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The engineeringof defects in crystallinematter has beenextensively
exploited tomodify themechanical andelectrical properties ofmany
materials. Recent experiments on manipulating extended defects in
graphene, for example, show that defects direct the flow of electric
charges. The fascinating possibilities offered by defects in two
dimensions, known as topological defects, to control material pro-
perties provide great motivation to perform fundamental inves-
tigations to uncover their role in various systems. Previous studies
mostly focus on topological defects in 2D crystals on curved surfaces.
On flat geometries, topological defects canbe introducedviadensity
inhomogeneities. We investigate here topological defects due to
size polydispersity on flat surfaces. Size polydispersity is usually an
inevitable feature of a large variety of systems. In this work, simu-
lations showwell-organized induced topological defects around an
impurity particle of a wrong size. These patterns are not found in
systems of identical particles. Our work demonstrates that in poly-
dispersed systems topological defects play the role of restoring
order. The simulations show a perfect hexagonal lattice beyond a
small defective region around the impurity particle. Elasticity theory
has demonstrated an analogy between the elementary topological
defects named disclinations to electric charges by associating a
charge to a disclination, whose sign depends on the number of its
nearest neighbors. Size polydispersity is shown numerically here to
be an essential ingredient to understand short-range attractions
between like-charge disclinations. Our study suggests that size
polydispersity has a promising potential to engineer defects in
various systems including nanoparticles and colloidal crystals.
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The curiosity of human beings regarding crystals can be traced
back to Ancient Greece when Theophrastus, a student of

Aristotle, adapted the idea of atoms developed by Democritus
et al., to explain the formation of crystals in his treatise, On
Stones (1). The inquiry into the remarkable ability of interacting
elementary units to spontaneously form regular structures, the
mechanism of crystallization, has lasted until now (2–4). In the
past decades, much effort has been directed to 2D crystals on
spatially curved surfaces and such systems have exhibited fea-
tures not found in the corresponding phase for planar or flat
space systems (4, 5). The richest confluence of theoretical and
experimental ideas in the area of 2D crystals has significantly
enhanced our understanding of crystallization (3, 6). Specifically,
topological defects have been identified as an essential ingre-
dient to impair regular crystalline order (4, 5, 7), and they are
found to be highly involved in many physical processes, notably
in 2D crystal melting (8–10). The elementary topological defects
in 2D hexagonal lattices are disclinations, which are vertices
surrounded by n nearest neighbors with n≠ 6. The disclinations
disrupt the local order of sixfold rotational symmetry and appear
as points of local n-fold symmetry. Elasticity theory has dem-
onstrated an analogy of the interaction between disclinations to
the interaction between electric charges by associating a charge
q= ð6− nÞπ=3 to a disclination, which is positive if n< 6 and
negative if n> 6, with attraction between oppositely charged
disclinations and repulsion among like-charge disclinations.
Disclinations are building blocks for a variety of defect motifs

such as dislocations (5, 7), scars (11), and pleats (12). Recently,
crystalline colloidal arrays confined on capillary bridges with
variable Gaussian curvatures have been studied experimentally
and theoretically (12–14). The fascinating particle fractionaliza-
tion event is observed where an interstitial is fissioned into two
dislocations (topological dipoles composed of a pair of oppo-
sitely charged disclinations) that are later absorbed by other
defects; in this event the role of defects switches from order dis-
rupting to order restoring (14). Moreover, the practical applica-
tion of defects in 2D materials is well exemplified by a previous
study where extended defects are introduced into the graphene
lattice to control the charge distribution serving as a metallic wire;
such wires might be potential building blocks for atomic-scale, all-
carbon electronics (15).
Previous studies mainly focus on the curvature-driven defects

in 2D crystals where the interacting particles are identical and
evenly distributed on curved surfaces (4, 5, 11, 12). Recent work
shows that even on flat geometries topological defects can be
introduced via the long-range interaction-driven density inhomo-
geneity in the otherwise regular particle arrays (16), suggesting the
intimate relation between the topological defects and the spatial
variation of the distance between neighboring particles. We are
therefore led to using size polydispersity to introduce density in-
homogeneity and thus the topological defects; this routine is more
direct and easier to manipulate in comparison with using long-
range potentials. Nonuniform size of particles in contact naturally
introduces the spatial variation of density. It is straightforward to
see that in the condensation of particles to form 2D crystals, the
coordination number of larger particles surrounded by identi-
cal smaller particles tends to exceed six, destroying the regular
hexagonal crystalline lattice. Practically, size polydispersity is an
important, usually inevitable feature of a variety of real systems
such as granular materials (17), nanoparticles (18), and colloidal
crystals (19). It can significantly influence the physics in many
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aspects including crystallization (20), granular dynamics (21), and
adsorption (22), and may even kinetically inhibit the formation of
regular phases (18).
The fabrication of soft particles including colloids and nano-

