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A perversion in an otherwise uniform helical structure, such as a
climbing plant tendril, refers to a kink that connects two helices with
opposite chiralities. Such singularity structures are widely seen in
natural and artificial mechanical systems, and they provide the
fundamental mechanism of helical symmetry breaking. However, it
is still not clear how perversions arise in various helical structures and
which universal principles govern them. As such, a heterogeneous
elastic bistrip system provides an excellent model to address these
questions. Here, we investigate intrinsic perversion properties which
are independent of strip shapes. This study reveals the rich physics of
perversions in the 3D elastic system, including the condensation of
strain energy over perversions during their formation, the repulsive
nature of the perversion–perversion interaction, and the coalescence
of perversions that finally leads to a linear defect structure. This
study may have implications for understanding relevant biological
motifs and for use of perversions as energy storers in the design of
micromuscles and soft robotics.
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Spontaneous symmetry breaking provides a unifying concep-
tual understanding of emergent ordered structures arising in

various condensed matters (1). In an elastic medium, which is
one of the simplest organizations of matter, symmetry-breaking
instabilities via buckling can lead to extraordinarily rich patterns
and generate a wealth of shapes at multiple length scales that can
be exploited in many scientific disciplines (2). A prototype of
elastic buckling is the Euler instability of a homogeneous elastic
rod under uniaxial compression at the ends that finally breaks
the rotational symmetry (3). Introduction of extra structures in
an elastic medium like mechanical heterogeneities (4), non-
linearity of materials (2), geometric asymmetry (5), or intrinsic
curvature (6) provides new dimensions that can produce even
richer buckling modes, including helices and perversions (6, 7),
wavy structures (8), regular networks of ridges (9), and even self-
similar fractal patterns (2, 10). Of these emergent symmetry
broken structures, the helical shapes are of particular interest
due to their ubiquitousness in nature and the strong connection
with biological motifs, as noticed by Darwin in his 1875 book
describing the curl of plant tendrils (11). Remarkably, biological
helical structures permeate over several length scales from the
developed helical valve on opening seed pods (12), to the regular
chiral structures in the flagella of bacteria (13), the spiral ramps
of rough endoplasmic reticulum (14), and the chromosome of
Escherichia coli (15, 16).
The proliferation of perversions in an otherwise uniform helical

structure can further break the helical symmetry (Fig. 1A shows a
typical perversion in the helix) (4, 6, 17). Here, a perversion refers
to a kink that connects two helices with opposite chiralities.
Therefore, perversions belong to a large class of fundamental de-
fects in systems with discrete symmetry which have the names of
domain walls, solitons, or kinks depending on the particular context
(1). In contrast to domain walls in prototype spin systems, per-
versions embedded in both natural (6, 17) and artificial (4) helical

systems have the unique freedom to wind around themselves in
response to mechanical or geometric constraints. This salient fea-
ture of perversions accounts for several important observations,
including the generation of more helices by a self-winding single
perversion (6) and formation of the ripple patterns extensively
found in animal guts and leaf edges through multiple perversions
(18, 19). Recent studies have further revealed that the perversion
in the cucumber tendril, with its variable local stiffness, can un-
expectedly overwind under tension rather than unwind (20). Pre-
vious theoretical studies using an ideal rod model with intrinsic
curvature have qualitatively characterized the perversions (21, 22),
yet cannot fully capture the postbuckling deformation or the inter-
actions between perversions. These studies inspire us to have a closer
look at the nature of perversions in helical structures, including
perversion-driven helical symmetry breaking and interactions
between perversions.
The bistrip hyperelastic system provides an ideal model for

studying the helical symmetry breaking and the physics of the
resulting emergent perversions. The model hyperelastic system
consists of two clamped strips with rectangular cross-sections
(Fig. 1B); the shorter strip (strip A) is stretched and then at-
tached to the longer one (strip B). With reduction of the strip
length, we numerically observe the hierarchical buckling in the
sequence of the development of helical shapes and then the
spontaneous formation of perversions therein. Systematic simu-
lations using different mesh sizes and initial perturbations show
that the bistrip system can be easily trapped in metastable states;
it is not guaranteed that the lowest energy conformation found
by optimizing the simulation parameters is the true ground state.
We therefore focus on the intrinsic features of perversions that
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are independent of specific shapes. Our study reveals the remark-
able condensation of strain energy over perversions during their
formation and the repulsive nature of the perversion–perversion
interaction. These intrinsic properties of perversions may be
exploited in the design of micromuscles (23) and soft robotics (24).

