣1 +

(
α

ln rp

r0

)2
⎤
⎦F+1,p, (11)
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where F+1,p is the free energy of an aster configuration in a
planar disk given in Eq. (6). Eq. (11) shows that the boundary
effect does not enter the integral of F+1,p. The energy cost
associated with the spiral deformation conforms to a quadratic
law with respect to the angle α and its dependence on the size
of disk is relatively weak in a logarithm relation.

Now we discuss two-dimensional nematic texture confined
on spherical disks. Consider a director field n on a sphere
n = n1(θ,ϕ)eθ + n2(θ,ϕ)eϕ , where eθ and eϕ are the unit
tangent vectors in spherical coordinates. θ and ϕ are the
polar and azimuthal angles, respectively. We first show that
on spherical geometry a director field without any splay
and bending deformations is impossible. Topology of the
two-dimensional sphere dictates that a harmonic vector field
on a sphere is impossible [55]. A vector field is called
harmonic if it is divergence free, irrotational, and tangent to
the spherical surface. A director field is a vector field with
the extra constraints of |n| = 1 and n ≡ −n. Therefore, it is a
topological requirement that one cannot completely eliminate
both bending and splay deformations in a director field living
on a sphere.

In addition to the above global analysis, we will further
show that an irrotational director field is impossible at any
point on a sphere. In other words, bending of a director
field is inevitable everywhere on a spherical surface. We first
present the general expressions for the divergence and curl of
a director field over a smooth surface: div n = 1√

g
∂i(

√
gni)

and curl n = (	dn
)�, where 	 is the Hodge dual, 
 and �

are the musical isomorphisms, d is exterior derivative (see
Appendix B). Applying these expressions on a sphere, we
have

div n = cosθ

sinθ

n1

R
+ 1

R

∂n1

∂θ
+ 1

Rsinθ

∂n2

∂ϕ
, (12)

and

curl n = 1

Rsinθ

(
−∂n1

∂ϕ
+ n2cosθ + sinθ

∂n2

∂θ

)
er

− n2

R
eθ + n1

R
eϕ, (13)

where er is the unit normal vector. According to Eq. (13),
we clearly see that at least one of the last two terms must
be nonzero. In contrast, Eq. (12) shows that a divergence-
free director field with vanishing splay deformation without
any bend deformation is possible. The simplest example is
the direction field with only the azimuthal component: n =
eϕ . Such a director field is divergence free but with bending
deformation. Note that in the calculation for the curl of the
director field, we use the condition that the sphere is embedded
in three-dimensional Euclidean space. The divergence of the
director field does not depend on how the sphere is embedded
in the Euclidean space. One can check that the twist term
(n · curl n)2 = 0.

The stability analysis of defects in nematic textures
over spherical disks is based on the following expres-
sion for the Frank free energy density in spherical

+1 defect
Center of spherical cap

x

y

z

o

FIG. 3. Schematic plot of a +1 defect over a spherical cap. The
relative position the defect is characterized by the ratio r ′

d/r ′
s .

coordinates:

f = K1

2R2

(
n1

cosθ

sinθ
+ ∂n1

∂θ
+ 1

sinθ

∂n2

∂ϕ

)2

+ K3

2R2

×
[

1 + 1

sin2θ

(
n2cosθ + sinθ

∂n2

∂θ
− ∂n1

∂ϕ

)2
]
. (14)

Note that the first term K3/(2R2) in the bending part represents
the irremovable bending deformation of a director field over
spherical substrates. This term vanishes in the limit of R → ∞.
One can check that for a divergence-free director field n = eϕ ,
f = K1/(2R2 sin2 θ ). The singularities at θ = 0 and θ = π

correspond to the two +1 defects at the north and south poles.
We first discuss if the +1 defect can be supported by

spherical geometry. All the degenerate nematic configurations
containing a +1 defect at the center of the spherical cap
are characterized by the director field n = (c1,c2), where the
constants c1 and c2 satisfy c2

1 + c2
2 = 1. These degenerate

states have the same Frank free energy:

F+1,s = K1

2

∫∫
θ,ϕ∈D

1

R2sin2θ
(R2sinθdθdϕ)

= K1

2

∫∫
θ,ϕ∈D

1

sinθ
dθdϕ, (15)

where the integration is over a spherical cap D with spherical
radius R and geodesic radius rs . And these states are solutions
to the Euler-Lagrange equation (see Appendix C).