particles with functionalized surfaces (23–25), nanogel-colloids
(26–28), as well as the extensive use of micelles and amphiphilic
self-assembled fibers (29) to create materials with unique prop-
erties, has opened new fundamental questions regarding topo-
logical defects and polydispersity effects in systems with soft
potential interactions. An ideal deterministic hard-disk model
with controllable amount of particles with the “wrong” size has
been proposed to study topological defects in polydispersed
systems; the geometric rule organizes the growth of the cluster of
hard disks during which topological defects are developed (30).
The softening of the hard-sphere potential creates richer energy
landscapes that allow the system to explore various energy basins.
It is of interest to study the effect of such a relaxation on topo-
logical defect structure. Indeed, soft particles represent an impor-
tant class of materials used to generate several non–close-packed
crystalline structures inaccessible via the excluded volume in-
teraction (31).
In this work, we study the topological defect structures in a 2D

model system of soft spherical particle arrays. Through a simu-
lated annealing Metropolis Monte Carlo simulation procedure
(32), we observe the transition of the stress distribution around
the impurity particle from an isotropic to a branched pattern. To
release the accumulated stress, topological defects finally pro-
liferate when the size of the impurity particle exceeds some
critical value. With further expansion of the impurity particle,
the defect motif evolves from neutral quadrupole to trapped
disclination at the site of the impurity. In polydispersed particle
systems, we identify a distinct screening mode from that in iden-
tical particle arrays on curved surfaces (33). This screening sce-
nario is phenomenologically similar to the screening of electrically
charged entities by counterions in electrolyte solutions. By pushing
this analogy further, we find the short-range attraction between
trapped like-charge disclinations mediated by the nearby topo-
logical charges. Moreover, we demonstrate that size polydispersity
is able to transform a square lattice to a hexagonal lattice; the
featured screening mode is also found in the resulting defective
hexagonal lattice. Our study suggests the utility of size poly-
dispersity to precisely control the locations of disclinations and
the implications to realizing flexible engineering of defects in 2D
systems that can find potential applications in relevant contexts.

Results and Discussion
The model system is composed of elastic spherical particles con-
fined on a flat surface. According to classical elasticity theory (31,
34), the elastic energy penalty associated with an axial compres-
sion of two deformable spheres conforms to a power law whose
exponent is 5=2, i.e., the Hertz potential:

V ðrÞ=
(

e
�
1−

r
σ

�5=2
r≤ σ

0 r> σ;

where σ is the average diameter of the two contact particles, r is
the interparticle distance, and the energy scale e is set to be unity
in simulations. The Hertzian model has been used to disclose
rich phases in the packing of soft particles confined on interfaces
(31). To highlight the topological defects solely induced by im-
purity particles, we prepare a stress-free and defect-free initial
state where all of the particles with a uniform diameter σ0 sit on
the lattice sites of a 2D hexagonal or square crystal whose lattice
constant is σ0, i.e., any particle is mutually circumscribed with its
nearest neighbors. To introduce size polydispersity, we pick up
a particle from the constructed crystal patch and change its size

to σimpurity =Γσ0. For each given Γ, we perform annealing Monte
Carlo simulation to identify the low-energy configuration. The
technical details of the algorithm are presented in SI Text. In
simulations, the particles are confined within the hexagonal or
square walls. Note that an impurity particle only modifies the
arrangement of nearby particles as observed in simulations; the
regular crystalline lattice beyond a modest distance from the im-
purity particle is observed to be well protected by the induced
topological defects. The boundary effect is therefore negligible
for all crystal patches analyzed in this work considering that the
particles near the boundary are immobile in the energy relaxation
processes (the underlying reason is presented in the discussion of
Fig. 2). To further confirm that the influence of the boundary on
the response of the system to impurity particles can be excluded,
we perform simulations using the alternative periodic boundary
condition and the key results are reported in SI Text. Therefore,
the behaviors of the system are critically controlled by the param-
eter Γ and are independent of the total number of particles N. In
small crystal patches, the boundary may interact with the impurity
particles. Although of intrinsic interest as a boundary-driven phe-
nomenon, it is not our primary focus in this work.
Simulations indicate that in response to the increase of the size

