Chapter 5

Empirical processes

Consider a random process X; with ¢ € T'. We are interested in finding

E sup X;.
teT

5.1 Glivenko-Cantelli theorem

Given X1, -+, X,, ~ Fx, we know that the empirical c.d.f. provides a natural estimation
of the population c.d.f.; i.e.,

n

Fu(z) = %Z {X; <1}, zeRr

=1

Note that each 1{X; < z} is Bernoulli(Fx(x)) and thus F,(z) is the sample average of
i.i.d. Bernoulli random variables. By strong law of large numbers, we know that F),(x)
converges almost surely to Fy(z) for each given = € R.

The question is whether F,, converges to F'xy under || - ||, i.e.,

lim sup |F,(z) — Fx(z)| =0

n—oo xGR

almost surely. This is known as the Glivenko-Cantelli theorem, or uniform law of large
numbers.

The GC theorem is a special case of the field of empirical processes. Let P, be the
empirical measure and P be the population measure. Then we define

Paf = S50, = [ fa
=1

Suppose we let f € F where
F={f.(t) =1{t <z} :2 € RR}
is a family of indicator functions, then

P, f. = Fu(z), Pf, = Fx(x).
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In other words, it holds that

[Pr — Pl 7 := sup [P f — Pf| = sup | F(z) — Fx ()]
feFr

J:ER

We will start with the simple case by considering the convergence in mean: study under
what conditions, we have

lim E||P, — P|| = 0.

n—oo

This convergence depends on the size of F. We say F is a Glivenko-Cantelli class if
lim, o0 [P, — P||7 = 0.

Definition 5.1.1. The covering number, denoted by N'(T,d, €) is defined by the minimum
cardinality of a set whose union of e-balls covers T'. Its logarithm is called metric entropy.

The mazimal e-separated subset of T, denoted by P(T,d,€), is defined by the largest
cardinality of a subset in which their pairwise distance is at least €. The cardinality is
called the packing number.

Lemma 5.1.1. It holds that

[P(T.d, 26)| < N(T'.d,€)| < [P(T,d,e)]

Note that P(T,d, €) must be an e-net of 7. Otherwise, there exists xy such that
d(xg, xo) > €, Vo € P(T,d,e).

This means xy can be added to the separated subset, which contradicts the maximum
cardinality assumption. On the other hand, by pigeonhole principle, |P(T,d,2¢)| <
IN(T,d, €)| since each element in P(T, d, 2¢) corresponds to one element in the e-net.

Theorem 5.1.2. Suppose
1
lim —log N'(F, Li(P,),n) =0, Vn>0,
n—oo M

and also

Psup f < o0,
feF

then F is a Glivenko-Cantelli family.

The proof relies on the symmetrization.

E|P, — Pl = Esup [P, f — Bf| = Esup
fer fer

LS AX) — Ee Y A
=1 i=1

1 n 1 n
<ExExsup|— » f(Xi)——=) f(X]
1 n
=Ex Ex/Ec.sup |— &(f(Xs) — f(X)))
fer |3
1 n
< 2ExE.sup |— e f(X;
X fefn; (X))
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This is essentially the Rademacher complexity. Without loss of generality, we assume F
is bounded since

n

% Z Eif(Xi)

i=1

Ex E. sup
feFr

n

< Ex E.sup —Ze, D f(X;) < M}| 4+ Ex Ecsup lzeif(Xi)l{f(Xi)>M}

feF feF |

SEXEE%JQ—ZEJ DUS(X) < MY+ Ex ma f(X) 1 {max f(X) > M}

If M is large, then the second term is arbitrarily small. Therefore, we can assume that
the function class F is uniformly bounded.

Consider G is an n-net of F under L;(P,), i.e., for any f € F, there exists ¢ € G such
that

17 = gl = 5 SS1FCX) - gX0)] <7

Then
1 RN Ly
E, sup _Zﬁif(Xi) SEesup [~ > €g(Xi)| +Ecsup |~ > e(f(Xi) —g(Xi))
fer|n i=1 9€9 i=1 fer | i=1
1 n
< Eesup [— ¥ eg(Xo)| +11f = gllr,p.)
9€g | 7
SN\ 9€9 = Z
B ]\4\/210g2\./\/'(.7:7 Ly(P,),n)| s
n
where

1 n
~Y 9(X)’
n <
=1
Here we will use the Massart’s lemma

Lemma 5.1.3. For a finite point set S, it holds that

2> Zezsz < Ry/2log2|S]

]Emax
=1

where R = maxgeg ||s]|-

As n — oo, we have
lim E||P, —P||=0
n—oo

which follows from dominating convergence theorem.

For F being indicator functions, then

log(n + 1
E By — Bl = O ( M)

n

since |N(F, Li(P,),n)| <n+ 1 for any n > 0.
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Proof of Massart’s Lemma. We first remove the absolute value in R(S) by adding
—S={-a:a€S}

1
R(S) = —Esup

n  aes

E 0@y E e

where the equality follows from the symmetry of S U (—5).

< — IEsup
acSu(-5)

:—E sup ZazaZ

acSuU(—

By treating supgegy(—s) > i, 0;a; as one random variable and using the Jensen inequality,
we have for any A > 0

—1 —1
exp | A\n"E sup 00 <Eexp | An sup 00
( <a€SU<S> 2 )) ( Y

<E Z eXp ()\n Zazaz>

aceSuU(—

Z HEexp )\n 1alaz)

aceSuU(—

IN

where {o;} are independent. Note that Hoeffding’s lemma implies

A2a?
E exp ()\n_laiai) < exp ( 5 2’)
n

As a result, it holds
A?lal?
ATl E <
exp ( n (aezgp Z@%)) < Z exp ( o2
acSu(->5)
A2 R?
< |SU(=95)|exp < 52 >
AQJ%Q
< 2[S|exp ( 57 )

where R = maxae4 ||a||. Now we take log and simplify the expression:

1 log2|S| AR?
R(S)< —E i <
()< B sw Z N o

holds for any A > 0. The optimal bound on R(S) is

2
log 2|5 N AR S R+/2log2|S)| L R(S) < R\/210g2|5\.

A 2n? — n - n
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