Chapter 5

Empirical processes

Consider a random process X_t with $t \in T$. We are interested in finding

$$\mathbb{E}\sup_{t\in T} X_t$$

5.1 Glivenko-Cantelli theorem

Given $X_1, \dots, X_n \sim F_X$, we know that the empirical c.d.f. provides a natural estimation of the population c.d.f., i.e.,

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1\{X_i \le x\}, \quad x \in \mathbb{R}.$$

Note that each $1\{X_i \leq x\}$ is Bernoulli $(F_X(x))$ and thus $F_n(x)$ is the sample average of i.i.d. Bernoulli random variables. By strong law of large numbers, we know that $F_n(x)$ converges almost surely to $F_X(x)$ for each given $x \in \mathbb{R}$.

The question is whether F_n converges to F_X under $\|\cdot\|_{\infty}$, i.e.,

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F_n(x) - F_X(x)| = 0$$

almost surely. This is known as the Glivenko-Cantelli theorem, or uniform law of large numbers.

The GC theorem is a special case of the field of empirical processes. Let \mathbb{P}_n be the empirical measure and \mathbb{P} be the population measure. Then we define

$$\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(X_i), \quad \mathbb{P}f = \int f \, \mathrm{d}\mathbb{P}.$$

Suppose we let $f \in \mathcal{F}$ where

$$\mathcal{F} = \{f_x(t) = 1\{t \le x\} : x \in RR\}$$

is a family of indicator functions, then

$$\mathbb{P}_n f_x = F_n(x), \qquad \mathbb{P} f_x = F_X(x).$$

In other words, it holds that

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P}_n f| = \sup_{x \in \mathbb{R}} |F_n(x) - F_X(x)|$$

We will start with the simple case by considering the convergence in mean: study under what conditions, we have

$$\lim_{n \to \infty} \mathbb{E} \| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} = 0.$$

This convergence depends on the size of \mathcal{F} . We say \mathcal{F} is a Glivenko-Cantelli class if $\lim_{n\to\infty} \|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = 0.$

Definition 5.1.1. The covering number, denoted by $\mathcal{N}(T, d, \epsilon)$ is defined by the minimum cardinality of a set whose union of ϵ -balls covers T. Its logarithm is called metric entropy.

The maximal ϵ -separated subset of T, denoted by $\mathcal{P}(T, d, \epsilon)$, is defined by the largest cardinality of a subset in which their pairwise distance is at least ϵ . The cardinality is called the packing number.

Lemma 5.1.1. It holds that

$$|\mathcal{P}(T, d, 2\epsilon)| \le |\mathcal{N}(T, d, \epsilon)| \le |\mathcal{P}(T, d, \epsilon)|$$

Note that $\mathcal{P}(T, d, \epsilon)$ must be an ϵ -net of T. Otherwise, there exists \boldsymbol{x}_0 such that

$$d(\boldsymbol{x}_k, \boldsymbol{x}_0) \geq \epsilon, \quad \forall \boldsymbol{x}_k \in \mathcal{P}(T, d, \epsilon).$$

This means \boldsymbol{x}_0 can be added to the separated subset, which contradicts the maximum cardinality assumption. On the other hand, by pigeonhole principle, $|\mathcal{P}(T, d, 2\epsilon)| \leq |\mathcal{N}(T, d, \epsilon)|$ since each element in $\mathcal{P}(T, d, 2\epsilon)$ corresponds to one element in the ϵ -net.

Theorem 5.1.2. Suppose

$$\lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\mathcal{F}, L_1(\mathbb{P}_n), \eta) = 0, \quad \forall \eta > 0,$$

and also

$$\mathbb{P}\sup_{f\in\mathcal{F}}f<\infty,$$

then \mathcal{F} is a Glivenko-Cantelli family.

The proof relies on the symmetrization.

$$\mathbb{E} \|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = \mathbb{E} \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P}f| = \mathbb{E} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \frac{1}{n} \mathbb{E}_{X'} \sum_{i=1}^n f(X_i') \right|$$
$$\leq \mathbb{E}_X \mathbb{E}_{X'} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \frac{1}{n} \sum_{i=1}^n f(X_i') \right|$$
$$= \mathbb{E}_X \mathbb{E}_{X'} \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i (f(X_i) - f(X_i')) \right|$$
$$\leq 2 \mathbb{E}_X \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right|$$

This is essentially the Rademacher complexity. Without loss of generality, we assume \mathcal{F} is bounded since

$$\begin{aligned} & \mathbb{E}_{X} \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \right| \\ & \leq \mathbb{E}_{X} \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \mathbb{1}\{f(X_{i}) \leq M\} \right| + \mathbb{E}_{X} \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \mathbb{1}\{f(X_{i}) > M\} \right| \\ & \leq \mathbb{E}_{X} \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \mathbb{1}\{f(X_{i}) \leq M\} \right| + \mathbb{E}_{X} \max_{f \in \mathcal{F}} f(X) \mathbb{1}\{\max_{f \in \mathcal{F}} f(X) \geq M\} \end{aligned}$$

If M is large, then the second term is arbitrarily small. Therefore, we can assume that the function class \mathcal{F} is uniformly bounded.

