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Packing of charged chains on toroidal geometries
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We study a strongly adsorbed flexible polyelectrolyte chain on tori. In this generalized Thomson problem, the
patterns of the adsorbed chain are analyzed in the space of the toroidal coordinates and in terms of the orientation
of each chain segment. Various patterns are found, including double spirals, disclination-like structures, Janus
tori, and uniform wrappings, arising from the long-range electrostatic interaction and the toroidal geometry.
Their broken mirror symmetry is quantitatively characterized by introducing an order parameter, an integral of
the torsion. The uniform packing, which breaks the mirror symmetry the least, has the lowest value of the order
parameter. In addition, it is found that the electrostatic energy of confined chains on tori conforms to a power
law regardless of the screening effect in some typical cases studied. Furthermore, we study random walks on
tori that generate chain configurations in the large screening limit or at large thermal fluctuation; some features
associated with the toroidal geometry are discussed.
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I. INTRODUCTION

The patterns formed by mutually repelling units in a
confined geometry are commonly seen and have been studied
experimentally [1–3] and theoretically [4–8]. In particular, the
adsorption of oppositely charged chains on strongly charged
surfaces [9] results in strongly correlated surface patterns
of charges [10]. These correlated charged patterns and, in
general, long-range electrostatic interactions are resources for
the spontaneous formation of new structures in biology [11]
and nanomaterials [4,12,13], and provide a fertile source of
soft-matter physics problems of great interest to the com-
munity. In particular, the Thomson problem is a well-known
model for studying the patterns arising from minimizing the
long-range Coulomb interaction among point charges on a
sphere [2,14]. Recently, a modified Thomson problem was
discussed where the charges are joined by rigid links forming
an open chain [15]. A spiral configuration is identified for
minimizing the Coulomb energy, which is identified as the
configuration yielding a uniform distribution of points on
a sphere [5]. A closed chain on a sphere produces other
low-energy patterns, including the “baseball seam” and the
“twist” configurations [6].

The models of chains confined on a surface provide
insight into a number of chemical and biological systems
including the interaction of polyelectrolyte (PE) chains with
colloidal particles, micelles, proteins, and latex particles
[16,17]. These systems are of importance in the control of
dispersion stabilization, the immobilization of enzymes, and
the purification of proteins [18,19]. Another example is the
packing of genomes in viruses where electrostatics are crucial
given that the assembly can only be realized over a certain
salinity range [20,21].

We extend the study of connected-charges Thomson prob-
lems by considering the adsorption of a flexible charged
chain on a toroidal surface. The adsorption may be driven
via (screened) Coulomb and van der Waals interaction [7,22],
image charge effect [2,23], entropy [24], or chemical binding
[25,26]. The charges on the chain are evenly distributed and
interact with each other via electrostatic long-range repulsion.
This model can be used to understand related biological and

technological settings [27]. For example, a toroidal adsorbent
surface is formed by the circumferential winding of DNA in
the presence of multivalent cations [27–29]. The size of a
DNA toroid can be up to 200 nm. The understanding of how
a PE wraps on the toroidal DNA condensate can be important
for achieving complete control over DNA assembly [27].
Toroidal geometry also occurs in microbiology in the viral
capsid of the coronavirus torovirus [30]. The doughnut-shaped
torovirus is an RNA viral package with a diameter ranging
from 120 to 140 nm. Furthermore, toroidal particles can serve
as a model for biocolloids such as biconcave human red
blood cells [31]. The adsorption of charges can modify the
properties of toroidal particles and thus tune their interaction.
In addition, a complex of DNA-lipid membrane might be
realized for a toroidal membrane [32,33]. The adsorption of
DNA on cationic lipid membranes is of considerable practical
interest; cationic liposomes are used as a nonviral gene delivery
system [1,34]. The PE adsorption process can also be realized
in synthetic toroidal surfaces using divalent metallic ions;
we note that in the adsorption of DNA via metallic divalent
ions onto hydroxylated surfaces, the charge on the adsorbent
surface is probed to be nearly neutral [35] due to the chemical
reaction of the OH− surface groups with zinc.

Due to the distinctly different geometries of torus and
sphere, a fundamentally different pattern is expected on a torus.
In the (generalized) Thomson problem described here, the
charges have the freedom of moving on the confined geometry.
In real biological and chemical systems, strong adsorption
represents an important class of adsorption processes where
the adsorbate loses its mobility as it is adsorbed on an
adsorbent [36]. Note that in this paper we use the term “strong”
adsorption in the sense that a chain monomer loses its mobility
as long as it is adsorbed to an adsorbent surface. All the
point charges on the chain are sequentially adsorbed to the
surface. The random sequential adsorption (RSA) model has
been extensively used for describing irreversible adsorption in
cases where particles do not adsorb on top of each other [37];
in our model the randomness is removed by the electrostatic
interaction among monomers of the chain. While the wrapping
of periodic lines of opposite charge on infinite cylinders was
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shown to lead to helices with a characteristic preferred chiral
angle that depends on the ratio of the electroneutral unit
cell size and the width of the cylinder [38,39], the optimal
arrangement of adsorbed chains on a toroidal surface has not
been studied.

