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Abstract

We establish the Poincaré inequality (PI) for a class of Gibbs measures of the form 𝜇𝜖 ∝
exp(−𝑉/𝜖), where the potential 𝑉 satisfies a local Polyak- Lojasiewicz (PL) inequality, and its
set of local minima is connected. Our results hold for sufficiently small temperature parameters
𝜖 . Notably, the potential 𝑉 can exhibit local maxima, and its optimal set may be non-simply
connected, distinguishing our function class from the convex setting.

We consider two scenarios for the optimal set 𝑆 : (1) 𝑆 has interior in R𝑑 with a Lipschitz
boundary, and (2) 𝑆 is a compact C2 embedding submanifold of R𝑑 without boundary. In
these cases, the Poincaré constant is bounded below by the spectral properties of differential
operators on 𝑆—specifically, the smallest Neumann eigenvalue of the Laplacian in the first case
and the smallest eigenvalue of the Laplace-Beltrami operator in the second. These quantities
are temperature-independent.

As a direct consequence, we show that Langevin dynamics with the non-convex potential
𝑉 and diffusion coefficient 𝜖 converges to its equilibrium 𝜇𝜖 at a rate of Õ(1/𝜖), provided 𝜖 is
sufficiently small. Here Õ hides logarithmic terms.

Our proof leverages the Lyapunov function approach introduced by Bakry et al. [2008a],
reducing the verification of the PI to the stability of the spectral gap of the Laplacian (or
Laplacian-Beltrami) operator on 𝑆 under domain expansion. We establish this stability through
carefully designed expansion schemes, which is key to our results.

∗Alphabetic order.
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1 Introduction

Consider the Langevin dynamics

d𝑋 (𝑡) = −∇𝑉 (𝑋 (𝑡))d𝑡 +
√

2𝜖d𝑊 (𝑡), (1)

where 𝑉 ∈ C2(R𝑑 ,R) is a twice continuously differentiable potential and 𝜖 > 0 is the temperature
of the system. Under mild conditions, the above Stochastic Differential Equation (SDE) yields a
unique equilibrium 𝜇𝜖 , commonly known as the Gibbs measure.

𝜇𝜖 (𝑥) =
exp(−𝑉 (𝑥)/𝜖)

𝑍𝜖

, where 𝑍𝜖 =

∫
R𝑑

exp(−𝑉 (𝑥)/𝜖)d𝑥. (2)

The Langevin dynamics have various applications in domains like statistics, optimization, and ma-
chine learning. For example, sampling from the target distribution 𝜇𝜖 [Wibisono, 2018], minimizing
non-convex objectives [Raginsky et al., 2017, Zhang et al., 2017], understanding Stochastic Gra-
dient Descent (SGD) through continuous-time approximation [Li et al., 2017, Ben Arous et al.,
2022, Paquette et al., 2022, Li et al., 2024]. In practice, the low-temperature regime (𝜖 close to
0) is particularly relevant. For instance, low temperatures enable sharper concentration of samples
around the modes of the target distribution, while in SGD approximations, 𝜖 corresponds to the
step size, which is typically small.

An important aspect of Langevin dynamics is its convergence behavior toward equilibrium,
also known as ergodicity [Cattiaux and Guillin, 2017]. This is often studied through functional
inequalities like Poincaré inequality (PI) and Log-Sobolev inequality, which quantify the rate of
convergence. In this work, we focus on PI, defined as follows.

Definition 1 (Poincaré-Wirtinger Inequality). A probability measure 𝜇 with support Ω ⊆ R𝑑 sat-
isfies the Poincaré inequality with parameter 𝜌, or shortly PI(𝜌), if one has for any 𝑓 ∈ W1,2(𝜇){

Var𝜇 ( 𝑓 ) :=

∫
Ω

(
𝑓 −

∫
Ω

𝑓 d𝜇

)2
d𝜇

}
≤ 1

𝜌𝜇

{
D𝜇 ( 𝑓 ) :=

∫
Ω

|∇ 𝑓 |2d𝜇
}
, (3)

where 𝜌𝜇 is called the PI constant and W1,2(𝜇) denotes the Sobolev space weighted by 𝜇.

