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In this paper we derive the general equilibrium equations of a polymer chain with a noncircular cross section
by the variation of the free energy functional. From the equilibrium equation of the elastic ribbon we derive
analytically the equilibrium conformations both of the helical ribbons and the twisted ribbons. We find that the
pitch angle of the helical ribbons depends on the ratio of the torsional rigidity to the bending one. For the
twisted ribbons, the rotation rate depends on the spontaneous torsion, which is determined by the elastic
properties of the polymers. Our results for helical and twisted ribbons strongly indicate that the formation of
these structures is determined by their elastic properties.
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The equilibrium conformation of biopolymers and fila-
ments is an important issue in molecular and cellular biology,
and polymer physics �1�. For example, earlier theoretical
models used elastic theory to describe the conformation of
vital biomolecules such as proteins and DNA �2–6�. In gen-
eral, such models of polymer chains involve the use of elas-
tic coefficients, which describe the elastic properties of ma-
terials. However, up to now most models of polymer chains
have only considered circular cross sections. The need to
improve on these models by introducing the significant ef-
fects of geometry is obvious. For example, recently there
have been numerous experimental observations of polymers
with noncircular cross sections such as chemically defined
lipid concentrate �CDLC� �7–10�, gemini surfactants �11�,
synthetic nonracemic chiral polymers �12,13�, and carbon
nanotubes �14�. During the past decade there have been some
theoretical attempts made to account for the effects of geom-
etry in order to improve models. The helical structures of
tilted chiral lipid bilayers were investigated by using a free
energy model without considering the cross section �15�. The
stretching instability of helical ribbons was discussed by us-
ing continuum phenomenological elastic models �16,17�. The
transition between the helical and twisted ribbon structures
of chiral materials has been studied both using continuum
elastic theory and lattice Monte Carlo simulations �18,19�.
For polymer chains with noncircular cross sections, the ther-
mal fluctuations on the statistical properties of thin elastic
filaments have also been investigated �20,21�. However, their
equilibrium conformation equations have yet to be presented
in the literature.

In this paper, we focus on polymers characterized by a
nonzero thickness and a noncircular cross section. We
present a general elastic model of polymer chains with non-
circular cross sections and use it to discuss elastic ribbons.
First we consider the free energy density as a general func-
tional of the curvature, the torsion, and the twist angle of a
polymer chain. Then by calculating the variation of the free
energy functional, we obtain the equilibrium conformation
equations of a polymer chain with a noncircular cross sec-
tion. Finally we consider the case of an inextensible elastic
ribbon and look at some special cases. This is used, in turn,
to study the equilibrium conformations of the helical and
twisted ribbons.

In general, a finite polymer chain with a noncircular cross
section in three-dimensional �3D� space is modeled as an

inextensible but deformable space curve parametrized by a
contour length s �0�s�L, where L is the total length of the
polymer chain�. The rotation of the cross section about the
centerline is denoted by twist angle ��s�. The free energy F
of the polymer chain can be expressed as,

F =� F�x�s�,��s��ds , �1�

where F is a scalar free energy density functional and de-
pends on both the position vector x�s� and the twist angle
��s�.

It is well known that the general configuration of a three-
dimensional space curve x�s� can be described by an ortho-
normal triad of unit vectors �ti�s��, where t1 and t2 are ori-
ented along the principal axes of the cross section and t3
=dx /ds is tangent to the curve at point s. The vectors ti
satisfy the generalized Frenet equations, dti�s� /ds
=−� j,k�ijk� j�s�tk�s�, where �ijk is the antisymmetric tensor
and ��i�s�� are the generalized torsion parameters �21�. In
general, the generalized torsions ��i�s�� are determined by
the curvature k, torsion �, and the angle �, as �1=k cos �,
�2=k sin �, and �3=�+d� /ds �21�. The general free energy
F has the form

F =� F���s�,��s�,��s�,�s�s��ds , �2�

where �s�s�=d��s� /ds is the rate of rotation of the cross
section along the centerline of the polymer chain. In other
words, the two neighboring cross sections at a distance ds
rotate by a relative angle d��s�=�s�s�ds. The functional F
will in general involve elastic constants, depending both on
the elasticity of materials and the geometrical shape of the
cross section.

Equation �2� is a general expression of the elastic energy
of polymer chains with noncircular cross sections, which is
also valid for elastic filaments �22�. Taking the variation
�F=0, one can derive the equilibrium conformation equa-
tions of the polymer chains. The variation of the space form
of the polymer chains can be written as follows:

�F = �F1 + �F2 + �F3 + �F4 + �F5, �3�

in which �F1=	F1���s�ds, �F2=	F2���s�ds, �F3

=	F3���s�ds, �F4=	F4��s�s�ds, �F5=	F�ds, and F1
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=�F /��, F2=�F /��, F3=�F /��, F4=�F /��s.
In order to give a more detailed expression of �F, we

must determine the variations ���s�, ���s�, ���s�, and
��s�s�. The variations ���s� and ���s� were obtained previ-
ously by using differential geometry methods �22,23�. Simi-
larly, the variation of the twist angle ���s� is obtained as
follows:

��s�s� =
d

ds
���s� − d��s�

�ds

ds2 = �4� − �s��1 − �2� . �4�

where �i�s� are the variations of the space form of the poly-
mer chain ��x�s�=�i�s�ei�s�, i=1,2 ,3, with the orthonormal
Frenet basis �ei�� and the variation of the twist angle ���s�,
�4, is assumed to be a small quantity.