In order to derive for F+1,s − F+1,p, the free energy
difference of a +1 defect configuration on spherical and planar
disks, we introduce the following coordinates transformation.
For generality, the Cartesian coordinates of the center of the
spherical cap are (c,0,

√
R2 − c2) as shown in Fig. 3. The

center of the spherical cap is located at the north pole for
c = 0. The region of the spherical cap is D = {(x,y,z)|x2 +
y2 + z2 = R2,(x − c)2 + y2 + (z − √

R2 − c2)2 � r ′2
s }. r ′

s is
the Euclidean distance from the center to the boundary of the
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spherical cap. The area of such a spherical cap is S = πr ′2
s .

Now we construct the stereographic projection from the
spherical cap to the plane of equator. Specifically, we draw
a line connecting the south pole of the sphere and any point
at (x,y,z) or (θ,ϕ) on the spherical cap. The point on the
spherical cap is thus projected to the intersection point (u,v)
of this line and the equator plane. The projection is described
by the formula

(u,v) =
(

Rx

z + R
,

Ry

z + R

)
, (16)

or, in terms of spherical coordinates,

(u,v) =
(

Rsinθcosϕ

cosθ + 1
,
Rsinθsinϕ

cosθ + 1

)
. (17)

The stereographic projection has a convenient geometric
property that any spherical cap not containing the point of
projection (south pole) is projected to a circular disk on the
equator plane:

(u − u0)2 + v2 � r2
eq, (18)

where

u0 = 2cR2

−r ′2
s + 2R(R + √

R2 − c2)
,

and

r2
eq = r ′2

s R2
(
4R2 − r ′2

s

)
[
r ′2
s − 2R(R + √

R2 − c2)
]2 .

To guarantee that the spherical cap contains the north pole,
it is required that r ′2

s � 2R(R − √
R2 − c2). Alternatively,

c � r ′
s

√
1 − [r ′

s/(2R)]2 for given r ′
s . On the other hand, the

spherical cap occupies no more than half of a sphere, so
r ′
s �

√
2R.

From the Jacobian of the coordinates transformation in
Eq. (17)

∂(u,v)

∂(θ,ϕ)
=

(
Rcosϕ
1+cosθ −Rsinθsinϕ

1+cosθ
Rsinϕ

1+cosθ
Rsinθcosϕ

1+cosθ

)
,

and

dudv =
∣∣∣∣ ∂(u,v)

∂(θ,ϕ)

∣∣∣∣dθdϕ = u2 + v2

sinθ
dθdϕ,

we finally have

dudv

u2 + v2
= dθdϕ

sinθ
. (19)

We therefore obtain the desired expression for Eq. (15) in the
(u,v) coordinates:

F+1,s = K1

2

∫∫
D

1

u2 + v2
dudv, (20)

where the integral domain D = {(u,v)|u2 + v2 �
r ′2
s R2/(4R2 − r ′2

s )}. Note that now the integrands in
Eq. (20) and Eq. (6) have the same functional form and
can be conveniently compared. A subtle point worth
mentioning is that the direct subtraction of Eq. (6)
from Eq. (20) will lead to a wrong expression of

�F = F+1,s − F+1,p = −(π/2)K1 ln[4 − (r ′
s/R)2]. One

can check that �F fails to converge to the expected zero in
the limit of R → ∞. Here, the subtlety is from the fact that
the integrands in Eq. (20) and Eq. (6) have singularity at the
origin point. To eliminate this singularity, one has to cut off
the small defect core. The integral domain of Eq. (20) should
be D = {(u,v)|(a/2)2 � u2 + v2 � r ′2

s R2/(4R2 − r ′2
s )},

where a is the radius of the defect core. The prefactor of 1/2 is
due to the shrink of the defect size in the previously introduced
stereographic projection. The integral domain in Eq. (6) also
becomes a2 � x2 + y2 � r2

p. To conclude, the change of
the total free energy in the deformation of the planar to the
spherical nematic disk in the constraint of fixed disk area Ad is

�F = F+1,s − F+1,p

= −π

2
K1 ln

[
1 −

(
Ad

4πR2

)]
. (21)

We check that �F approaches zero in the limit of R → ∞,
as expected. Equation (21) shows that F+1,s is always larger
than F+1,p.