In this paper, we study the strong adsorption of a charged
chain on a torus. Various patterns, including double spirals,
disclination-like structures, Janus tori, and uniform wrappings,
are found arising from the long-range Coulomb repulsion
among segments of a chain and the background toroidal
geometry. The packing of a chain on tori strongly depends
on the initial adsorption site and the initial orientation. These
patterns are analyzed in the space of the toroidal coordinates
and in terms of the orientation of each chain segment,
respectively. Furthermore, we introduce an order parameter, an
integral of torsion, for characterizing the degree of the broken
mirror symmetry of the patterns. Among the configurations
corresponding to seven typical initial conditions, the uniform
packing has the lowest value of the order parameter, indicating
that it breaks the mirror symmetry the least. In addition, by
studying some typical cases, it is found that the electrostatic
energy of confined chains on tori conforms to a power law
regardless of the screening effect. The dependence of the
power on the two radii of tori implies a geometric origin of
the power. In contrast, the electrostatic energy density of a
straight charged chain scales logarithmically with the chain
length [40]. In addition, we also discuss the screening effect
on the energetics of a charged chain. Furthermore, we study
random walks on tori that generate chain configurations in
the large screening limit or for large thermal fluctuations. The
dependence of the mean squared end-to-end distance on the
chain contour length is examined and some features arising
from the toroidal geometry that are distinct from that on a
plane are discussed.

II. METHOD

The flexible charged chain is modeled by N + 1 evenly
distributed point charges q labeled from i = 0 to N that are
connected by N rigid line segments. The total length of the
chain is L = aEN , where aE is the (Euclidean) length of each
line segment. The total charge of the chain is Q = q(N + 1).
The configuration space of the charged chain consists of the
position of the initial adsorption site and the orientation of
each line segment. We consider the case that a chain segment
loses its mobility as it is adsorbed on the surface, i.e., strong
adsorption. All the point charges on the chain are adsorbed to
the surface in sequence from i = 0 to N . The position of the
first point charge i = 0 on the torus is x0 = {θ ≡ 0,α = α0},
where θ and α are the angles around the tube and the symmetry
axis of the torus as shown in Fig. 1(a). A point on the toroidal
surface is represented by

x(θ,α) =
⎛
⎝

(R1 + R2 cos α) cos θ

(R1 + R2 cos α) sin θ

R2 sin α

⎞
⎠ .

The center of the cross section defines the reference circle
of the torus by rotating around the symmetry axis. R1 and
R2 are the radii of the reference circle and the cross section,
respectively.

(a)

(b)

FIG. 1. (a) The toroidal coordinates. A torus forms by rotating the
shaded circle about the z axis. (b) Schematic plot of generating points
on a curved surface by specifying the values of βi (i = 0,1,2 . . .).

Starting from the initial adsorption site x0, we can generate
the second point x1 with the aid of the tangent vector at x0. At
any point on a smooth surface, there is a well-defined tangent
plane, a vector space that is spanned by tangent vectors. For a
two-dimensional surface, the orientation of a tangent vector at
a point xi is completely determined by a single parameter, the
rotation angle βi with respect to some reference direction. The
end points of a very short line segment can be approximated
as lying on the tangent plane according the definition. The
length of the tangent vector is thus determined by the fixed
length aE of the chain segment. In our simulation the position
of a newly generated point is further calibrated by mapping
it to the toroidal surface along the normal vector in order to
eliminate the slight out-of-plane deviation. To demonstrate
how small this deviation is, we pick up a point on the top
of the torus and make a line segment of length aE along the
direction perpendicular to the symmetry axis. For R2 = 1 and
aE = 0.1, the out-of-plane deviation is only 0.4%. Therefore,
by specifying the initial adsorption site x0, the initial rotating
angle β0 with respect to the reference direction eα ≡ ∂αx(θ,α)
at x0, we obtain the position of the second point x1. The third
point can be generated rotating the vector xi−1 − xi about the
normal vector at xi by angle βi , followed by the calibration
of ri+1, as shown in Fig. 1(b). The new vector v′ obtained
by rotating a vector v about its perpendicular unit vector ẑ is
v′ = v(cos θ v̂ + sin θ ŷ), where the unit vector ŷ = ẑ × v̂ and
θ is the clockwise angle of rotation along ẑ. By repeating
this procedure, the configuration of the adsorbed chain is
completely determined by specifying the parameters {α0, βi}
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(i = 0,1,2, . . . ,N − 1); the value of α0 specifies the position
of the initial adsorption and β gives the orientations of all
the line segments. In the simulation, βi ∈ [3π/4,5π/4] at the
resolution of δβ.