of the central impurity particle, the hexagonal lattice system
experiences elastic and plastic deformations in sequence, char-
acterized by the appearance of topological defects. The distri-
bution of the strain energy is almost isotropic for Γ< 2. Fig. 1A
shows the stressed region (purple) for Γ= 1:3. The angularity and
protrusions in the pattern may be attributed to the discreteness
of the system. Fig. 1B shows the energy of individual particles on
the horizontal line passing through the impurity particle in Fig.
1A, where the impurity particle is located at x= 10. The spatial
variation of the particle energy is well fitted by the power law
E∼ r−2, where r is the distance from the central impurity particle.
The total energy versus the system size therefore follows a logarithm

A B

C D

Fig. 1. Impurity particles represented by circles of larger sizes induce stresses
on surrounding particles which are colored. The branching of the stressed
colored region occurs as Γ increases from 1.3 (A) to 4.0 (C). The decay of the
particle energy away from the central impurity particle is plotted in B for
the system A, where x = 10 prescribes the location of the impurity particle.
The energy, which is measured in the unit of e defined in the expression for
the Hertz potential, is rescaled by a factor of 104, and the x axis is in the unit
of σ0. The two curves conform to a power law. The branched structures
around two impurity particles are shown in D for Γ=3:0. The number of
particles is N= 1,261 (A and C) and N= 2,791 (D).
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law. According to the continuum elasticity theory, the elastic
energy created by dislocations also conforms to the logarithm law,
suggesting that the effect of the impurity particle in our system is
similar to that of dislocations (4). In contrast, the elastic energy of
a disclination increases with the system size in a square law (4).
As the value for Γ exceeds about 2.5, we find an obviously

branched stressed region with the sixfold symmetry; this is a solu-
tion beyond the isotropic solution in continuum elasticity theory
(34). Fig. 1C shows the case of Γ= 4:0. We notice that the stress
almost vanishes at the tips of the arms. The influence of the
boundary on the stressed region is therefore negligible. These
symmetric branched patterns are also found in systems whose
size ranges from N = 331 to N = 2,791. In addition, we in-
troduce two impurity particles, as shown in Fig. 1D, and find
that the associated branched patterns surrounding each impu-
rity particle are almost uncorrelated beyond a modest distance.
The two rhombic patches separated by the dashed lines in Fig.
1D can therefore be regarded as independent crystals. The
orientation and symmetry of the pattern is preserved in both
hexagonal and rhombic boundary shapes regardless of the posi-
tion of the impurity particle. These numerical observations in-
dicate the robustness of the symmetric branched structure. The
sixfold symmetry of the branched pattern seems to originate
from the local hexagonal arrangement of particles around the
impurity particle; in simulations of square lattices we observe
stressed regions of fourfold symmetry.
The growing central impurity particle finally leads to irregular

rearrangement of nearby particles, as shown in Fig. 2 A–C where
the connected dots represent the centers of particles. These ir-
regularities are analyzed in terms of topological defects by in-
troducing the Delaunay triangulation (35). The appearance of
topological defects signifies the occurrence of plastic deforma-
tions. Fig. 2 A–C shows that an impurity particle locally disturbs
the lattice; the red hexagonal boxes in Fig. 2 separate the de-
fective and the unaffected regions. This confined perturbation
can be attributed to the topological charge neutrality within
these red hexagonal boxes, as required by the topological con-
straint (4). In contrast, in 1D systems the stress from an impurity
particle can always be propagated to the boundary. This is an
interesting observation in the sense that the induced topological
defects protect the order of the larger perfect hexagonal lattice
at the price of sacrificing the order in the region of limited size
near the impurity particle. This is in sharp contrast with the
conventional order-disrupting role of defects in many physical
processes like 2D crystal melting (8–10).