However, it will be shown that a +1 defect can be stabilized
within a sufficiently curved spherical disk despite the higher
energy in comparison with the planar disk case. We analyze
the stability of the +1 defect from the derivative of the free
energy with respect to its position in the disk. The expression
for the free energy is rewritten in the new coordinates {x,y},
where x = u − u0 and y = v:

F+1,s(c) = K1

2

∫∫
x2+y2�r2

eq

1

(x + u0)2 + y2
dxdy

= K1

∫ req

−req

dx
1

x + u0
arctan

√
r2

eq − x2

x + u0
, (22)

where u0 and req are given in Eq. (18). From Eq. (22), we have

F ′
+1,s(c) = K1

∫ req

−req

(G1 + G2 + G3)dx, (23)

where G1 = −[u′
0(c)/(x + u0)2]arctan[

√
r2

eq − x2/(x + u0)],

G2= − u′
0(c)

√
r2

eq−x2/[(x+u0)(u2
0−2u0x + r2

eq)], and G3 =
reqr

′
eq(c)/[(u2

0 − 2u0x + r2
eq)

√
r2

eq − x2]. The G3 term can be

integrated out: K1
∫ req

−req
G3dx = K1πreqr

′
eq(c)/|u2

0 − r2
eq|. Lo-

cal analysis around the defect at x = −u0 shows that both
the G1 and the G2 terms are odd functions of x, and can be
canceled in the integration of x near the defect. The singularity
associated with the defect is therefore removed. Note that
F ′

+1,s(c) is negative in the large R limit, which is consistent
with the planar disk case.

Now we analyze zero points of F ′
+1,s(c). The defect is

stable at a zero point where the slope of the F ′
+1,s(c) curve

is positive. With the increase of c, numerical analysis shows
that the G1 term decreases and the G3 term increases, both
starting from zero at c = 0. While the G1 and the G3 terms
are comparable, the G3 term is much smaller than either of
them. The competition of the G1 and the G3 terms may lead
to another zero point at the F ′

+1,s(c) curve in addition to the
unstable zero point at c = 0.
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FIG. 4. Stability analysis of a +1 defect in a spherical nematic
disk. (a)–(c) show the derivative of the Frank free energy F ′

+1,s(c)
versus c at typical values for r ′

s/R. The curve starts to develop a
stable zero point for the +1 defect with the increase of the disk size
r ′
s . (a) r ′

s/R = 1.0, (b) 1.414180, and (c) 1.414187. (d) shows the
rapid movement of the equilibrium position of the +1 defect from
the boundary (r ′

d/r ′
s = 1) to the center (r ′

d/r ′
s = 0) of the disk with

the increase of the disk size r ′
s/R.

In Figs. 4(a)–4(c), we plot F ′
+1,s(c) versus c at typical values

for r ′
s . We see that the F ′

+1,s(c) is negative and monotonously
decreasing when the spherical cap is smaller than a critical
value. With the increase of r ′

s , a second zero point appears at
c = c∗, where a perturbed defect will be restored to the original
equilibrium position. It indicates that the equilibrium position
of the defect starts to depart from the boundary of the disk. We
introduce the quantity r ′

d/r ′
s to characterize the equilibrium

position of the defect over the spherical cap, where r ′
d is the

Euclidean distance between the center of the disk and the
defect. The variation of the optimal position of the +1 defect
with the size of the spherical cap is summarized in Fig. 4(d).
A pronouncing feature of the r ′

d/r ′
s vs r ′

s/R curve is the rapid
decrease from unity to zero when r ′

s/R varies by only about
0.1%. It corresponds to the movement of the defect from the
boundary to the center of the disk. Such a transition occurs
in the narrow window of r ′

s when the spherical cap occupies
about half of the sphere. Note that the spherical cap becomes
a half sphere when r ′

s = √
2R.