Here Var𝜇 ( 𝑓 ) and D𝜇 ( 𝑓 ) are the variance and the Dirichlet energy of the test function 𝑓 ∈ W1,2(𝜇)
w.r.t. 𝜇. For 𝜇𝜖 , Ω = R𝑑. Clearly, the PI constant of 𝜇𝜖 is a function of the temperature 𝜖 .

The convergence of Langevin dynamics under the 𝜒2-divergence is closely tied to the constant

𝜌𝜇𝜖
. Specifically, to achieve 𝜒2(𝑋 (𝑡), 𝜇𝜖 ) ≤ 𝜂, the required time is 𝑡 = O

(
1

𝜖 𝜌𝜇𝜖
log 1

𝜂

)
. Note that

this convergence behavior varies significantly between uni-modal and multi-modal distributions,
and is reflected in the dependence of 𝜌𝜇𝜖

on 𝜖 :

• (constant time convergence) When 𝑉 is a strongly convex function or is close to one up to a
perturbation of order 𝜖 , a classical result is that 𝜌𝜇𝜖

is of order Ω( 1
𝜖
). Hence the mixing time

𝑡 = Õ(1) for all low temperatures Bakry et al. [2014].

• (sub-exponential time convergence) For a general log-concave measure, to the best of our
knowledge, existing research focuses on how the PI constant depends on the problem dimen-
sion 𝑑, commonly known as the Kannan-Lovász-Simonovits (KLS) conjecture [Chen, 2021,
Lee and Vempala, 2024], but with little emphasis on its dependence on 𝜖 . Nevertheless,
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existing technique can be combined to show that 𝜌𝜇𝜖
= Ω(1)1 under a mild exponential inte-

grability assumption, i.e.
∫
R𝑑

exp(−𝑉 (𝑥))d𝑥 < ∞. Moreover, one can easily construct a convex
function such that the corresponding 𝜌𝜇𝜖

is constant. Consequently, for the general class of

log-concave measures, 𝜌𝜇𝜖
= Θ(1) and hence the mixing time is 𝑡 = Õ( 1

𝜖
), i.e. sub-exponential.

• (exponential time convergence) When 𝑉 has at least two separated local minima, we have a
splitting into two time-scales: the sub-exponential scale describes 𝑋 (𝑡) converges to a meta-
stable equilibrium in one of 𝑉 ’s local regions of attraction; and the exponential scale describes
the transition between meta-stable equilibriums, which typically takes Ω(exp( 1

𝜖
)) long to

happen [Bovier et al., 2004, Gayrard et al., 2005, Menz and Schlichting, 2014]. This estimation
is commonly known as the the Eyring-Kramers law [Eyring, 1935, Kramers, 1940].

A more detailed literature review is deferred to Appendix A.
In this paper, we focus on uni-modal measures, which allows convergence to occur within sub-

exponential time2. Multi-modal measures, as discussed above, exhibit global convergence on an
exponential time scale, a behavior which is less relevant in practical applications. We leave its
investigation for future work.

For uni-modal measures, existing research often assumes that the optimal set have a simplistic
structure, such as a singleton, e.g. when 𝑉 is strongly convex or a convex set, e.g. when 𝑉 is
convex. These assumptions, while analytically convenient, limit the scope of potential applications.
For example, in key applications like deep learning, the function 𝑉 is high-dimensional, highly
non-convex, and many research suggest that, for over-parameterized models, the local minima are
often degenerate and are non-isolated singletons [Sagun et al., 2016, Safran and Shamir, 2016,
Sagun et al., 2017, Draxler et al., 2018, Garipov et al., 2018, Nguyen, 2019, Lin et al., 2024].
In emerging domains like Large Language Model, the number of parameters is of order billions
and the scaling laws implies that the over-parameterization phenomenon will be increasingly more
prominent. These important cases fall outside the scope of existing studies.

Log-PL◦ measures We aim to address more complex structural possibilities within the uni-modal
framework. To define the uni-modal measure class of interest, we state the necessary assumptions.
Define the local Polyak- Lojasiewicz (PL) condition [Lojasiewicz, 1963, Polyak, 1963].