Model
In the bistrip hyperelastic model, the strips have the same rectan-
gular cross-section but different lengths in their free states (Fig. 1B).
The upper shorter strip is first longitudinally stretched to the same
length as the lower longer one, and then they are “glued” together
such that both mutual slide and delamination are forbidden. In
simulations, we carefully control the slow approach of the anchored
ends of the bistrip whose orientations are fixed. The geometric and
mechanical incompatibility of the strips is numerically observed to
drive the out-of-plane deformations, including the helical shapes
and perversions. The strips are made of the same material.
Considering the involved large elastic deformations, we use the
neo-Hookean model, the simplest hyperelastic model, which was
originally proposed to treat the rubber elasticity and has been
incorporated in a great deal of modern finite-element software
to analyze the elasticity of extensive elastomeric materials (25).

Herein the stress and strain in the neo-Hookean model are re-
lated via the following form of the strain energy density U (25):

U =C10
�
I1 − 3

�
+
K1

2
ðJ − 1Þ2. [1]

C10 and K1 characterize the resistance of the material to shear
stress and compression, respectively. J = λ1λ2λ3, representing the
elastic volume ratio of the solid, where λ1, λ2, λ3 are the principal
stretch ratios. I1 = J−2=3ðλ21 + λ22 + λ23Þ. In our simulations, we treat
the material as nearly incompressible, a feature of most elastomeric
materials. It seems that the appearance of perversions in the buck-
led helical system does not rely on the hyperelastic nature of ma-
terials; in soft elastic materials former finite-element simulations
have also revealed the existence of perversion structures (4).
In contrast with Euler’s rod, the rectangular cross-section in

the prestretched bistrip system is crucial for the appearance of
nontrivial regular structures like the initially developed periodic
helical shape and the scattered perversions therein with the re-
duction of the strip length. We first perform qualitative geometric
analysis of helices and perversions in an originally flat strip
whose ends are clamped without allowing any movement and
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Fig. 1. Illustration of the bistrip model. (A) A typical perversion arising in an otherwise uniform helix (Upper) by controlling the boundary condition.
(B) Illustration of the bistrip model we used in the simulation. Strip A has the same cross-section as strip B but shorter length in the initial state. Strip A is
stretched and glued to strip B; both strips have the same length. One end of the bistrip system is fixed whereas the other end is allowed to translate but
forbidden to rotate. (C) The first five buckling modes from eigenvalue buckling analysis.
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Fig. 2. Energy condensation in the perversion of the bistrip system. (A) The formation and evolution of one perversion with the reduction of the strip length L,
w = 5 mm, h= 3 mm, L= 30 cm, and L′= L=3.5 following the notation labeled in Fig. 1B. The stress state of the bistrip is characterized by the distribution of the
scalar von Mises stress which is originally proposed to analyze the yielding of materials (30). (B) The scaled strain energy profile of the strips in
A. ~EðnÞ= EðnÞ=minfngfEðnÞg− 1, where n labels the slab of elements as shown (Inset), and EðnÞ is the total strain energy of all these elements in the nth slab.
(C–F) The designed bistrip systemmade of polyethylene and prestretched rubber strip to confirm the numerically observed energy condensation over the perversions.
(C and D) Shape of the bistrip before and after buckling. (C, Inset) Featureless birefringence pattern of the initial bistrip. The dashed red lines in E and F indicate the
interface of the two strips. The different birefringence patterns in the perversion (E) and the helical (F) regions reflect the distinct strain energy distributions.
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rotation (see Fig. S1). By grabbing an arbitrary point of the strip,
we can twist the whole strip, thereby generating a perversion and
helices. This generated perversion connects two helices with
opposite chiralities. The strip-like geometry does not impose a
constraint on the allowed number of perversions. Multiple per-
versions have been found in animal guts (18) and in the bistrip
model (4). The specific number of perversions in a helical strip is
determined by several factors, such as the materials property and
the external constraints (4, 26).
We resort to finite-element analysis to track the shape evolution