Here, it is of interest to compare a +1 defect in nematics
and a fivefold disclination in a two-dimensional hexagonal
crystal on a sphere. Both nematic and crystalline order are
frustrated on a sphere, leading to the proliferation of defects.
The resulting defects in condensed matter orders are to screen
the geometric charge of the substrate surface, which is defined
to be the integral of Gaussian curvature. Over a spherical
crystal, the topological charge of a fivefold disclination can
be screened by a spherical cap of area A0/12 (A0 is the area
of sphere), since 12 fivefold disclinations are required over
a spherical crystal by topological constraint [18]. Topological
analysis of a spherical nematics shows that a sphere can support
two +1 defects, so the topological charge of a +1 defect can
be screened by a spherical cap of area A0/2. Our energetics
calculation is consistent with such topological analysis; it is
when the spherical cap becomes as large as a half sphere that

FIG. 5. Stability analysis of a pair of +1/2 defects in a spherical
nematic disk. (a) is the schematic plot of the defect pair over the
spherical disk in gray. (b)–(d) show the derivative of the Frank
free energy F ′

+1/2,s(c) versus c at typical values for b/R. b is the
radius of the circular boundary of the spherical cap. A pair of zero
points appear in the curve with the increase of the disk size b. (b)
b/R = 0.80000, (c) 0.92933, and (d) 0.94000. The curvature-driven
alternating repulsive and attractive regimes in the F ′

+1/2,s(c) curve are
indicated by the arrows in (d). In (e), we plot the variation of the
equilibrium location of the defect pair versus the disk size b/R. r ′

d

is the Euclidean distance from one of the two defects to the center
of the disk. The defect pair merge to form a +1 defect (r ′

d/r ′
s → 0)

in the half sphere limit (b/R → 1).

a +1 defect will be energetically driven to move to the center
of the disk.

We proceed to discuss the split of a +1 defect into two
+1/2 defects over a spherical cap. Like the case of the planar
disk, we first construct the director field containing two +1/2
defects by cutting an azimuthal +1 defect configuration. As
shown in Fig. 5(a), the resulting director field on the spherical
cap is composed of three parts: the middle uniform region
where n = (−z/

√
x2 + z2,0,x/

√
x2 + z2), and the symmetric

azimuthal configurations at the two sides. The origin of the
Cartesian coordinates is at the center of the sphere, and the z

axis passes through the north pole. The two +1/2 defects are
indicated by red dots in Fig. 5. Their x coordinates are x = ±c.
The center of the spherical cap is at the north pole. The Frank
free energy density of the middle uniform configuration is
f = K1/[2(x2 + z2)]. By putting them together and working
in the Cartesian coordinates over the equator plane, we have

F+ 1
2 ,s

2K1
=

∫∫
D1

1

x2 + y2
dA +

∫∫
D2

1

R2 − y2
dA, (24)
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where the surface element of the spherical cap
dA = (R/

√
R2 − x2 − y2)dxdy,D1 = {(x,y)|y ∈

[0,
√

b2 − (x + c)2],x ∈ [0,b − c]}, and D2 = {(x,y)|y ∈
[0,

√
b2 − x2],x ∈ [0,c]}. b is the radius of the circular

boundary of the spherical cap. b = r ′
s

√
1 − (r ′

s/2R)2.
From Eq. (24), we have

F ′
+ 1

2 ,s
(c)

2K1
=

∫ b−c
R

0
F1(x)dx +

∫ √
b2−c2

0
F2(y)dy, (25)

where

F1(x) = R2(c + Rx)/{
√

−b2 + c2 + R2 + 2Rcx

×
√

b2 − (c + xR)2[−b2 + c(c + 2Rx)]},
and F2(y) = R/[(R2 − y2)

√
R2 − c2 − y2]. It is straightfor-

ward to show that F ′
+1/2,s(0) = −√

R2 − b2/(Rb) < 0. It
indicates the repulsive interaction between two infinitely close
+1/2 defects. Numerical evaluation of Eq. (25) shows that
when the spherical disk is sufficiently large, the departing
+1/2 defects can be stabilized within the disk. The plots of
F ′

+1/2,s(c) at typical values for b/R are shown in Figs. 5(b)–
5(d). We see that when b/R > 0.93, the F ′

+1/2,s(c) curve starts
to hit the horizontal zero line, leading to the two zero points
indicated by the blue and the green dots in Fig. 5(d). When
the separation between the two defects is smaller than the
value at the blue dot or larger than the value at the green dot,
they repel with each other. In the regime between the two zero
points, the defects attract with each other. The curvature-driven
alternating repulsive and attractive regimes in the F ′

+1/2,s(c)
curve are indicated by the arrows in Fig. 5(d). The left zero
point (blue dot) represents the equilibrium configuration of
the +1/2 defects. In Fig. 5(e), we show the variation of the
equilibrium position of the +1/2 defects with the size of the
spherical disk. When the spherical cap occupies more area
over the sphere, the distance between the two +1/2 defects
in the equilibrium configuration shrinks. In the limit of a
half sphere, the two +1/2 defects merge together, becoming
a +1 defect. This result is consistent with our previous
analysis of the +1 defect case, where the optimal position
of the +1 defect over a half sphere is at the center of the
disk.