For the simplest case of a polymer chain which is inex-
tensible, the terms in �F do not depend on the variation E1�s�
along the tangential direction of the curve x�s�. Using Eq. �4�
and the Eqs. �2.20� and �2.27� in Ref. �5�, we can derive the
variation of the free energy from Eq. �3�,

�F =� ds
� d2

ds2
2F2�

�
+ F1� +

d

ds

2F2���

�2 −
3F2��

�
�

+ F1��2 − �2� + F2
2�� −
����

�2 +
��

�
�� − F�

+ �s�F4��2 + � d3

ds3
F2

�
� −

d2

ds2
F2��

�2 � −
d

ds
F2

�
��2

− �2� − 2�F1� − F1�� + F2�� −
2F���

�
��3

+ �F3 −
d

ds
F4��4� = 0. �5�

The equilibrium conformations of the polymer chains are
determined by Eq. �5�, which leads to the following three
conditions:

d2

ds2
2F2�

�
+ F1� +

d

ds

2F2���

�2 −
3F2��

�
� + F1��2 − �2�

+ F2
2�� −
����

�2 +
��

�
�� − F� + �s�F4 = 0, �6�

d3

ds3
F2

�
� −

d2

ds2
F2��

�2 � −
d

ds
F2

�
��2 − �2� − 2�F1� − F1��

+ F2�� −
2F���

�
= 0, �7�

F3 −
d

ds
F4 = 0. �8�

These conformation equations provide a general description
for the equilibrium conformations of the polymer chains with
noncircular cross sections.

Next we apply these results to a particular case—the elas-
tic ribbon. The elastic ribbon is modeled as an inextensible
ribbon whose elastic properties are characterized by the elas-
tic coefficients, including the bending rigidities A and B, and

the torsional rigidity C. Following J. F. Marko �24� and Y.
Rabin et al. �21�, the corresponding free energy density of
this elastic ribbon is,

F = F��,�,�,�s� =
A

2
�2 cos � +

B

2
�2 sin � + C�� + �s − �0�2,

�9�
where �0 is the spontaneous torsion. We work in units with
the temperature kBT=1, so that A, B, and C have dimensions
of length. In general, the coefficients A, B, and C depend on
the elastic properties of materials and the geometry of the
cross section. For isotropic materials, the rigidities can be
expressed in terms of the shear modulus 	, Young’s modulus
E, and the principal moments of inertia, which depend on the
shape of the cross section �25�.

Using Eq. �9� we can investigate the equilibrium confor-
mation of the elastic ribbon. As a simple but illustrative ex-
ample, we consider the case in which the curvature and tor-
sion of the curve x�s� does not depend on s. In order to find
the equilibrium conformation of this ribbon, one first derives
the corresponding equilibrium equations as

�

2
��A + B��2 − 2�A + B − 3C��2 + �A − B���2 − 2�2�cos 2�

− 4C��0 − 2C�0
2 + 8C��� + 2�C + 4�B − A�cos 2����2

+ 4�B − A��� sin 2�� +
4

�
C���3� = 0, �10�

4�A − B����� sin 2� +
2C

�
���2 − �2��� − ��4�� = 0,

�11�

�B − A��2 sin 2� − 2C�� = 0. �12�

The equilibrium conformation of the typical polymer chains
with noncircular cross sections is then determined by Eqs.
�10�–�12�. It is found that two types of ribbons satisfy
Eqs. �10�–�12�: helical and twisted, each of which will be
discussed in detail below.

Helical ribbons. In order to reduce the number of vari-
ables, we consider a ribbon with a highly asymmetric cross
section, B /A→
, in which case the ribbon becomes lamel-
liform and the twist angle of the cross section ��s�=0 �17�.
Thus the equilibrium conformation of the elastic ribbon is
completely determined by an s-independent curvature � and
torsion �. Since a helix is characterized by its radius r and
pitch 2�h, substituting �=r / �r2+h2� and �=h / �r2+h2� into
Eq. �12�, we obtain

3Ch2 + A�r2 − 2h2� − C�0�r2 + h2��2h + �r2 + h2��0� = 0,

�13�

which is the optimal conformation equation for helical
ribbons.