of the heterogeneous bistrip. Specifically, we first perform an
eigenvalue buckling analysis to examine the stability of the bistrip
under the constraints in Fig. 1B. The eigenmodes of the bistrip
include two types of perturbation shapes depending on the shape
symmetry. Among the five modes listed in Fig. 1C, modes 1, 3,
and 5 have mirror symmetry, whereas the others do not have
apparent symmetry. These eigenmodes are used as initial per-
turbations for the further explicit dynamical finite-element
analysis performed in Abaqus/Explicit. Simulations show that the
postbuckling shapes of the bistrip do not appear dependent on
the type of these eigenmodes. Our results indicate that the
bistrip system can reach multiple metastable states by varying the
mesh densities and the loading rate (see Figs. S2 and S3). These
states have very close strain energy but different numbers of
perversions. Because we are only concerned with the intrinsic
properties of perversions, the presence of these metastable states
does not influence our major conclusions. In our simulations,
initially the long strip (strip B in Fig. 1B) is 30-cm long, whereas
the length of the shorter strip (strip A in Fig. 1) is about 8  cm.
Both of the strips are 3-mm thick, and the width is varied to
produce different number of perversions.

Results and Discussion
In the simulations, the ends of the bistrip are carefully controlled
to approach each other without allowing any rotation. This
constraint ensures that the helices formed near the ends have
opposite chiralities and guarantees the appearance of a perversion.
Fig. 2A demonstrates the growing of the initially slight out-of-plane
deformation and the subsequent development of the single per-
version in the helical state. The emergent perversion is located at
the center of the strip, breaking the helical symmetry while pre-
serving the mirror symmetry. The perversion is observed to wind
around itself to generate more helices, meanwhile suppressing its
own size. It has been observed that climbing tendrils also conform
to the same winding scheme while growing longer (6). In our case,
the winding perversion plays the opposite role; it winds to reduce
the pitch of helices in response to the reduction of the end-to-end
distance of the bistrip.

Simulations show that as the perversion is winding, the strain
energy is concentrating. Fig. 2B shows the energy distribution
along the strip with the conformations in Fig. 2B. The energy is
obtained by dividing the bistrip into n slabs and summing the
strain energy across the cross-sectional area of the slab. This
quantity is then rescaled to capture the relative energy changes
in the perversions and in the helices. The energy condensation in
the perversion region is clearly seen in Fig. 2B. The winding of
the perversion provides the specific mechanism to focus energy
locally in the perversion region. In a more general case where
multiple perversions emerge in a very long bistrip, this energy
condensation phenomenon can still be identified (see Fig. S4).
The amount of energy condensation will eventually saturate if
the two ends of the bistrip are sufficiently close, because the
perversion and helices under high compression will have contact
with each other, and the whole structure may collapse at the po-
sition of the perversion. The spontaneous focusing of energy is a
rich concept that permeates in fields as diverse as fluid mechanics,
electrostatics, and elasticity of 2D materials (9). Similar energy
condensation phenomena occur on ridges in 2D elastic medium
where the stress is focused (9). Here the revealed strain energy
concentration is the demonstration of the energy focusing in 3D
elastic medium. The perversions as energy-absorbing singularity
structures in helical systems may find applications in the design of
micromuscles (23) and soft robotics (24).
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Fig. 3. Analysis of the strain energy distribution over the cross-section at different
sites demonstrates distinct energy transfer modes in the perversion and helical
regions. The images below show the distribution of strain energy density (es) at
sites 1, 2, and 3 in the above image, respectively. The cross-sections of strip A and B
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Fig. 4. Formation and evolution of three perversions in a single bistrip.
(A and B) Conformations and the corresponding strain energy distribution. A
shows that the symmetric bucklings of the perversions are broken by the
winding of the rightmost perversion where the strip length is reduced by
35%. In B, the energy peaks labeled as 1, 2, and 3 correspond to the per-
versions formed in the buckling. The green arrow in the last figure indicates
energy elevation and therefore repulsion between perversions. The geo-
metric parameters of the strips are w = 9 mm, h= 3 mm, L= 30 cm, and
L′= L=3.5 following the notation labeled in Fig. 1.
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To check the reliability of numerical simulations and to exclude
the possibility that the numerically observed energy focusing
phenomenon is due to any hidden artifacts in simulations, we
perform experiments to substantiate that the perversion structure
is indeed energetically distinguishable from helices. The bistrip
system is created by carefully casting polyethylene melt onto a
prestretched rubber strip; the polyethylene melt becomes an ini-
tially stress-free elastic strip once it is cooled. Fig. 2 C–F shows the
shapes of the bistrip with the controlled shrinking as in Fig. 2A.
The differentials in the energy distribution over the strip are
characterized by analyzing the birefringence of the elastic me-
dium. No birefringence occurs in the initially straight strip (Fig.
2C, Inset). Birefringence patterns start to emerge at both the
perversion (Fig. 2E) and the helical regions (Fig. 2F). Closer ex-
aminations show that in the perversion region the colored pattern
only spreads around the edge of the prestretched strip, whereas at
the helical region, the pattern distributes smoothly across the strip.
To conclude, the distinct optical responses in the perversion and
helical regions reflect the energetically distinguishable local states.
We resort to numerical simulations to perform quantita-