We proceed to discuss nematic order on Poincaré disk with
constant negative Gaussian curvature [56]. The associated
metric over a hyperbolic disk with Gaussian curvature KG

is characterized by ds2 = 4(dx2 + dy2)/(1 + KGr2)2, where
r2 = x2 + y2. The area element dA = 4dxdy/(1 + KGr2)2.
For the director field n = n1(x,y)e1 + n2(x,y)e2, where e1

and e2 are the orthogonal unit basis vectors, its divergence
and curl are div n = (1/2)(1 + KGr2)(∂n1/∂x + ∂n2/∂y) −
KG(n1x + n2y), and curl n = (1/2)(1 + KGr2)(∂n2/∂x −
∂n1/∂y) − KG(n2x − n1y), respectively (see Appendix B for
the derivation of curl n). We first consider a defect-free uni-
form director field (n1,n2) = (cosθ0,sinθ0) whose associated
Lagrange multiplier is λ = K1KG(1 + KGr2). θ0 ∈ [0,π/2].
The associated Frank free energy density is independent of
θ0: f = K1K

2
Gr2/2. We see that the uniform state in Poincaré

disk has a nonzero energy density that increases with r in
a power law. It is due to the special metric structure of the
Poincaré disk. Now we consider a +1 defect configuration

in the nematic texture on Poincaré disk. It can be char-
acterized by n = [(c2x − c1y)e1 + (c1x + c2y)e2]/

√
x2 + y2,

where c1 and c2 are both constants satisfying c2
1 + c2

2 = 1,
such that the magnitude of n is unity. Varying the value of
c1 from zero to unity, we obtain director fields from radial
to azimuthal configurations. The associated Frank free energy
density is

f+1,h = K1

2

(1 − KGr2)2

4r2
. (26)

Since f ′
+1,h(r) = (K1/2)(−1 + K2r4)/(2r3) < 0, the Frank

free energy density decreases with r . On the other hand, due
to the homogeneity of the Poincaré disk, the optimal position
of a +1 defect is always at the boundary of the disk.

Finally, we discuss some effects that are not taken into con-
sideration in our calculations. First, by introducing anisotropy
in the elastic constants, the free energy varies with the local
rotation of the director field. Despite the reduced energy
degeneracy arising from the elasticity anisotropy, both radial
and azimuthal configurations based on which our calcula-
tions are performed are still solutions to the Euler-Lagrange
equation (see Appendix C). Therefore, introducing elasticity
anisotropy does not change the major conclusions about the
optimal positions of both +1 and +1/2 defects. Second, in
addition to curvature, the thickness of liquid-crystal shells is
an important parameter to control the number and orientation
of defects [5,23]. It has been experimentally observed that
thickness variation can produce a number of novel defect
configurations over a spherical liquid-crystal shell [5]. It is of
great interest to include the effect of thickness in a generalized
Frank free energy model to account for these new experimental
observations [23]. This is beyond the scope of this study.
Third, spatial variations in nematic order parameter within
defect cores contribute to the condensation free energy of
topological defects [16,17]. Notably, nematic textures in defect
core regions can exhibit featured patterns and energy profiles,
such as highly biaxial nematic order in the cores of +1/2
defects [57] and local melting of the nematic ordering [53].
A recent study has demonstrated that the condensation energy
associated with the defect core plays an important role in the
formation of defects triggered by strong enough curvature [58].
In our study, we focus on the optimal locations of preexistent
defects. They are determined by the variation of the free energy
with the positions of the defects, where the contribution from
the defect core structures is canceled without considering the
boundary effect of defects.