Definition 2 (Locally 𝛼-Polyak- Lojasiewicz (𝛼-PL) function). A function 𝑉 ∈ C1(R𝑑 ,R) is locally
𝛼-Polyak- Lojasiewicz or shortly 𝛼-PL, for 𝛼 ∈ (1, 2], if there exists some constant 𝜈 > 0 such that
for any connected local minimum set 𝑆 ′, there exists an open neighborhood, N(𝑆 ′) ⊇ 𝑆 ′, such that

∀𝑥 ∈ N (𝑆 ′), |∇𝑉 (𝑥) |𝛼 ≥ 𝜈

(
𝑉 (𝑥) − min

𝑥∈N(𝑆 ′ )
𝑉 (𝑥)

)
. (4)

Assumption 1. The potential function 𝑉 is C2 and locally 𝛼-PL for 𝛼 ∈ [1.5, 2].

The above assumption ensures “sharp boundaries” of the local optimal sets, meaning that the
landscape within N(𝑆 ′) is not overly flat: To better see this intuition, Rebjock and Boumal [2024]
prove that 𝑉 exhibits quadratic growth in N(𝑆 ′) when 𝛼 = 2, thereby enforcing a curvature that
prevents flatness in this region.

1We prove this side result by putting together Cheeger’s inequality [Cheeger, 1970], KLS conjecture, and the
Lyapunov function approach [Bakry et al., 2008a]. See Appendix B.

2Our analysis can also address convergence toward a metastable equilibrium for multi-modal measures if the
domain is properly partitioned, and appropriate boundary conditions are imposed. However, this is orthogonal to
the primary focus of this project and is therefore not discussed here.
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Next, we need to exclude the possibility of saddle points so as to ensure the uni-modality. In words,
the following assumption states that a critical point of 𝑉 is either a local minimum or maximum.

Assumption 2. Let N(𝑆) be the union of all the neighborhoods N(𝑆 ′) defined in Assumption 1.
For any 𝑥 ∈ R𝑑\N (𝑆), if ∇𝑉 (𝑥) = 0, one has ∇2𝑉 (𝑥) ≺ 0.

We further need all the local minima to be within a compact set. This is a technical assumption
and we believe it can relaxed to the coercivity of 𝑉 . The latter is typically necessary for 𝑍𝜖 < ∞.

Assumption 3. The union of all local minima of 𝑉 are contained in a compact set3.

Note that if the PL inequality in (4) holds globally and 𝑉 is coercive, the above three assumptions
follow directly. However, unlike such a global PL condition, our assumptions allow for the existence
of local maxima, making them strictly weaker.

When 𝑉 satisfies the above conditions, we refer to the Gibbs measure 𝜇𝜖 as a Log-PL◦ measure.
This distribution class is of particular interest for the following reasons:

• (Relevance to crucial problems.) The local PL inequality is established for a class of over-
parameterized neural networks [Oymak and Soltanolkotabi, 2020, Liu et al., 2022], and PL
functions is an important class in the optimization literature [Karimi et al., 2016, Yang et al.,
2020, Rebjock and Boumal, 2024].

• (Connectivity of optimal set.) We prove in Proposition 3.1 that, when the ambient dimension
𝑑 ≥ 2, Assumptions 1 to 3 together imply that the collection of all local minima has only
one connected component. Hence, Log-PL◦ measures are uni-modal. Our proof is built on a
generalized version of the famous Mountain Passing Theorem [Katriel, 1994].

• (Rich structure of the optimal set.) The optimal set of a PL function can capture various
connected non-convex sets. In particular, the optimal set 𝑆 can be not simply connected
which is hence topologically different from convex sets. A simple example would be 𝑉 (𝑥) =

∥𝑥∥3/3 − ∥𝑥∥2/2. See its plot in Figure 4.

Consequently, we believe studying the convergence of the Langevin dynamics towards a Log-PL◦

measure can provide important insight for highly pertinent problems like deep learning.
Further, to prove a fast sub-exponential convergence of Langevin dynamics, we need the opti-

mal set of 𝑉 to have regular structures: 𝑆 has non-empty interior and a Lipschitz boundary (see
Definition 3), or 𝑆 is either a smooth embedding submanifold of R𝑑 (see Definition 4). All technical
assumptions are complied in Section 2.4 for the ease of reference.