In the process of adsorption, the optimal position xi+1 of
the point charge on the chain that is about to be adsorbed on the
surface is determined by minimizing the electrostatic energy
(in Gaussian units):

E(βi) =
∑

m,n<m

q2

ε|rm − rn|e
−|rm−rn|/λ, (1)

where m runs from 0 to i, q is the charge of each monomer,
and λ is the screening length. In simulation, we specify q = 1
and ε = 1 without losing any generality. The limit of infinite
λ corresponds to the case of pure Coulomb interaction. The
effect of temperature is adsorbed in the screening length and
we consider the case that the interaction of any charge on a
chain and the adsorbent surface only contributes a constant to
the total energy of the complex; this constant is thus ignored in
Eq. (1). It is implicit here that a torus should have the opposite
charge of the chain that is smeared continuously over the whole
toroidal surface such that the system is overall electroneutral
(as in the Thomson problem of charges/ions on the surface
of a sphere). On the other hand, locally it is overcharged due
to the chain connectivity (as a local region in the Thomson
problem is overcharged). Local overcharging does occur in
a complex of polyelectrolytes adsorbed on an oppositely
charged surface in many situations as seen in experiments
such as in the case of adsorbed modified nucleic acids onto
negatively charged surfaces mediated by divalent metallic salts
[35]. In a more biologically relevant scenario, the screening
between two charges on a toroidal surface is much more
complicated and one has to resort to the Poisson-Boltzmann
equation [41,42]. Note that Eq. (1) works in the regime of
lp < aE < lB , where lB = e2/(εkBT ) is the Bjerrum length
and lp is the elasticity persistence length [43]. The former
inequality guarantees that the neighboring segments of a chain
can freely rotate, while the latter inequality means that the
electrostatic interaction between neighboring points dominates
over thermal fluctuation; i.e., q2

εaE
= q2

εlB

lB
aE

= ( lB
aE

)kBT > kBT .
The commercially available PSS (polystyrene sulfonate),
whose Manning parameter in bulk water is q0 = lB/aE ≈ 2.8
at 80% sulfonation [44,45], can satisfy the latter inequality
(its bare persistence length lp ≈ 1 nm and can be tuned
by varying ionic strength of the solution [46]). We note
that near an interface and around the polymer, the dielectric
constant is not the bulk water value 80 but the mean dielectric
constant of the water and the surface, which is 40, resulting
in lB ≈ 1.4 nm (only in bulk water lB ≈ 0.7 nm); also, many
experiments are carried out in mixed solvents, which further
decrease the dielectric constant at surfaces causing a further
increase of lB . Since the points xj (j = 0,1,2, . . . ,i) are fixed
on the surface, βi is the only parameter effecting energy
minimization; it is therefore essentially a one-dimensional
optimization problem. Despite the simplicity of our model,
the long-range interaction and the toroidal geometry will
give rise to various configurations of chains confined on
tori.

A long enough chain on a torus in general deviates from
the plane and breaks the mirror symmetry. We introduce an
order parameter for quantitatively characterizing the degree
of the broken mirror symmetry. For a spatial curve r(s) with
|ṙ(s)| = 1, a tripod of unit vectors can be set up at every point
of nonvanishing curvature [47]: T(s) = ṙ(s), N(s) = r̈(s)

|r̈(s)| , and
B(s) = T(s) × N(s). The deviation of the curve away from a
plane is described by the torsion w(s) = Ṅ(s) · B(s). If w(s) =
0 for all s, the curve lies on a plane of mirror symmetry. We
therefore introduce the following order parameter to describe
the broken mirror symmetry of a spatial curve of length L [19]:

σ = 1

L

∫ L

0
dsw(s). (2)

It is straightforward to check that the value of the defined order
parameter σ is zero for a planar curve. For a cylindrical helix
of radius a and pitch p, σ = ±2πp/[(2πa)2 + p2], where the
signs reflect the chirality of the helix.

III. RESULTS AND DISCUSSION

The optimal configuration of a chain on a torus may be
regarded as being generated by a growing point that is about
to be adsorbed on the surface, running among its historic
trajectory. The long-range repulsion between the growing
point and the rest of the confined chain on the torus gives
rise to a wide variety of structures, depending on a number
of parameters, including the initial adsorption site, the initial
orientation, and the aspect ratio of the torus.