IV. CONCLUSION

In summary, we investigate the curvature-driven stability
mechanism of LC defects based on the isotropic nematic disk
model where the appearance of defects is not topologically
required, and present analytical results on the distinct energy
landscape of LC defects created by curvature. We show that
with the accumulation of curvature effect both +1 and +1/2
defects can be stabilized within spherical disks. Specifically,
the equilibrium position of the +1 defect will move abruptly
from the boundary to the center of the spherical disk, exhibiting
the first-order phase-transition-like behavior. We also find the
alternating repulsive and attractive regimes in the energy curve
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of a pair of +1/2 defects, which leads to an equilibrium defect
pair separation. The sensitive response of defects to curvature
and the curvature-driven stability mechanism demonstrated in
this work may have implications in the control of LC textures
with the dimension of curvature.
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APPENDIX A: INFINITE DEGREE OF DEGENERACY
IN THE ONE-ELASTIC-CONSTANT APPROXIMATION

Let us consider a planar nematic disk. n =
[cosθ (x,y),sinθ (x,y)] in Cartesian coordinates. In the
one-elastic-constant approximation, the Frank free energy is
F = 1

2K1
∫∫

x2+y2�r2
p
|∇θ (x,y)|2dxdy. It is easily seen that

rotating a director by a constant angle does not change the
Frank free energy.

For a nematic field on a sphere, by inserting n =
[cos(θ,ϕ),sin(θ,ϕ)] in spherical coordinates into Eq. (14),
we obtain the expression for the Frank free energy density

f = K1

2

(
1

R2sin2θ
+ |∇|2 + 2cosθ

R2sin2θ
ϕ

)
,

where ∇ = 1
R

∂
∂θ

eθ + 1
Rsinθ

∂
∂ϕ

eϕ , and the notation ϕ is an
abbreviation for ∂/∂ϕ. Obviously, the Frank free energy
density is invariant under the transformation  →  + c.

The conclusion that the nematic texture has infinite degree
of degeneracy in the one elastic constant approximation can
be generalized to any generally curved surface by writing the
Frank free energy under the one-constant approximation in the
form of

F = 1

2

∫
dSgij (∂iα − Ai)(∂jα − Aj ),

where the integration is over an area element dS on the surface
x(u1,u2), α(u1,u2) is the angle between n(u1,u2) and any local
reference frame, and Ai is the spin connection [46]. The free
energy is invariant under the rotation α(u1,u2) → α(u1,u2)
+ c.

APPENDIX B: CALCULATING CURL n
ON SPHERICAL GEOMETRY

In a coordinates-independent expression, curl n = (	dn
)�

[55,59,60]. The operators 	, 
 and � are to be explained
below. 	 is an operator called Hodge dual. When applied on
an antisymmetric tensor α = 1

k!αi1,···,ik e
i1 ∧ · · · ∧ eik , where

ei1 , · · · ,ein are dual bases,

	α =
√|g|εi1,···,inαj1,···,jk

gi1j1 · · · gikjk

k!(n − k)!
eik+1 ∧ · · · ∧ ein .


 and � are the musical isomorphisms. X
 = gijX
idxj , where

X = Xi∂i . ω� = gijωi∂j , where ω = ωidxi .

Consider a vector field n defined on a two-dimensional
sphere. n = n1(θ,ϕ)eθ + n2(θ,ϕ)eϕ , where eθ and eϕ are the
unit tangent vectors in spherical coordinates. Applying the
above formulas on such a vector field, we have

n
 = n1rdθ + n2r sin θdϕ,

dn
 = n1drdθ + n2 sin θdrdϕ

+ r

(
n2 cos θ + sin θ

∂n2

∂θ
− ∂n1

∂ϕ

)
dθdϕ,

and

	dn
 = n1 sin θdϕ − n2dθ

+ 1

r sin θ

(
n2 cos θ + sin θ

∂n2

∂θ
− ∂n1

∂ϕ

)
dr.

We finally obtain Eq. (13). It is of interest to note that
the curl of a director field n on a generally curved surface
is curl n = −τnn − cnt + κnν, where {n,t,ν} constitute the
Darboux basis [52]. τn and cn are the components of the
extrinsic curvature tensor L. Lnn = cn, and Lnt = Ltn = −τn.
In general, the extrinsic curvature influences the Frank free
energy of nematics on a curved surface. It is only on a flat or
spherical surface τn = 0 and cn is a constant. So the extrinsic
curvature effect only contributes a constant term in the Frank
free energy [52].