As in crystalline particle arrays on curved geometries where
the variation of curvature induces the evolution of defect pat-
terns (12, 13, 36), increasing the parameter Γ in our planar sys-
tem can generate rich defect motifs, including those not observed
on curved surfaces. Neutral topological defects start to emerge as
Γ reaches 2.2 in the hexagonal system (Fig. 2A); this is a quad-
rupole with vanishing Burger’s vector (Fig. 2A) that has little
effect on its surrounding environment (4). To show this point, in
simulations for the hexagonal system of Γ= 2 we find three al-
most-degenerate states with no defects, one quadrupole, and two
separated quadrupoles, respectively. Their energy difference is
as slight as below 0:3%. As Γ increases to Γcritical ≈ 2:55, the
central impurity particle possesses a negative topological charge
that is screened by bounding topological defects, including the
three compound 5-7-5 topological charges (scars of net topo-
logical charge + π=3) (Fig. 2B). This observation conforms to the
topological constraint that the total topological charge of a to-
pologically planar triangulated cluster is always 2π regardless of
its shape (4). The six + π=3 disclinations are located at the six
corners of the hexagonal lattice, so the total topological charge
of interior disclinations is zero, as demonstrated in Fig. 2. Note
that the topological charge of a boundary vertex is defined by
q= ð4− nÞπ=3, where n is the number of nearest neighbors (4).
The “charging” of the central impurity particle is energetically
favored; the squeezed-out topological charges make the dip in
the energy profile as shown in Fig. 3A. Topological defects are
also found in simulations of hard disks in ref. 30, where the
arrays of hard disks are generated via a deterministic packing
algorithm; successive particles are brought into contact with a
growing cluster such that they are as close as possible to the
center of the seed configuration. Based on the numerical ob-
servation that hard-sphere arrays are often relaxed by imposing
a softer potential, it is conjectured in ref. 30 that topological
defects might annihilate each other (or move to the boundary) by
softening the potential. Our simulations show that the softening
of the potential does facilitate the annihilation of defects. Con-
sequently, the softening of the potential significantly delays the
appearance of quadrupoles and the trapped central disclination
until Γ= 2:2 (in comparison with Γ= 1:14 in hard-particle sys-
tems) and 2.55 (Γ= 1:3 in hard-particle systems), respectively.
This delay in the appearance of the trapped disclination due to
the softened potential is also observed in the system where the
impurity particle is smaller than other particles. In simulations,
we observe the trapped positive disclination for Γ< 0:2 in

Fig. 2. Growing impurity particle size leads to the emergence of topological defects. The vertices in the plot represent the centers of particles, and the
disclinations are indicated by colored dots; red for fivefold disclination, blue for sevenfold disclination, black for eightfold disclination, and orange for
ninefold disclination. These topological defects impose confinement on the propagation of the defective region and thus protect the larger hexagonal lattice
beyond the red boxes. (A) Γ=2:2, (B) Γ= 2:55, and (C) Γ= 8:0. The topological charges at the central impurity particles are (A) 0, (B) −π, and (C) −4π, re-
spectively. The number of particles is N= 1,261.
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a slightly prestressed system in contrast with Γ≈ 0:7 in hard-
particle systems.
Microscopically, the reduction of the system energy results from

a series of instability events through which particles near the center
of the system are inevitably squeezed to approach the growing
impurity particle, as observed in simulations. These events increase
the neighbors of the impurity particle and it therefore gains a
negative topological charge. Note that the mechanism of impurity-
driven defects is similar to that of curvature-controlled prolif-
eration of defects. Both impurity particles and the curvature
appear as sources in the biharmonic equation for the Airy stress
function, whereas the emergence of topological defects is to re-
duce the stress (37). Geometrically, a positive (negative) dis-
clination can be intuitively understood by removing (inserting)
a wedge from a flat lattice (4). An isolated disclination in a flat 2D
system is therefore highly energetically unfavored and screening
mechanisms should follow to reduce the energy of the system. As
a well-established screening mechanism by experiment (11, 38),
theory (5), and simulation (33), a cloud of radiating grain bound-
aries emerges in response to an isolated disclination on both posi-
tively and negatively curved surfaces.
Our simulations disclose a fundamentally different screening