Consider \mathcal{G} is an η -net of \mathcal{F} under $L_1(\mathbb{P}_n)$, i.e., for any $f \in \mathcal{F}$, there exists $g \in \mathcal{G}$ such that

$$||f - g||_{L_1(\mathbb{P}_n)} = \frac{1}{n} \sum_{i=1}^n |f(X_i) - g(X_i)| \le \eta$$

Then

$$\mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \right| \leq \mathbb{E}_{\epsilon} \sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} g(X_{i}) \right| + \mathbb{E}_{\epsilon} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} (f(X_{i}) - g(X_{i})) \right|$$
$$\leq \mathbb{E}_{\epsilon} \sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} g(X_{i}) \right| + \|f - g\|_{L_{1}(\mathbb{P}_{n})}$$
$$\leq \frac{1}{n} \sqrt{\max_{g \in \mathcal{G}} \sum_{i=1}^{n} g(X_{i})^{2} \cdot 2\log 2|\mathcal{G}|} + \eta$$
$$\leq M \sqrt{\frac{2\log 2|\mathcal{N}(\mathcal{F}, L_{1}(\mathbb{P}_{n}), \eta)|}{n}} + \eta$$

where

$$\frac{1}{n}\sum_{i=1}^{n}g(X_i)^2 \le M$$

Here we will use the Massart's lemma

Lemma 5.1.3. For a finite point set S, it holds that

$$\mathbb{E}_{\epsilon} \max_{\boldsymbol{s} \in S} \left| \sum_{i=1}^{n} \epsilon_{i} s_{i} \right| \le R \sqrt{2 \log 2|S|}$$

where $R = \max_{\boldsymbol{s} \in S} \|\boldsymbol{s}\|.$

As $n \to \infty$, we have

 $\lim_{n \to \infty} \mathbb{E} \, \|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = 0$

which follows from dominating convergence theorem.

For \mathcal{F} being indicator functions, then

$$\mathbb{E} \|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = O\left(\sqrt{\frac{\log(n+1)}{n}}\right)$$

since $|\mathcal{N}(\mathcal{F}, L_1(\mathbb{P}_n), \eta)| \le n+1$ for any $\eta > 0$.

Proof of Massart's Lemma. We first remove the absolute value in $\mathcal{R}(S)$ by adding $-S = \{-a : a \in S\}$:

$$\mathcal{R}(S) = \frac{1}{n} \mathbb{E} \sup_{\boldsymbol{a} \in S} \left| \sum_{i=1}^{n} \sigma_{i} a_{i} \right| \leq \frac{1}{n} \mathbb{E} \sup_{\boldsymbol{a} \in S \cup (-S)} \left| \sum_{i=1}^{n} \sigma_{i} a_{i} \right| = \frac{1}{n} \mathbb{E} \sup_{\boldsymbol{a} \in S \cup (-S)} \sum_{i=1}^{n} \sigma_{i} a_{i}$$

where the equality follows from the symmetry of $S \cup (-S)$.

By treating $\sup_{a \in S \cup (-S)} \sum_{i=1}^{n} \sigma_i a_i$ as one random variable and using the Jensen inequality, we have for any $\lambda > 0$

$$\exp\left(\lambda n^{-1} \mathbb{E}\left(\sup_{\boldsymbol{a}\in S\cup(-S)}\sum_{i=1}^{n}\sigma_{i}a_{i}\right)\right) \leq \mathbb{E}\exp\left(\lambda n^{-1}\left(\sup_{\boldsymbol{a}\in S\cup(-S)}\sum_{i=1}^{n}\sigma_{i}a_{i}\right)\right)$$
$$\leq \mathbb{E}\sum_{\boldsymbol{a}\in S\cup(-S)}\exp\left(\lambda n^{-1}\sum_{i=1}^{n}\sigma_{i}a_{i}\right)$$
$$\leq \sum_{\boldsymbol{a}\in S\cup(-S)}\prod_{i=1}^{n}\mathbb{E}\exp\left(\lambda n^{-1}\sigma_{i}a_{i}\right)$$

where $\{\sigma_i\}$ are independent. Note that Hoeffding's lemma implies

$$\mathbb{E}\exp\left(\lambda n^{-1}\sigma_{i}a_{i}\right) \leq \exp\left(\frac{\lambda^{2}a_{i}^{2}}{2n^{2}}\right)$$

As a result, it holds

$$\exp\left(\lambda n^{-1} \mathbb{E}\left(\sup_{\boldsymbol{a}\in S\cup(-S)}\sum_{i=1}^{n}\sigma_{i}a_{i}\right)\right) \leq \sum_{\boldsymbol{a}\in S\cup(-S)}\exp\left(\frac{\lambda^{2}\|\boldsymbol{a}\|^{2}}{2n^{2}}\right)$$
$$\leq |S\cup(-S)|\exp\left(\frac{\lambda^{2}R^{2}}{2n^{2}}\right)$$
$$\leq 2|S|\exp\left(\frac{\lambda^{2}R^{2}}{2n^{2}}\right)$$

where $R = \max_{a \in A} ||a||$. Now we take log and simplify the expression:

$$\mathcal{R}(S) \le \frac{1}{n} \mathbb{E} \sup_{\boldsymbol{a} \in S \cup (-S)} \sum_{i=1}^{n} \sigma_{i} a_{i} \le \frac{\log 2|S|}{\lambda} + \frac{\lambda R^{2}}{2n^{2}}$$

holds for any $\lambda > 0$. The optimal bound on $\mathcal{R}(S)$ is

$$\frac{\log 2|S|}{\lambda} + \frac{\lambda R^2}{2n^2} \ge \frac{R\sqrt{2\log 2|S|}}{n} \Longrightarrow \mathcal{R}(S) \le \frac{R\sqrt{2\log 2|S|}}{n}.$$