tive analysis of the strain energy distribution over the strip, as
the optical patterns in experiments can only reveal limited in-
formation. The distinct birefringence patterns in Fig. 2 E and F imply
different modes of transferring strain energy over the cross-section
from the high-energy prestretched strip to the other one in contact.
Fig. 3 illustrates the energy distributions over the cross-sections at
typical sites at the bistrip. In the helical region labeled “1” in Fig. 3,
the strain energy is evenly distributed along the interface. At the edge
of the perversion labeled “2,” the distribution of the energy over the
cross-section at the side of the strip B is similar to that in the helical
region, whereas in the cross-section of strip A the strain energy
mostly concentrates at the lower-left corner attached to strip B. This
trend is more pronounced over the cross-section at the center of the
perversion labeled “3;” the strain energy in strip A is focused on the
left side, whereas at the side of strip B the strain energy is concen-
trated at the upper-right corner where strip B is highly squeezed. To
conclude, the strain energy is transferred highly unevenly within the
perversion from strip A to strip B compared with that in the helical
region. In other words, in the perversion region the transferred en-
ergy distribution in strip B is obviously uneven. Similar patterns are
found in more cases in substantiation for this conclusion and the
relevant results are presented in Fig. S5. The obvious discontinuity in
the strain energy distribution over the thickness of the bistrip system
in Fig. 3 suggests that the basic features in the deformation of the
bistrip system cannot be fully captured by a 2D elastic model.
We study the case of multiple perversions on a single bistrip.

These can be introduced by adjusting the geometric parameters

of the strip and the loading rate. Fig. 4A shows that the mirror
symmetry of the system is broken while the three perversions are
winding around themselves (see the last two conformations). Spe-
cifically, the broken mirror symmetry results from asynchronous
rotation of the two perversions at the sides of the central perversion.
As in the case of single perversion, all three perversions are ob-
served to wind around themselves to shrink the strip length to fit the
boundary condition and to reduce the energy of the system. The
longitudinal energy distribution in Fig. 4B reveals the repulsive
nature of the perversion–perversion interaction; the elevated energy
profile between the perversions 1 and 2 in Fig. 4B is an indicator of
repulsive interaction. Although the exact energy–distance relation is
difficult to define in this system, the repulsion is expected to be
short-ranged because we can only observe the energy elevation
when the perversions are closer enough with each other. The shape
evolution under quasi-static loading demonstrates the repulsion of
perversions: The rightmost perversion rotates approximately 360°
more than the other two whereas the end-to-end distance of the
bistrip is reduced from 23.3 to 13.9  cm. This process pushes
the central perversion to move toward the leftmost perversion. The
energy focusing phenomenon is also observed in the multi-
perversion systems. The condensation of the strain energy over all
of the perversions suggests that the energy focusing feature is an
intrinsic property of the perversion structure. The geometric con-
formation of the central perversion is different from the other two
perversions as shown in Fig. 4A. Consequently, the energy peak 1 in
the energy profile of Fig. 4B corresponding to the central perversion
is more focused and much higher than the other perversions.
We also explore a distinct routine to introduce the mechanical