Our result. We prove that a Log-PL◦ measure, while far from being log-concave, possesses a PI
constant that is non-asymptotically lower bounded by a temperature-independent constant, for a
sufficiently small 𝜖 . The applicable temperature region depends on the geometric structure of the
optimal set 𝑆. Our result is briefly summarized as follows, and formally stated in Theorem 5.1.

Theorem 1.1 (informal statement of the main result). Suppose that the potential 𝑉 satisfies As-
sumptions 1 to 3 and some additional regularity assumptions in Section 2.4. Further, suppose that
either one of the following conditions holds:

( ) Its optimal set 𝑆 has non-empty interior in R𝑑 and has a Lipschitz boundary.

3This assumption is implied by the stronger Assumption 5 required by our analysis. However, to ensure that 𝜇𝜖
is uni-modal, it is sufficient.
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(#) Its optimal set 𝑆 is a compact C2 embedding submanifold of R𝑑 without boundary.

When 𝜖 is sufficiently small, the Poincaré constant (3) of the Gibbs measure 𝜇𝜖 satisfies 𝜌𝜇𝜖
=

Ω(𝜆𝑛1 (𝑆)) in case ( ) and 𝜌𝜇𝜖
= Ω(𝜆1(𝑆)) in case (#). Here 𝜆𝑛1 (𝑆) and 𝜆1(𝑆) denote the Neumann

eigenvalue of the Laplacian operator and the first non-trivial eigenvalue of the Laplacian-Beltrami
operator on 𝑆 respectively. Note that in both cases, it is known that 0 < 𝜆𝑛1 (𝑆), 𝜆1(𝑆) < ∞.

A direct consequence of the result above is a precise characterization of the convergence behavior
of Langevin dynamics and its discrete-time implementation, such as the Unadjusted Langevin
Algorithm (ULA) [Vempala and Wibisono, 2019, Section 6], for a Log-PL◦ target measure. Our
result also represents a significant step toward proving the stronger Log-Sobolev Inequality (LSI),
as the PI constant is often a crucial intermediary for estimating the LSI constant. See for example
[Cattiaux et al., 2010, Theorem 1.2].

Furthermore, to the best of our knowledge, this marks the first attempt to explore the behavior
of Langevin dynamics in general non-convex landscapes with non-isolated minimizers, in the low
temperature region. In addition, technique-wise, we are the first to connect the Poincaré constant of
a measure on R𝑑 with the stability of the Laplaian (or Laplacian-Beltrami) eigenvalue on the optimal
set (a compact subset or even an embedding submanifold of R𝑑), offering a novel perspective.

Our proof strategy. Our proof is split into two steps. Let 𝑈 be a meticulously chosen neighbor-
hood of the optimal set 𝑆. First, we reduce the PI constant for a measure supported on R𝑑 to an
eigenvalue problem of the Laplacian operator on 𝑈. Seeing 𝑈 as an expansion of 𝑆, we then relate
the eigenvalues on 𝑈 and 𝑆 through a stability study. A more technical summary is as follows.

1. First, we partition the domain R𝑑 into a collection of subdomains, as specified in eq. (13),
allowing us to apply existing Lyapunov methods in [Menz and Schlichting, 2014] for estab-
lishing the PI constant, as stated in Theorem 2.1. This reduces the estimation of the PI
constant 𝜌𝜇𝜖

to the estimation of the Neumann eigenvalue of the Laplacian operator on any

set 𝑈 ⊆ R𝑑 satisfying 𝑆 (𝐶𝜖 )
𝛼

𝛼−1 ⊆ 𝑈 ⊆ 𝑆𝑐 (𝐶𝜖 )
𝛼

𝛼−1 . Here 𝐶 and 𝑐 > 1 are constants independent
of 𝜖 and 𝛼 is the index of the PL function, 𝑆 denotes the optimal set of 𝑉 , and we denote
𝑆𝜖

′
= {𝑥 ∈ R𝑑 : dist(𝑥, 𝑆) ≤ 𝜖 ′}. See the precise statement in Theorem 3.1.