A. Short chains

A charged chain confined on a plane is an extended
straight line due to the repulsion among the charged segments.
On a curved surface, both the long-range interaction and
the background geometry are involved in shaping the chain
configuration. Since a smooth surface is locally flat and can be
well approximated by a tangent plane, an infinitesimally short
chain segment confined on a curved surface will lie on the
tangent plane. On the other hand, geodesics are straight lines on
a curved surface in the sense that they have vanishing geodesic
curvature and the shortest curves to connect any two given
points on a surface are geodesics. Therefore, a charged chain
is expected to follow the geodesic near the initial adsorption
site. The geodesics of a torus, represented by {θ (λ),α(λ)}, is
determined by the geodesic equation:

d2xμ

dλ2
+ �

μ
ρδ

dxρ

dλ

dxδ

dλ
= 0, (3)

in which x1 = θ, x2 = α, and �
μ
ρδ is the Christoffel symbol of

the second kind [47]. This second-order differential equation
has a unique solution given an initial position and velocity. A
short chain is shown to follow a geodesic for some distance
by examining a number of wrapping patterns of varying initial
adsorption sites and initial orientations; some typical cases are
shown in Fig. 2. The coincidence of the chain (black curves, the
longer ones) and the corresponding geodesics (red curves) of
the same starting point and initial orientation can last for rather
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FIG. 2. (Color online) The comparison of adsorbed chains (black
curves, the longer ones) and the corresponding geodesics [red curves,
as calculated from Eq. (3)] on a torus starting from the red dots.
R1/R2 = 3. δβ = 0.01. aE = 0.1. N = 200. σ = −0.016 (a), 0.030
(b), −0.015 (c).

long distances, which are θ ≈ π/4,π/2 and α ≈ 3π/2,
as read from Figs. 2(a)–2(c), respectively. The deviation of
the chain from the geodesic is attributed to the long-range
repulsion between the point charge to be adsorbed and all the
already-adsorbed points. In contrast, a geodesic grows on a
curved surface according to the differential equation; i.e., it is
only determined by the points near the growing point.

In a real wrapping process, a perturbation may occur in the
position of the adsorbed point charge rj ; i.e., it is determined
by βj−1,optimal + βpert instead of βj−1,optimal, which gives the
optimal position of rj . We study how the perturbation βpert

influences the optimal positions of the following point charges
rk (k = j + 1,j + 2, . . . ,N). The perturbation is introduced
into the system by increasing δβ, the resolution of the angle
β, as defined in Fig. 1. Figure 3(a) schematically shows
the plot of energy versus the angle β. The optimal angle
obtained by numerical calculation at the reduced resolution
(denoted by the dashed red lines and dot) is generally less
optimal than the optimal angle obtained at the higher resolution
(denoted by the solid purple lines and dot). Therefore, the
rougher resolution is equivalent to introducing a perturbation
βpert. Figure 3(b) schematically shows how the perturbation
influences the positions of the points following the perturbed
point j . The point j , which has the strongest interaction with
the next point in comparison with other points on the straight
line, tends to align the next points along the connecting line
of j − 1 and j . It is thus expected that the amplitude of the
perturbation, i.e., the deviation from the original line, will
be amplified. This is demonstrated in Fig. 4, which shows
the optimal configurations at rougher resolutions from (a) to
(c) corresponding to increasing βpert. The chain’s deviation

FIG. 3. (Color online) (a) The schematic plot of energy versus
the angle β to demonstrate that rougher resolution (in dashed red)
introduces fluctuations. See text for more information. (b) The
perturbed point charge j , which has the strongest interaction with
the next point in comparison to other points on the straight line, tends
to align the next points from the right-hand side along the connecting
line of j − 1 and j .

FIG. 4. (Color online) The deviation of adsorbed chains (black)
from the corresponding geodesics (red) due to fluctuations that are
introduced by a rougher resolution in δβ. δβ = 0.01 (a), 0.05 (b),
0.1 (c). R1/R2 = 3. aE = 0.1. The red dots represent the initial
adsorption sites. The order parameter σ = −0.004 (b), −0.007 (c).

from the geodesic is more obvious at a rougher resolution.
It is quantitatively characterized by the order parameter σ ,
whose values for Figs. 3(b) and 3(c) are −0.004 and −0.007,
respectively. The larger the absolute value of σ is, the more
the curve deviates from a plane. The sign of σ reflects the
chirality of the curve. The amplified fluctuation in the position
of the next point is attributed to the repulsion by its neighboring
out-of-line charges.

Figure 4(a) shows that in the adsorption process the growing
point of the chain remains on the geodesic until it is close
enough to the starting point. At the bifurcation point, it can
either turn left or right with the identical energy, breaking the
mirror symmetry. In the following growth of the chain, it may
experience several such bifurcation points. Although either
choice at each bifurcation point does not influence the energy
of a newly added point, in general it can influence the global
energetics of the system. In other words, the final configuration
of a chain after passing a certain number of bifurcation points
may not be the globally lowest energy state. The small distance
(in comparison with the radius of the tube R2) between the
growing point and the starting point (the red dot) when they
are about to collide implies that nearby points play a major
role in determining the position of the next point of adsorption
despite the long-range nature of the Coulomb interaction.

B. Long chains

The growing point of a chain confined on the torus passes
through its own trajectory, circumventing the curve ahead by
steering its direction [Fig. 4(a)] or bouncing back [Fig. 5(b)],
finally leading to formation of a global pattern. In the whole
process, the growing point always chooses optimal steps to
minimize the energy.