incompatibility over the bistrip system and observe unexpected
behaviors of emergent perversions not found in the prestretched
bistrips described above. Specifically, we use a precompressed strip
to replace the prestretched one in the bistrip. We find that further
compression of the precompressed bistrip introduces perversions;
around 20 perversions form when the bistrip length shrinks by only
a tiny amount (∼ 1%), as can be seen in Fig. 5A. During the
controlled shrinking of such a bistrip system, we numerically ob-
serve the merge of neighboring perversions and the development
of an ordered helical section (Fig. 5B). Remarkably, through this
perversion annihilation mechanism, combined with the aforemen-
tioned winding behavior, perversions over a single bistrip can self-
assemble to form some highly ordered linear structure, dubbed
“perversion lines” as shown in Fig. 5C.
Perversions are the emergent defects in the helical prestressed

bistrip. The spontaneous formation of the perversion line from
individual perversions (as shown in Fig. 5C), which are defects
themselves in an otherwise uniform helical structure, is strongly
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Fig. 5. Formation and evolution of the perversions in a bistrip where one of the strips is precompressed. (A) Eighteen perversions emerge when two ends of
the bistrip approaches. (B) In the right half of this bistrip, the two perversions in the red dashed boxes annihilate and coalesce into the nearby perversion.
(C) Ordered perversion line structure (labeled in the black dashed box) eventually formed when the moving end is close enough with the other one. The
geometric parameters of the strip are w = 3 mm, h= 3 mm, L= 30 cm, and L′= 75  cm following the notation labeled in Fig. 1.
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analogous to the self-organization of individual disclinations to
form ordered compound defects like scars and pleats over curved
crystals (27–29). Note that the coalescence of perversions is not
observed when their separation exceeds about two helical periods in
the surveys of typical bistrip systems. In contrast, by uniformly
stretching the precompressed bistrip, we numerically observe a se-
ries of dynamical events: the initial reduction of the amplitude of
the out-of-plane deformation patterns (Fig. S6 A and B), the co-
alescence and annihilation of neighboring perversions (Fig. S6 A–
C), and the reduction of the number of resulting helical periods
(Fig. S6D). Obviously, external stretching significantly facilitates the
unknotting of perversions. To conclude, the examination of the
precompressed bistrip system reveals physics of perversions not
found in the prestretched bistrips, including the coalescence of
neighboring perversions that is crucial for the formation of ordered
perversion lines.
We further investigate the essential material features that are

crucial for producing the helical and perversion structures to break
the symmetry. It is obvious that the prestretching in one of the
strips in the bistrip system provides the driving force for the de-
formation of the entire system due to the elastic instability. Further
simulations show that the geometries of the strips’ cross-sections
can also critically control the resulting deformation patterns. In the
preceding discussions, we focus on the bistrip system where the two
strips in their relaxed states have an identical cross-section profile.
The cross-section of the prestretched strip shrinks as schematically
shown in Fig. 1B due to the small volume compressibility of the
material, leading to the geometric asymmetry. In addition, the
prestretched strip breaks the up–down symmetry in the stress state
of the bistrip system. It is natural to ask if these preexistent
asymmetries are responsible for the out-of-plane deformation of
the entire bistrip and the emergence of the helical structure.
To address this question, we first prepare a bistrip system as il-

lustrated in Fig. 6B. In contrast to Fig. 6A, the upper strip, in its
prestretched state, has the same cross-section profile as the lower
one. We numerically observe the formation of helical structure over
such a bistrip with the reduction of the end-to-end length. Therefore,
the asymmetry of the cross-section width in the bistrip system can be
excluded to be responsible for the formation of helical structures.
Furthermore, we prepare tristrip systems that preserve the up–down
symmetry in the initial state (Fig. 6 D and E). In both systems, the
tristrips are numerically observed to buckle and form a V-like shape
with the reduction of their lengths; no helical shapes are numerically
observed. When the thickness of an outer strip in the tristrip system
is reduced to be sufficiently small (Fig. 6C; Fig. 6B can be regarded
as the case where an outer strip is of zero thickness), helical

structures appear again over such a tristrip system with the broken
up–down symmetry.
These numerical results are still not sufficient to conclude that the