2. Second, we establish a temperature-independent lower bound for the Neumann eigenvalue on
𝑈. Depending on whether 𝑆 has interior, we choose 𝑈 differently.

( ) We explicitly construct a diffeomorphism P in eq. (17), based on the geometric properties
of 𝑆, and set 𝑈 = P(𝑆). In Lemma 4.2, we show that the constructed 𝑈 satisfies
the above conditions for 𝑈 and we provide a lower bound for the Neumann eigenvalue
𝜆𝑛1 (𝑈) using 𝜆𝑛1 (𝑆) in Corollary 1. This is achieved through a stability analysis of the
Neumann eigenvalue with respect to expansion-type perturbations, relying critically on
the construction of P.

(#) Since 𝑆 is a C2 submanifold, it admits a tubular neighborhood which is taken to be
𝑈. By the tubular neighborhood theorem (See [Milnor and Stasheff, 1974]), using the
change-of-variable formula, we can decompose the uniform distribution on 𝑈 as a pair of
decoupled distributions along the tangent and the normal directions respectively. With
the tensorization property of the Poincare inequality [Bakry et al., 2014], we show that
the Neumann eigenvalue on 𝑈 is determined by the first non-trivial eigenvalue of the
Laplacian-Beltrami operator on 𝑆, when 𝜖 is sufficiently small.
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Notations. For a domain Ω, we use 𝜕Ω to denote its boundary. We use Ω𝑎 := {𝑥 : dist(𝑥,Ω) ≤ 𝑎}
and (Ω)𝑎 := {𝑥 : 𝑥 ∈ Ω, dist(𝑥,Ω) > 𝑎} to denote the closed 𝑎-expansion and open 𝑎-shrinkage of
Ω, respectively. We denote the distance to the boundary by 𝑑Ω(𝑥) := dist(𝑥, 𝜕Ω). For an integer
𝑛 > 0, we denote [𝑛] = {1, . . . , 𝑛}. WLOG, we assume 𝑉∗ = min𝑉 (𝑥) = 0 and throughout we use
𝑆 :=

{
𝑥 ∈ R𝑑 : 𝑉 (𝑥) = 0

}
to denote the optimal set of the potential function 𝑉 . We denote 𝑓 ∈ 𝐶 𝑝

if the function 𝑓 is 𝑝-th continuously differentiable.

2 Preliminaries and Assumptions

2.1 The Lyapunov Function Approach and the Perturbation Principle

Define the truncated Gibbs measure on a given domain 𝑈 ⊂ R𝑑 as

𝜇𝜖 ,𝑈 (𝑑𝑥) = 1𝑈
𝑍𝜖 ,𝑈

exp (−𝑉 (𝑥)
𝜖

)𝑑𝑥, with 𝑍𝜖 ,𝑈 =

∫
𝑈

exp(−𝑉 (𝑥)
𝜖

)𝑑𝑥. (5)

The next statement shows that a Lyapunov function and the PI for the truncated measure 𝜇𝜖 ,𝑈
can be combined to get the PI for the original Gibbs measure. Our work is built on this framework.

Theorem 2.1. [Menz and Schlichting, 2014, Theorem 3.8] Let L := −∇𝑉 ·∇+𝜖 Δ be the infinitesimal
generator associated with the Langevin dynamics in eq. (1). A function 𝑊 : R𝑑 → [1,∞) is a
Lyapunov function for L if there exists 𝑈 ⊆ R𝑑, 𝑏 > 0, 𝜎 > 0, such that

∀𝑥 ∈ R𝑑 , 𝜖−1L𝑊 (𝑥) ≤ −𝜎𝑊 (𝑥) + 𝑏1𝑈 (𝑥). (6)

Given the existence of such a Lyapunov function 𝑊, if one further has that the truncated Gibbs
measure 𝜇𝜖 ,𝑈 satisfies PI with constant 𝜌𝜖 ,𝑈 > 0, the Gibbs measure 𝜇𝜖 satisfies PI with constant

𝜌𝜖 ≥ 𝜎

𝑏 + 𝜌𝜖 ,𝑈
𝜌𝜖 ,𝑈 . (7)