It is seen from Eq. �13� that the conformation of these
helical ribbons depends on the elastic properties of the heli-
cal ribbons. For a given helical ribbon, the elastic parameters
A and C are fixed. When the spontaneous torsion �0=0, we
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can obtain r /h=� /�= ��2A−3C� /A�1/2 and the pitch angle as

� = arctan�1/�2 − 3C/A�1/2� . �14�

This expression shows that the value of the pitch angle of the
helices depends on the ratio of the torsional rigidity C to
bending rigidity A. From Eq. �14� we can get the critical
value of the ratio C /A=2/3. When C /A2/3 there should
be no helical ribbons without spontaneous torsion. Figure 1
shows the results when the ratio C /A is in the range 0 to 2/3.
We find that the value of the pitch angle increases from 35°
to 70° as C /A increases from 0 to 2/3.

Now we consider the helical ribbons with spontaneous
torsion �0�0. This time the pitch angle is

� = arctan�1/�2 + ��1 + ��2 − 4�C/A�1/2� , �15�

where the parameter �=�0 /�. In Fig. 2 we present plots of
the pitch angle � as a function of the ratio C /A for fixed
values of �. We see that the pitch angle decreases as the ratio
C /A increases when � is greater than 1. The actual torsion is
larger than the spontaneous torsion in this case. On the con-
trary, the pitch angle increases as the ratio C /A increases for
� less than 1. In that case, the actual torsion is smaller than
the spontaneous torsion.

Figure 3 gives the change of helical ribbons from low
pitch to high pitch. Each structure is characterized by the
pitch angle �. For three values of the pitch angle �=13°,
40°, and 50°, we find, respectively, C /A=1.85, 0.23, and 0.5
�in this analysis we have: �=3 for �=13, and �=0.3 for �
=40° and 50°�. These results show that the conformation of
the helical ribbons varies with the elastic properties of the
ribbons.

In particular, in elastic models of DNA, the torsional ri-
gidity C is commonly assumed to exceed the bending rigidity
A �26�. In the case of large torsional rigidity �C /A→
� the
torsion �=�0, and the curvature obeys the relation �2=2�2,
from our calculations it is easy to compute r /h=�2�1.41,
��35°, which agree well with Z-DNA �27� �with p
=4.46 nm and r=0.90 nm, thus r /h=2�r / p�1.27�.

For isotropic ribbons we have the ratio C /A�4	 /E
=2/ �1+��. Then Eq. �15� becomes

� = arctan�1/�2 + 2��1 + ��2 − 4�/�1 + ���1/2� , �16�

where � is Poisson’s ratio in the range −1���1/2 �25�.
Solutions to Eq. �16� are real only when ��5/2−1, which
implies that the isotropic helical ribbons with ���5/2−1
are unstable. Similarly, � decreases with increasing � when
�5/2−1���1, while it increases with increasing � when
�1. Furthermore, results for incompressible materials co-
incide with the critical value C /A=4/3 �17�, which means
the ratio C /A can be increased beyond this critical value by
reducing � or by using anisotropic materials with high resis-
tance to twist.

Twisted ribbons. For vanishing curvature and torsion ��
=0, �=0�, Eqs. �10� and �11� obviously become identical.
From Eq. �12� we have C��=0, i.e.,���s�=const. Thus the
rotation rate is constant along the ribbon. The total angle of
rotation of the upper end of the ribbon relative to the lower
end is ��L.

In Eq. �9�, by minimizing the free energy of the ribbon
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FIG. 1. The pitch angle of helices as a function of the ratio
C /A.
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FIG. 2. The pitch angle � versus the ratio C /A for �0 /�=0.8
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FIG. 3. Series of helical ribbons with the parameter �=13°, 40°,
and 50°.
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with vanishing curvature and torsion we obtain the following
expression

���s� = �0. �17�

It corresponds to twisted ribbons with rotation rate �0. We
see that the spontaneous torsion is just the angle of rotation
per unit length of the ribbons. In general the spontaneous

torsion �0 depends on the elastic properties of twisted rib-
bons. If �0 is large enough, the free energy of twisted ribbons
is lower than that of straight ones.

We believe that twist occurs mainly because the sponta-
neous torsion �0 depends on the elastic properties. Figure 4
illustrates the change of twisted ribbons from low twist pitch
to high twist pitch with �0=2�, 3�, and 4�. These results
show that the conformation of the twisted ribbons varies with
the different elastic properties of the ribbons, which provides
a possible explanation for the different structures of twisted
ribbons.

In conclusion, we have derived the general equilibrium
conformation equations of polymer chains with noncircular
cross sections. For the elastic ribbon model, we obtain two
solutions and show that the equilibrium conformation varies
with the different elastic properties of the ribbons. It is found
that the pitch angle depends on the ratio of the bending to the
torsional rigidity of the helical ribbons. The twist pitch of the
twisted ribbons strongly depends on the spontaneous torsion
�0, which also depends on the elastic properties of the rib-
bons. Thus, the known elastic properties of biopolymers such
as DNA and proteins may be very helpful in understanding
their formation mechanisms. Our theory can be verified by
measuring the structures and corresponding elastic properties
of biopolymers experimentally.
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