1. Spiral and uniform structures: Cs and Cu

One remarkable structure arising from the packing of a
long chain on a torus is a double spiral, illustrated in Fig. 5 and
denoted as Cs . The initial conditions of α0 = π and β0 = π

are crucial for the formation of the spiral structure. The initial
loop around the tube of the torus [indicated by the left green
bracket in Fig. 5(a)] diverts the direction of the incoming
outmost curve in the spiral (indicated by the left green arrow).
The back-and-forth collisions between the curves indicated
by the green and blue brackets give rise to the spiral structure.
The growing process is indicated by the arrows on the chain.
The continuous inward growth of a spiral will finally lead to a
singularity. This is avoided by a U-turn forming another spiral
that is appressed along the original one, as indicated by the blue
arrow (inside the spiral) in Fig. 5(a). These two sets of spirals
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FIG. 5. (Color online) (a) A double spiral structure Cs is formed
for the initial conditions of α0 = π and β0 = π . (b) On the same
torus, a structure (inside the box) similar to a +1/2 disclination
(the inset figure) in nematic liquid crystal is found. δβ = 0.01, N =
2500, R1 = 3, R2 = 1, aE = 0.1.

are very close with almost the same spacing everywhere. A
similar double spiral structure is also found on the torus of
R1 = 5 and R2 = 1 for the initial conditions of α0 = π/2 and
β0 = π . On the same torus at the other side of the initial loop, a
defect structure simultaneously appears as shown in Fig. 5(b).
It is a + 1/2 disclination in nematics by regarding the tangent
vectors on the chain as a nonpolar field [43]. This pattern
is rather common in a number of simulations with varying
initial conditions and toroidal geometries. Note that the
central points of the spiral structure and the disclination may
be functionalized to create directional bonds akin to atomic
bonds. This has been proposed in theory [48] and illustrated
in experiments of synthesizing divalent gold nanoparticles
coated with self-assembled stripes of phase-separated ligands
that have two polar defects which can be functionalized [49].

In order to show the whole picture of the Cs configuration in
Fig. 5, we represent the configuration of the chain in the space
of the toroidal coordinates {θ,α} in Fig. 6. Topologically, a
torus is made by gluing together two opposite edges of a
rectangle, so the opposite sides in Fig. 6 are identical pointwise.
In Fig. 6, two identical sets of configurations are put together
for clarity. The starting point of the chain is located at {θ =
0, α = π ≡ 3π}. It goes down to about α = 4 and then turns
right wavily until it is bounced back to form a double spiral,
a structure similar to a vortex in fluids. The double spiral is
confined in the region of θ = 1, α = 2. This is the region
with concentrated electrostatic energy, as will be shown later.
From Fig. 6 we see that the chain covers about three turnings
(θ ≈ 6π ) about the symmetry axis of the torus and two turns
about the tube (α ≈ 4π ).

The configuration of the confined chain can also be
represented in the parameter space of {βi} (i = 1,2,3, . . .),

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Θ

Α

FIG. 6. (Color online) The representation of the Cs configuration
in Fig. 5 in the toroidal coordinates {θ,α}. Two identical sets of config-
urations for α ∈ [0,2π ] and α ∈ [2π,4π ] are put together for clarity.

500 1500 2500
2.6

2.8
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i

Β

FIG. 7. The distribution of βi versus i of the Cs configuration in
Fig. 5. i is the labeling of point charges on the chain.

which gives the orientation of each line segment of the chain.
Figure 7 shows the plot of βi versus i, where i is the labeling
of point charges on the chain. It depicts how the growing
point of the chain progresses on the torus. Most of the
time it is moving along a rather uniform direction (β = π )
except at the peaks and valleys in the distribution of the
angle arising from the sharp counterclockwise and clockwise
turning of the growing point, respectively. For example, the
peaks at about i = 1150 and 2350 correspond to the sharp
turning just after the U-turn inside the double spiral and the
sudden turning at the center of the disclination. The two deep
valleys near i = 1100 occur inside the spiral, and another deep
valley near i = 500 corresponds to the exterior turning at the
disclination.