Following [Menz and Schlichting, 2014], we select 𝑊 (𝑥) = exp
(
1
2𝜖 𝑉

)
as the Lyapunov function

throughout this work. This function satisfies 𝑊 (𝑥) ≥ 1 since we assume WLOG 𝑉∗ = 0. The only
remaining argument is to establish the condition in eq. (6). To be more precise, we need to find
two constants 𝜎 > 0, 𝑏 > 0 and some set 𝑈 ⊂ R𝑑 such that

L𝑊
𝜖𝑊

=
Δ𝑉

2𝜖
− |∇𝑉 |2

4𝜖2
≤ − 𝜎 + 𝑏1𝑈 . (8)

We will find these two constants in Lemma 3.3. The construction of 𝑈 is the focus of Section 4.
In addition to the above Lyapunov function framework, the following standard perturbation

principle will also be helpful to us.

Theorem 2.2 (Holley-Stroock perturbation principle). Let 𝑉 and 𝑉 be two potential functions
defined on a domain 𝑈. If the truncated Gibbs measures, defined in eq. (5), with energies 𝑉 and 𝑉
satisfy PI(𝜌) and PI(𝜌) respectively, one has 𝜌 ≥ exp

{
− 1

𝜖

(
sup𝑥∈𝑈 (𝑉 −𝑉) − inf 𝑥∈𝑈 (𝑉 −𝑉)

)}
𝜌.

2.2 Domains under Consideration

An important contribution of this work is to lower bound the Poincaré constant 𝜌𝜇𝜖
by the eigen-

value of the Laplacian (or Laplacian-Beltrami) operator on the optimal set 𝑆. To achieve this, we
need the latter to be strictly positive (so that the result is meaningful) and stable w.r.t. domain
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expansion (we need to bound the Neumann eigenvalue on an expansion of 𝑆). To ensure these two
properties, we consider the following scenarios: ( ) 𝑆 is a domain of R𝑑 with Lipschitz boundary;
(#) 𝑆 is a C2 embedding submanifold of R𝑑, which hence contains no interior under the topology
of R𝑑. All discussions are under Assumptions 1 to 3, which ensure 𝑆 is connected. Otherwise the
eigenvalue problem on 𝑆 can admit a trivial zero solution.

2.2.1 Case ( ): Lipschitz Domain

Figure 1: (a) An example Lip-
schitz domain: Ω is the pen-
tagram filled with light blue.
V 𝑗 and (V 𝑗)𝛿 are the red and
green boxes with dashed edges.
Λ 𝑗 rotates V 𝑗 to the standard
coordinates. 𝜙 𝑗 the the black
solid curve (piecewise line seg-
ments) contained within V 𝑗 .

When 𝑆 has interior, for the purpose of studying the Neumann
eigenvalue, a commonly used assumption is the Lipschitz boundary
[Burenkov and Davies, 2002], which is formally defined as follows.
A closed domain of R𝑑 with interior and Lipschitz boundary is
called a Lipschitz domain. See a concrete example in Figure 1.

Definition 3 (Lipschitz boundary). Let V := {V 𝑗}𝑠𝑗=1 be a family
of bounded open cuboids and Λ := {Λ 𝑗}𝑠𝑗=1 a family of rotations.

For a compact set Ω ⊂ R𝑑, we denote 𝜕Ω ∈ Lip(𝑀, 𝛿, 𝑠,V,Λ) if for
positive constants 𝑀 and 𝛿 the following requirements hold:

• Ω ⊆ ∪𝑠
𝑗=1(V 𝑗)𝛿 and (V 𝑗)𝛿 ∩ Ω ≠ ∅, where we recall (V 𝑗)𝛿 =

{𝑥 ∈ V 𝑗 : dist(𝑥, 𝜕V 𝑗) > 𝛿}.