mode in polydispersed systems in the sense that this mode is highly
energetically unfavored to exist in systems of identical particles. In
this distinct screening scenario, a multivalent disclination of to-
pological charge −zπ=3 trapped at the site of the impurity particle
is bounded by z oppositely charged topological compounds (scars)
(e.g., see Fig. 2B at Γ= 2:55) or isolated disclinations (e.g., see Fig.
2C at Γ= 8:0); the net topological charge remains zero. The
principal stress generated by the disclination is screened by these
surrounding topological charges. Further away from the central
disclination, we find scattered neutral compound defects and
isolated dislocations screening the residue stress; they proliferate
with the growing impurity particle, without contributing to the
total topological charge within the hexagonal boxes in Fig. 2 A–C.
These plastic deformations effectively inhibit the propagation of
the irregularity in the particle arrangement near the large impurity
particle, and the regular hexagonal structure beyond the red
hexagonal boxes (in Fig. 2 A–C) is well protected.

Systematic simulations for system size ranging from N = 331 to
N = 2,791 indicate that this basic screening scenario composed of
bounding disclinations (or scars) and scattered neutral defects is
preserved in a wide range of the values for the parameter Γ. On
the basis of this observation, we speculate that the true ground
state also possesses such a basic screening mode. Note the
phenomenological similarity of the distribution of bounding and
scattered topological charges around a multivalent disclination
and that of counterions around a charged object in electrolyte
solutions, despite the difference in their respective system dimen-
sions. Qualitatively, the binding of topological charges to the
trapped large disclination is like the condensation of counterions
on charged macromolecules in solutions (39).
The similarity of the screened large disclination and the screened

charged sphere in solution may be pushed further to explore the
role of topological defects. In particular, like-charge attractions
mediated by counterions have been observed in strongly charged
polyelectrolyte solutions (40, 41) due to short-range correlations
of electrostatic origin (42–45). The elasticity theory of topological
defects has revealed that, similar to electric charges, disclinations
of like sign repel and those of unlike sign attract (4). It is there-
fore natural to ask if two disclinations of the same sign can also
attract under some conditions. Fig. 3 B–D shows the variation of
the system energy with the separation of two large impurity par-
ticles for Γ= 1:5 (Fig. 3B), 2 (Fig. 3C), and 2.5 (Fig. 3D), re-
spectively. With the reduction of the distance, the energy profile
falls beyond a slight barrier in Fig. 3 C and D, indicating a short-
range attraction between the two like-charge disclinations. In
simulations, we notice that both impurity particles are topologi-
cally charged and induced defects proliferate around when their
separation d is less than 10σ0 and 12σ0, respectively. These critical
separations exactly correspond to the maximum energies as in-
dicated by the vertical arrows in Fig. 3 C and D. Fig. 4 shows the
evolution of the defect pattern as well as the stressed region when
the two impurity particles approach from d= 12σ0 (Fig. 4A), 10σ0
(Fig. 4B) to 6σ0 (Fig. 4C) for Γ= 2:5. In the range of parameters in
Fig. 3 B–D, the stressed region never reaches the boundary, so the
influence of the boundary can be excluded to account for the at-
traction. Therefore, the short-range attraction of the two impurity

Fig. 3. Dependence of the energy on the size of the impurity particles as well as their separation. (A) The energy vs. the size of the impurity particle Γ, where
the dip of the energy profile at about Γ= 2:6 signifies the emergence of the trapped disclination at the impurity. (B–D) The energy vs. the distance between
two impurity particles. (B) Γ=1:5, (C) 2.0, and (D) 2.5. The distance is measured in the unit of 2σ0. The energy is measured in the unit of e defined in the
expression for the Hertz potential.
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particles can be attributed to the mediation of induced defects,
whereas their appearance is in response to the accumulated and
enhanced stress around the impurity particles with their approach.
The critical stress for the emergence of defects relies on the in-
teraction between particles according to simulations of the single
impurity systems. The short-range attraction that is accompanied
by the proliferation of topological defects is also numerically ob-
served in systems of multiple impurities, as reported in SI Text.
These results further confirm the scenario of defects-mediated
short-range attraction between like-charge disclinations.
Note that although like-charge attraction is observed in both