A rather uniform wrapping pattern is found when the
initial conditions are α0 = π/2 and β0 = π/2 in Fig. 8(a).
This structure is denoted as Cu. The chain wraps around the
symmetric axis of the torus along one direction. Figure 9(a) is
the plot of the complete Cu configuration in the {θ,α} space,
which shows that the chain wraps around the torus for six
turnings. The waves on the transverse lines reflect the deviation
from the direction of eθ ≡ ∂θx(θ,α). Along the same initial
orientation β0 = π/2, with the change of the initial adsorption
site, a distinct configuration is obtained. Figure 8(b) shows a
configuration where a uniform wrapping occurs mainly in the
lower half of the torus, forming a Janus torus. The growing
point starts from the initial adsorption site, and after finishing
one turning it avoids the initial site by turning about the tube
to reach the lowest point of the torus. Subsequently, it wraps
about the lower half of the torus, meanwhile approaching

FIG. 8. (Color online) (a) The Cu structure, a rather uniform
wrapping pattern. The initial conditions are α0 = π/2 and
β0 = π/2. (b) A torus that is wrapped on its lower half forming
a Janus torus. The initial conditions are α0 = 2π and β0 = π/2.
δβ = 0.01, R1 = 3, R2 = 1, aE = 0.1.
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FIG. 9. (Color online) The representations of the two configura-
tions in Fig. 8 in the toroidal coordinates {θ,α}. Two identical sets of
configurations for α ∈ [0,2π ] and α ∈ [2π,4π ] are put together for
clarity.

the initial loop. Figure 9(b) shows the Cj configuration in
the {θ,α} space. The Janus configuration is also found on
the torus of R1 = 5 and R2 = 1 for the initial conditions of
α0 = 0 and β0 = π/2. Note that the electrostatic-driven phase
separation of dilute and periodic structures is also found in
a mixture of two immiscible oppositely charged molecules
that are confined on an interface [50]. The Janus configuration
might have applications in modifying the interaction between
toroidal particles [31].

The spiral and uniform configurations represent typi-
cal structures of inhomogeneous and homogeneous density
distributions. Due to the high density in the spiral, the
electrostatic energy will be concentrated in this region. The
increase of the electrostatic energy in these two configurations
in the process of adsorption is plotted in Fig. 10. The
lower purple curve is for the Cs configuration and the
upper black curve for the Cu configuration. For the Cs

configuration, we notice a rapid increase of the energy at
the interval of 1000–1700 in comparison with that of the
Cu configuration. The chain segment during this interval
exactly corresponds to the double spiral. The increase of the
electrostatic energy due to the formation of the spiral structure
is almost doubled in comparison to the more homogeneous Cu

configuration.

2. Energetics and broken mirror symmetry

The toroidal geometry is an essential element to form a wide
variety of patterns. Here we systematically study the energetics
and the broken mirror symmetry of chains confined on tori

0 500 1000 1500 2000 2500
0

400000

800000

1.2�106

n

E

FIG. 10. (Color online) The electrostatic energy versus the length
of chain on the torus for Cs (black curve above) and Cu (purple curve
below) configurations. An accelerated increase of energy occurs for
the Cs configuration at the interval of 1000–1700, corresponding to
the formation of spirals.

FIG. 11. (Color online) Seven typical initial conditions, including
initial adsorption sites and initial orientations. a and b are in the
interior of the torus with α0 = π . c and d are in the exterior side
with α0 = 0. e, f, and g are on the top with α0 = π/2. The initial
orientations are represented by arrows.

of varying aspect ratio R1/R2 for typical initial conditions,
including initial adsorption sites and initial orientations. The
seven typical initial conditions are schematically plotted in
Fig. 11. Figure 12 shows how the electrostatic energy increases
with the chain length on tori of aspect ratio 1.2 (fat torus), 3,
and 5 (thin torus). The seven curves corresponding to the seven
initial conditions collapse on the dashed green fitting curve for
the length of the chain up to 2000aE . In other words, the impact
of initial conditions on energetics of a sufficiently long chain
wrapped on tori is largely diminished. The fitting curves in
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FIG. 12. (Color online) The log plot of the electrostatic energy
versus the chain length measured in the unit of aE for tori of different
aspect ratios. R1/R2 = 1.2 (a), 3 (b), 5 (c). R2 = 1. Seven curves
corresponding to the seven initial conditions as shown in Fig. 11
collapse on the dashed green fitting curve.
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TABLE I. The values of the order parameter σ for configurations
of chains (a–f; see Fig. 11) on tori of different aspect ratios (a.r.).
N = 1500, aE = 0.1.

Config./a.r. 1.2 3.0 5.0

a 0.0062 −0.0051 −0.013
b −0.036 −0.034 0.093
c −0.042 −0.040 −0.024
d 0.018 0.019 −0.017
e 0.0098 −0.023 −0.044
f −0.065 −0.00063 −0.064
g 0.021 0.012 0.030

Fig. 12 follow a power law

E ∼ n�, (4)

where � = 1.84, 1.77, and 1.74 for R1/R2 = 1.2, 3, and 5,
respectively. These powers depend on the geometry of the
torus and are independent of the initial conditions. The power
law indicates that the increase of the electrostatic energy with
the chain length is dE/dn ∼ n�−1; i.e, the interaction energy
between a newly added point and all the points already on the
surface also follows a power law.