APPENDIX C: EULER-LAGRANGE EQUATIONS
IN CARTESIAN AND SPHERICAL COORDINATES

In this appendix, we present the Euler-Lagrange equations
in Cartesian and spherical coordinates derived from Eq. (3),
and show that both radial and azimuthal configurations are
solutions to the Euler-Lagrange equations. We also show that
the anisotropic elastic constants will not change the main
result of curvature-driven alternating repulsive and attractive
interactions between the two +1/2 defects due to the fact that
the elastic modulus K1 plays no role in the energy expression.

In two-dimensional Cartesian coordinates, n =
[n1(x,y),n2(x,y)]. The components of the director field
in equilibrium nematic textures satisfy the following
Euler-Lagrange equations:

K1

(
∂2n1

∂x2
+ ∂2n2

∂x∂y

)
− K3

(
∂2n2

∂x∂y
− ∂2n1

∂y2

)
= −λn1,

and

K1

(
∂2n2

∂y2
+ ∂2n1

∂x∂y

)
+ K3

(
∂2n2

∂x2
− ∂2n1

∂x∂y

)
= −λn2.

It is found that both radial (n1,n2) =
(x/

√
x2 + y2,y/

√
x2 + y2) and azimuthal (n1,n2) =

(−y/
√

x2 + y2,x/
√

x2 + y2) configurations satisfy the
above Euler-Lagrange equations with λ = K1/(x2 + y2)
and λ = K3/(x2 + y2), respectively. The spiral
configuration n = c1(x/

√
x2 + y2,y/

√
x2 + y2) +

c2(−y/
√

x2 + y2,x/
√

x2 + y2) (c2
1 + c2

2 = 1 and neither
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c1 nor c2 is 0) is the solution to the Euler-Lagrange equations
only in the one elastic constant approximation.

In spherical coordinates, n = n1eθ + n2eϕ . In equilibrium
nematic textures, n1 and n2 satisfy the following Euler-
Lagrange equations:

K1

R2

(
− n1

sin2θ
+ ∂n1

∂θ

cosθ

sinθ
+ ∂2n1

∂θ2
− cosθ

sin2θ

∂n2

∂ϕ

+ 1

sinθ

∂2n2

∂θ∂ϕ

)
+ K3

r2sin2θ

(
∂2n1

∂ϕ2
− ∂n2

∂ϕ
cosθ

− sinθ
∂2n2

∂θ∂ϕ

)
= −λn1,

K3

R2

(
− n2

sin2θ
+ cosθ

sin2θ

∂n1

∂ϕ
− 1

sinθ

∂2n1

∂θ∂ϕ
+ ∂2n2

∂θ2

+ cosθ

sinθ

∂n2

∂θ

)
+ K1

R2sinθ

(
cosθ

sinθ

∂n1

∂ϕ
+ ∂2n1

∂θ∂ϕ

+ 1

sinθ

∂2n2

∂ϕ2

)
= −λn2.

We remark that the equilibrium equations in spherical co-
ordinates are invariant under uniform local rotation of the

director field. Similarly, one can show that both radial and
azimuthal configurations are solutions to the Euler-Lagrange
equations with λ = K1/(R2sin2θ ) and λ = K3/(R2sin2θ ),
respectively. The spiral configuration of n1 = c1,n2 = c2

(c1 and c2 are nonzero constants satisfying c2
1 + c2

2 = 1)
satisfies the equilibrium equation only when K1 = K3. For
the two +1/2 defects configurations discussed in the main
text, we show that introducing elasticity anisotropy does
not change the curvature-driven alternating repulsive and
attractive interactions between the defects. For the two +1/2
defects configuration on a spherical disk where an azimuthal
configuration is separated by a uniform configuration, the
associated Frank free energy is

F+ 1
2 ,s

2K3
=

∫∫
D1

1

x2 + y2
dA +

∫∫
D2

1

R2 − y2
dA,

where D1 and D2 are given below Eq. (24). We see that since
the entire defect configuration is divergence free, the parameter
K3 does not appear in the expression for the Frank free energy.
Therefore, anisotropy in elastic constants does not change the
featured interaction between the +1/2 defects.
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