
Chapter 5

Empirical processes

Consider a random process Xt with t 2 T . We are interested in finding

E sup
t2T

Xt.

5.1 Glivenko-Cantelli theorem

Given X1, · · · , Xn ⇠ FX , we know that the empirical c.d.f. provides a natural estimation
of the population c.d.f., i.e.,

Fn(x) =
1

n

nX

i=1

1{Xi  x}, x 2 R.

Note that each 1{Xi  x} is Bernoulli(FX(x)) and thus Fn(x) is the sample average of
i.i.d. Bernoulli random variables. By strong law of large numbers, we know that Fn(x)
converges almost surely to FX(x) for each given x 2 R.

The question is whether Fn converges to FX under k · k1, i.e.,

lim
n!1

sup
x2R

|Fn(x)� FX(x)| = 0

almost surely. This is known as the Glivenko-Cantelli theorem, or uniform law of large
numbers.

The GC theorem is a special case of the field of empirical processes. Let Pn be the
empirical measure and P be the population measure. Then we define

Pnf =
1

n

nX

i=1

f(Xi), Pf =

ˆ
f dP.

Suppose we let f 2 F where

F = {fx(t) = 1{t  x} : x 2 RR}

is a family of indicator functions, then

Pnfx = Fn(x), Pfx = FX(x).
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In other words, it holds that

kPn � PkF := sup
f2F

|Pnf � Pf | = sup
x2R

|Fn(x)� FX(x)|

We will start with the simple case by considering the convergence in mean: study under
what conditions, we have

lim
n!1

E kPn � PkF = 0.

This convergence depends on the size of F . We say F is a Glivenko-Cantelli class if
limn!1 kPn � PkF = 0.

Definition 5.1.1. The covering number, denoted by N (T, d, ✏) is defined by the minimum
cardinality of a set whose union of ✏-balls covers T . Its logarithm is called metric entropy.

The maximal ✏-separated subset of T , denoted by P(T, d, ✏), is defined by the largest
cardinality of a subset in which their pairwise distance is at least ✏. The cardinality is
called the packing number.

Lemma 5.1.1. It holds that

|P(T, d, 2✏)|  |N (T, d, ✏)|  |P(T, d, ✏)|

Note that P(T, d, ✏) must be an ✏-net of T . Otherwise, there exists x0 such that

d(xk,x0) � ✏, 8xk 2 P(T, d, ✏).

This means x0 can be added to the separated subset, which contradicts the maximum
cardinality assumption. On the other hand, by pigeonhole principle, |P(T, d, 2✏)| 
|N (T, d, ✏)| since each element in P(T, d, 2✏) corresponds to one element in the ✏-net.

Theorem 5.1.2. Suppose

lim
n!1

1

n
logN (F , L1(Pn), ⌘) = 0, 8⌘ > 0,

and also
P sup

f2F
f < 1,

then F is a Glivenko-Cantelli family.

The proof relies on the symmetrization.

E kPn � PkF = E sup
f2F

|Pnf � Pf | = E sup
f2F

�����
1

n

nX

i=1

f(Xi)�
1

n
EX0

nX

i=1

f(X 0
i
)

�����

 EX EX0 sup
f2F

�����
1

n

nX

i=1

f(Xi)�
1

n

nX

i=1

f(X 0
i
)

�����

= EX EX0 E✏ sup
f2F

�����
1

n

nX

i=1

✏i(f(Xi)� f(X 0
i
))

�����

 2 EX E✏ sup
f2F

�����
1

n

nX

i=1

✏if(Xi)

�����
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This is essentially the Rademacher complexity. Without loss of generality, we assume F
is bounded since

EX E✏ sup
f2F

�����
1

n

nX

i=1

✏if(Xi)

�����

 EX E✏ sup
f2F

�����
1

n

nX

i=1

✏if(Xi)1{f(Xi)  M}

�����+ EX E✏ sup
f2F

�����
1

n

nX

i=1

✏if(Xi)1{f(Xi) > M}

�����

 EX E✏ sup
f2F

�����
1

n

nX

i=1

✏if(Xi)1{f(Xi)  M}

�����+ EX max
f2F

f(X)1{max
f2F

f(X) � M}

If M is large, then the second term is arbitrarily small. Therefore, we can assume that
the function class F is uniformly bounded.

Consider G is an ⌘-net of F under L1(Pn), i.e., for any f 2 F , there exists g 2 G such
that

kf � gk
L1(Pn) =

1

n

nX

i=1

|f(Xi)� g(Xi)|  ⌘

Then

E✏ sup
f2F

�����
1

n

nX

i=1

✏if(Xi)

�����  E✏ sup
g2G

�����
1

n

nX

i=1

✏ig(Xi)

�����+ E✏ sup
f2F

�����
1

n

nX

i=1

✏i(f(Xi)� g(Xi))

�����

 E✏ sup
g2G

�����
1

n

nX

i=1

✏ig(Xi)

�����+ kf � gk
L1(Pn)

 1

n

vuutmax
g2G

nX

i=1

g(Xi)2 · 2 log 2|G|+ ⌘

 M

r
2 log 2|N (F , L1(Pn), ⌘)|

n
+ ⌘

where
1

n

nX

i=1

g(Xi)
2  M

Here we will use the Massart’s lemma

Lemma 5.1.3. For a finite point set S, it holds that

E✏ max
s2S

�����

nX

i=1

✏isi

�����  R
p

2 log 2|S|

where R = maxs2S ksk.

As n ! 1, we have
lim
n!1

E kPn � PkF = 0

which follows from dominating convergence theorem.

For F being indicator functions, then

E kPn � PkF = O

 r
log(n+ 1)

n

!

since |N (F , L1(Pn), ⌘)|  n+ 1 for any ⌘ > 0.
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Proof of Massart’s Lemma. We first remove the absolute value in R(S) by adding
�S = {�a : a 2 S}:

R(S) =
1

n
E sup

a2S

�����

nX

i=1

�iai

����� 
1

n
E sup

a2S[(�S)

�����

nX

i=1

�iai

����� =
1

n
E sup

a2S[(�S)

nX

i=1

�iai

where the equality follows from the symmetry of S [ (�S).

By treating supa2S[(�S)

P
n

i=1 �iai as one random variable and using the Jensen inequality,
we have for any � > 0

exp

 
�n�1 E

 
sup

a2S[(�S)

nX

i=1

�iai

!!
 E exp

 
�n�1

 
sup

a2S[(�S)

nX

i=1

�iai

!!

 E
X

a2S[(�S)

exp

 
�n�1

nX

i=1

�iai

!


X

a2S[(�S)

nY

i=1

E exp
�
�n�1�iai

�

where {�i} are independent. Note that Hoe↵ding’s lemma implies

E exp
�
�n�1�iai

�
 exp

✓
�2a2

i

2n2

◆

As a result, it holds

exp

 
�n�1 E

 
sup

a2S[(�S)

nX

i=1

�iai

!!


X

a2S[(�S)

exp

✓
�2kak2

2n2

◆

 |S [ (�S)| exp
✓
�2R2

2n2

◆

 2|S| exp
✓
�2R2

2n2

◆

where R = maxa2A kak. Now we take log and simplify the expression:

R(S)  1

n
E sup

a2S[(�S)

nX

i=1

�iai 
log 2|S|

�
+

�R2

2n2

holds for any � > 0. The optimal bound on R(S) is

log 2|S|
�

+
�R2

2n2
�

R
p
2 log 2|S|
n

=) R(S) 
R
p
2 log 2|S|
n

.
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