For reference, we give the Coulomb energy of a
straight chain: Ee0 = ∑

i,j>i
q2

|�ri−�rj | = q2

aE
(�(n + 1) + n(γ −

1)), where �(x) = d
dx

ln �(x) is the standard digamma func-
tion, γ ≈ 0.5772 is the Euler’s constant, and n is the length of
the chain [15]. In the limit of large n, the minimal energy of a
Coulomb chain reduces to the expected [40]

Ee0 ∼ n ln n. (5)

For a long enough chain, the linear part of the electrostatic
energy in Eq. (5) originates from the positional invariance of
the chain while the ends can be ignored. The Coulomb interac-
tion between remote charges contributes to the logarithm of n.
Similarly, according to Eq. (4), n�−1 reflects the contribution
to the electrostatic energy from remote charges on the torus.

The adsorption of chains endows chirality to tori. Table I
lists the values of the order parameter σ that reflect the degree
of the broken mirror symmetry. The sign of σ indicates
the chirality of a configuration. Note that a slight change
of the initial orientation may lead to an opposite chirality.
The configuration f on a torus R1/R2 = 3, i.e., the Cu

configuration in Fig. 8(a), has the lowest value for σ . This
is shown in Fig. 9(a), the representation in the toroidal
coordinates. σ = 0 for lines of constant θ or α. The peaks and
valleys on the curves in Fig. 9(a) have opposite contributions
to the integral of the torsion; their offset leads to a very small
value of σ .

C. Screened Coulomb interaction

Here we study how screened Coulomb interaction influ-
ences the energetics of the system. In addition, we will discuss
the packing of a charged chain on a torus in the limit of large
screening or as thermal fluctuation dominates over electrostatic
interaction, in which case the chain configuration can be well
approximated by random walk.

Figure 13 shows the screened electrostatic energy of a
charged chain versus its length at the screening length λ = 1
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FIG. 13. (Color online) The log plot of the electrostatic energy
versus the chain length measured in the unit of aE for tori of R1 = 3.
The screening length as defined in Eq. (1) is λ = 1 (a), 5 (b), and 10
(c). λ is measured in units of R2. Seven curves corresponding to the
seven initial conditions as shown in Fig. 11 collapse on the dashed
green fitting curve.

(a), 5 (b), and 10 (c) on a torus of R1 = 3 and R2 = 1. In
each case the seven curves corresponding to the seven initial
conditions collapse on a single curve; it is similar to the case
of pure Coulomb interaction as shown in Fig. 12. These curves
also conform to a power law. The values of the power, however,
are different from the case of pure Coulomb interaction; the
more the charges are screened, the smaller the power is.
They are 1.62, 1.68, 1.72 for λ = 1,5,10, respectively. It is
reasonable that the screening effect reduces the electrostatic
energy. The fact that all the seven curves corresponding to the
seven initial conditions collapse on a single curve, regardless
of the screening effect and the sizes of tori, implies some
universality of the energetics of a charged chain on a torus.

Figure 14 shows the average screened electrostatic energy
(over M random walks) versus the screening length λ for
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FIG. 14. (Color online) The plot of the average screened electro-
static energy versus the screening length λ for R1 = 1.2 (green dots),
3 (blue squares), and 10 (black diamonds). λ is measured in units of
R2. The fitting red curve follows a power law E ∼ λ0.4. The number
of monomers is 100. The total number of independent random walks
is M = 1000.

R1 = 1.2 (green dots), 3 (blue squares), and 10 (black
diamonds). Here we choose the initial condition f ; i.e., α0 =
β0 = π/2. We see that the average (screened) electrostatic
energy follows a power law. It may be compared with an
ideal Gaussian chain in D-dimensional Euclidean space. The
root-mean-square end-to-end distance R ∼ nν , where n is the
number of monomers. In the limit of large screening, dimen-
sional analysis shows that its electrostatic energy scales like
E ∼ λ

1
ν
−1, which is independent of the dimension of space.

For an ideal Gaussian chain E ∼ λ. The confinement of a chain
on a torus gives rise to a distinct power law as shown in Fig. 14.

We proceed to discussing the random walk of a chain on a
torus in the regime of large screening or as thermal fluctuation
dominates over electrostatic interaction. An on-lattice random
walk on a curved surface generally introduces topological
defects in the lattice [51]. The geometric method we used
to generate a chain on a general curved surface can solve this
problem without resorting to any lattice. A random walk of a
chain can be easily realized by randomly selecting the values
of the angles β (see Fig. 1) in the interval of [0,2π ]. Figure 15
shows two snapshots of a non-self-avoiding random walk on
a torus of R1/R2 = 3 for n = 1000 (a) and 2000 (b) in the
toroidal coordinates {α,θ}. It starts from the red dot at the
origin and stops at the other red dot. The distances between
any two neighboring points are identical; the spatially varying
Gaussian curvature distorts the length scale as seen in Fig. 15.