systems of electric charges and topological defects, the underlying
physics is distinct. Besides the quantitatively different interaction
potentials between charges in these two systems (4), the anom-
alous like-charge attraction in solutions is due to the correlation
induced by counterions (42–44), whereas the reduction of energy
in the approach of disclinations originates from the release of the
accumulated stress via the induced defects. Another fundamental
difference between these two systems is that the number of to-
pological charges is generically not conserved whereas the electric
charges in solutions are conserved. To observe the attraction of
impurity particles, the parameter Γ has a lower bound value be-
low which the system is free of defects and no attraction occurs as
shown in Fig. 3B for Γ= 1:5. Indeed, several simulations for
varying Γ and N suggest that to make two impurity particles at-
tractive at short separations they must be topologically charged.
On the other hand, the preexistent defects when the two im-
purity particles approach may obscure the short-range attrac-
tion, as has been seen in the system of Γ= 3, which is larger
than the critical value Γcritical ≈ 2:55. Simulations estimate a win-
dow of Γ∈ ð1:5; 2:55Þ to observe the short-range attraction of
impurity particles.
We proceed to explore the effect of growing impurity particle

size in square lattices where the initial state is also stress-free.
Fig. 5A shows the variation of the energy with the growth of the
impurity particle centered at a square lattice. The sudden fall of
the energy profile at Γc = 1:4 signifies a transition from the
square lattice to the hexagonal lattice. The cross-like stress dis-
tribution in the square lattice as illustrated in Fig. 5A (Inset) is
completely released in the lattice transition at the price of the

proliferation of topological defects. The phenomenon of sudden
release of stress via proliferation of defects is also found in
several distinct contexts, including the dislocation theory on the
mechanism of earthquakes, which involves the appearance of
dislocations under the prevailing stress in the earth’s shell (46,
47). Note that in a prestressed system where the diameter of the
particles σ0′ is larger than σ0, the diameter at which the particles
are mutually circumscribed, a slight expansion of the impurity
particle by 1% can trigger the square to hexagonal transition, as
has been tested in systems with σ0′=σ0 ∈ ½1:1; 1:5�. Fig. 5B shows
the preservation of the featured screening mode in the collapsed
state. The defects along the boundary are due to the edge effect.
Note that the cross-like stressed region does not need to reach
the boundary of the crystal patch to trigger the lattice transition.
It suggests that an impurity particle can even induce the trans-
formation of an infinitely large square lattice. The collapse of a
larger square lattice of N = 1;681 at the same critical value
Γc = 1:4 has been numerically observed, where isolated dis-
locations are connected to form long grain boundaries extending
to the boundary of the crystal that divide the whole system into

Fig. 4. Evolution of topological defect motifs and the stress patterns with the approach of the two impurity particles. The vertices in the plot represent the
centers of particles. (Upper) Arrangement of nearby particles around the impurity particles. Disclinations of different types are distinguished by colors; red for
fivefold disclination, blue for sevenfold disclination, black for eightfold disclination, and orange for ninefold disclination. (Lower) The corresponding stressed
regions. The energy of the system is reduced from A to B with the mediation of defects. (A) d = 12σ0, (B) 10σ0, and (C) 6σ0. Γ= 2:5.

Fig. 5. Size polydispersity drives the transformation from a square lattice to
a hexagonal lattice. (A) The plot of energy vs. Γ. The kink at Γ= 1:4 signifies
the transition from the square lattice (Inset; the green horizontal lines are to
indicate the regularity of the square lattice) to the hexagonal lattice. The
energy is measured in the unit of e defined in the expression for the Hertz
potential. (B) The defective hexagonal lattice at Γ= 2:5, where the featured
screening mode is preserved. The number of particles is N= 441.
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several domains. Fig. 5A shows that with the increase of the size
of the impurity particle beyond Γ= 4, the system regains stress.

Concluding Remarks
In this work, we study the topological defect structure underlying
the frustrated particle arrangement around impurity particles. The
geometric incompatibility of impurity particles and the remaining
particles leads to the characteristic organization of topological
defects in the screening mode identified in simulations. These in-
duced topological defects play the role of order restoring; the larger
perfect hexagonal lattice beyond the defective region of limited size
is well protected. Moreover, topological defects are involved in
the short-range attraction of disclinations of the same sign, which
are observed numerically. This work may have implications to

understanding various size polydispersity-related effects. For
example, in heterogeneous crystallization, with the involvement
of topological defects, the geometry of the impurity seed particle
can significantly influence the kinetic pathway (48, 49). Fur-
thermore, in metallurgy, impurity atoms of different sizes have
been introduced into metals to improve their mechanical prop-
erties; these impurity particles can annihilate the stress around
preexistent dislocations that increases the metal strength and
reduces plasticity (7).
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