asymmetry of the cross-section thickness controls the formation of
helical structures. It is well known that the bending of elastic plates
or shells strongly depends on the thickness. To clarify whether it is
the total thickness of the tristrip system or the differences between
the two outer strips that determines the helical deformation, we
simulate the system in Fig. 6F with the up–down symmetry but much
thinner outer strips compared with the one in Fig. 6C. Similar to the
case of Fig. 6 D and E, no perversions are observed. The strips only
buckle to a V-like shape with slight twisting around the center.
Therefore, we can conclude that the up–down asymmetry in the strip
thickness is more crucial to the emergence of the helices and per-
versions than the total thickness of the strip system.

Conclusions
This study uncovers several intrinsic properties of perversions that
naturally occur to release stress in designed heterogeneous elastic
bistrips. Besides playing a fundamental role as a generic domain wall
that connects states of distinct symmetries, perversions exhibit richer
physics in the 3D elastic system. Specifically, we numerically observe
the strain energy condensation over perversions during their for-
mation, which is well confirmed in our designed experiments. We
further identify distinct modes of energy transfer from a stretched
strip to an initially unstretched one, and the repulsive nature of
perversion–perversion interaction. Examination of the precom-
pressed bistrip system reveals the coalescence of neighboring per-
versions which is crucial for their self-assembly into a highly ordered
linear defect structure; it is in strong analogy with the formation of
scars and pleats out of the elementary crystallographic defects in
curved crystals. These intrinsic properties of perversions may be
applicable to understanding and designing micromuscles and soft
robotics where perversions can be introduced in relevant helical
structures to realize desired functions. Perversions as defects in the
helical state may also share the common attributes of defects in
generic ordered phases, so there is much room for further explora-
tion, notably regarding their possible coalescence, annihilation, and
intriguing interactions in response to various external constraints.

Materials and Methods
The buckling analysis is performed using the BuckleModule in Abaqus/Standard
using the 3D linear reduced integration elements (C3D8R). The buckled shapes
are then seeded as imperfections in the postbuckling simulations. The explicit
dynamical finite-element analysis is performed in Abaqus/Explicit using C3D8R
elements. The quasi-static condition is satisfied by carefully controlling the slow
approach of the two anchored ends such that the kinetic energy of the system is
negligible compared with strain energy. The mesh of the elastic medium is
sufficiently refined to ensure that the total strain energy is converged.

The experimental setup mounts the stretched band in the path between the
light source and the detector, which are well placed in advance. Two polarizing
filters are placed one each on the light source and detector. Polarizing filters are
placed facing each other and rotated in plane such that there is a 90° offset in
filter direction. This filters out any nonbirefringent light. Each sample is prepared
by casting polyethylene melt onto a prestretched rubber band and allowing it to
cool to room temperature so that the solidified polyethylene is in a stress-free
state. While this bilayer is still in the stretched state, excess polyethylene material
is trimmed as quickly as possible with a heated razor to avoid any residual
processing artifacts. This procedure produces the initial difference in the stress
states over the two strips, which in turn causes formation of helical and per-
version structures with the controlled reduction of the bistrip length. Poly-
ethylene is an ideal candidate to use in observing the stress-driven birefringence
phenomena. We use the commercially available polyethylene hot glue sticks and
rubber bands of the Up & Up brand. A commercially available modified Room
Essentials white light-emitting diode lamp provides a polarized, coherent light
source for demonstrating the birefringence phenomena. For our detector, we
use a SONY alpha 6000Mirrorless digital single-lens reflex camera, with the key
parameters: ISO 400, shutter speed 1/60 s, and F-stop of 32. The F-stop is set to
maximum to reduce incoherent light to the fullest possible extent. A macro lens
is mounted to obtain close-up images.

A B C

D E F

Fig. 6. Cross-section profiles of the strips inspected. The orange color of the
strips indicate prestretching state; blue strips are stress-free in the initial state. As
indicated by the ticks and crosses at the lower-right corner of each figure, A–C can
produce helices and perversions, whereas D and E only deform to V-like shape.
The geometric parameters of the strips are w0 = 9 mm, w is the width after
prestretching, and w′ can vary from 5.4∼ 6.3 mm, h= 3 mm, and h′= 0.2 mm.
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