Figure 16 shows the mean squared end-to-end distance of
a chain versus its contour length. The average of the squared
end-to-end distance is over a large amount of independent
random walks, i.e.,

〈
R2

n

〉 = 1

M

M∑
m=1

R2
n,m, (6)

where M is the total number of independent random walks.
Rn,m denotes the end-to-end distance of a chain of contour
length n at the mth random walk. We see from Fig. 16 that, for
sufficiently short chains, the mean squared end-to-end distance
is linear with the chain length. As the chain length increases
beyond some critical value, the curves in Fig. 16 corresponding
to different initial adsorption sites are branched, while those
with the same initial adsorption site are still grouped. The
branching phenomenon reflects the inhomogeneity of the
toroidal geometry. Another important feature is that, at least for
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FIG. 15. (Color online) Two snapshots of random walks on a
torus. The number of steps is n = 1000 (a) and n = 2000 (b). The
random walk starts from the red dot at the origin and stops at the other
red dot. R1 = 3. R2 = 1. aE = 0.1. The initial conditions are α0 = 0
and β0 = π/2, which is the case d in Fig. 11.

the case of fat tori, the curves finally reach a saturation value for
a sufficiently long chain; this value seems independent of the
initial adsorption orientation. The increase of the saturation
value as the initial adsorption site moves from the interior
of a torus to its exterior is due to the different selections of
the starting points of chains in calculating their end-to-end
distances. The saturation phenomena may be attributed to the
fact that a torus is a compact manifold; it is therefore also
expected for thin tori [not shown in Fig. 16(c)], at a much
longer chain length than fat tori. In contrast, the mean squared
end-to-end distance of random walks on a plane is linear with
the chain length [52].

During a random walk on a tours, the number of points in
the interior side (α ∈ [π/2,3π/2]) may be different from that
in the exterior side (α ∈ [−π/2,π/2]) due to the asymmetry
of a torus about its tube. Table II lists the ratio of the average
number of the exterior points to the interior points over 1000
independent random walks. The branching phenomenon is
also found; on the same torus the values of the ratios for the
same initial adsorption site [i.e., the groups of (a, b), (c, d),
and (e, f, g)] are very close. Table II shows that on average
a random walk visits the exterior side of tori more frequently
than the interior side except those starting at α0 = π on a
torus of R1 = 10. The asymmetric distribution of points may
be due to the area difference of the interior and the exterior
parts of a torus. From the nonzero components of the metric,
i.e., g11 = R2

2 and g22 = (R1 + R2 cos α)2, we calculate the
ratio of the exterior area to the interior area on a torus:
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FIG. 16. (Color online) The mean squared end-to-end distance
of a chain versus the chain length at R1 = 1.2 (a), 3 (b), and 10
(c). R2 = 1. In each figure, the yellow and orange curves (the lowest
branch of the three branches of curves) correspond to the initial
conditions a and b, respectively. The red and pink ones (the highest
branch) correspond to the initial conditions c and d. And the gray, blue,
and black ones (the middle branch) correspond to the initial conditions
e, f, and g. The number of independent random walks is M = 1000.

Ae/Ai = (πR1 + 2R2)/(πR1 − 2R2), which is 3.26, 1.54,

and 1.14 for R1 = 1.2, 3, and 10, respectively. R2 = 1. We
notice that these numbers are very close to the ratios of the
average number of exterior points to interior points in Table II

TABLE II. The ratio of the average number of points in the
exterior side of the torus to that in the interior side in random walks
starting with the seven initial conditions as shown in Fig. 11. The total
number of independent random walks is 1000. N = 5000, aE = 0.1.

Config./a.r. 1.2 3.0 10.0

a 2.50 1.21 0.93
b 2.46 1.22 0.90
c 3.62 1.83 1.37
d 3.62 1.86 1.44
e 3.06 1.52 1.13
f 3.07 1.46 1.11
g 3.08 1.49 1.10

for the initial adsorption at the top of a torus [the rows of
(e, f, g) in Table II].

IV. CONCLUSION

We study the generalized connected-charges Thomson
problem on tori. The long-range electrostatic interaction and
the toroidal geometry give rise to a wide variety of patterns.
The comparison of the configurations of short chains and
geodesics on tori demonstrates the effect of the long-range
aspect of the interaction among chain segments. In addition,
the systematic study of the seven typical configurations shows
that the uniform packing has the lowest value of the order
parameter, indicating that it breaks the mirror symmetry
the least. Furthermore, by studying some typical cases, we
find that the electrostatic energy of confined chains on tori
conforms to a power law regardless of the screening effect. The
power is independent of the initial conditions of adsorption
and its dependence on the sizes of tori implies a geometric
origin. Furthermore, we study random walks on tori that
generate chain configurations in the large screening limit
or for large thermal fluctuations of the random sequential
adsorption model. The dependence of the mean squared
end-to-end distance on the chain contour length is examined
and some features arising from the toroidal geometry that
are distinct from that on a plane are discussed. These results
might shed light on understanding the adsorption of charged
chains on toroidal geometries and processes of interfacial
polymerization [53].
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