• For 𝑗 ∈ [𝑠], Λ 𝑗 (V 𝑗) = W 𝑗 × (𝑎𝑖 𝑗 , 𝑏𝑖 𝑗), where W 𝑗 = {𝑥1:𝑑−1 ∈
R𝑑−1 : 𝑥𝑖 ∈ (𝑎𝑖 𝑗 , 𝑏𝑖 𝑗)}. Moreover, Λ 𝑗 (int Ω ∩ V 𝑗) = {𝑥 ∈ R𝑑 :

𝑥 ∈ W 𝑗 × (𝑎𝑖 𝑗 , 𝜙 𝑗 (𝑥1:𝑑−1))}, where 𝜙 𝑗 is 𝑀-Lipschitz on W 𝑗

• If V 𝑗 ∩ 𝜕Ω ≠ ∅, we should have 𝑎𝑑 𝑗 + 𝛿 ≤ 𝜙 𝑗 (𝑥1:𝑑−1) ≤ 𝑏𝑑 𝑗 −
𝛿, 𝑥1:𝑑−1 ∈ W 𝑗 . However, if V 𝑗 ⊂ Ω, then 𝜙 𝑗 (𝑥1:𝑑−1) ≡ 𝑏𝑑 𝑗 .

2.2.2 Case (#): C2 Embedding Submanifold

In the absence of interior, the dimension of 𝑆 no longer matches the dimension of the ambient space
R𝑑. To avoid highly irregular cases such as fractal, we assume 𝑆 to be a C2 embedding submanifold
of R𝑑 without boundary. The embedding structure allows one to defined the Laplacian-Beltrami
operator on 𝑆 through a pullback metric from the ambient space R𝑑, which is crucial to our analysis.
The importance of this case is further justified by its connection to local-PL functions: If 𝑉 ∈ C3

and 2-PL (𝛼 = 2), 𝑆 is provably in case (#). Please see an elaboration in Remark 5. Note that in
the rest of the paper, we use 𝑘 to denote the dimension of the manifold 𝑆 and focus on the case
𝑘 ≥ 1. For 𝑘 = 0, 𝑆 becomes a singleton, which is not the focus of our work.

Definition 4 (Embedding submanifold in R𝑑). Consider a C2 manifold 𝑀 such that 𝑀 (as a set)
is included in R𝑑. If the including map 𝑖𝑀 : 𝑀 → R𝑑 is C2 and satisfies following two conditions

• The tangent map 𝐷𝑖𝑀 (𝑥) has rank equal to dim 𝑀 for all 𝑥 ∈ 𝑀,

• 𝑖𝑀 is a homeomorphism of 𝑀 onto its image 𝑖𝑀 (𝑀) ⊂ R𝑑, where 𝑖𝑀 (𝑀) inherits the subspace
topology from R𝑑,

we say that the including map 𝑖𝑀 is an embedding and 𝑀 is a C2 embedding submanifold of R𝑑.
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If 𝑀 is a 𝑘-dimensional embedding submanifold of R𝑑, the including map can be represented
using the local coordinates of 𝑀 as follows: Assume that {Γ𝑖 , 𝜙𝑖}𝑖∈Λ is the maximal atlas of 𝑀. For
𝑢 = (𝑢1, ..., 𝑢𝑘) ∈ Γ𝑖 ⊂ R𝑘 , the including map 𝑖𝑀 : 𝑀 → R𝑑 can be written as

𝑥 𝑗 = 𝑚𝑖
𝑗 (𝑢1, 𝑢2, ..., 𝑢𝑘), 𝑗 ∈ {1, . . . , 𝑑}, (9)

where 𝑚𝑖
𝑗

: Γ𝑖 ⊂ R𝑘 → R, 𝑗 = 1, ..., 𝑑 are C2 coordinate functions. We also denote this embedding

structure as M𝑖 (𝑢) = (𝑚𝑖
1(𝑢), ..., 𝑚𝑖

𝑑
(𝑢)) on a local chart (Γ𝑖 , 𝜙𝑖).

Remark 1. WLOG, we can assume that there is only one local chart (Γ, 𝜙) in the rest of the
paper, since we can always enforce a local conclusion to a global one by the standard technique of
partition of unity (See [Tu, 2010, Chapter 13]). We write the corresponding embedding structure
as M, omitting the superscript. We will emphasize related proofs in the appendix if we meet any
non-trivial differences.

Given the above embedding structure, 𝑆 naturally inherits Riemannian structures from the
ambient space R𝑑. In the following, we describe the first fundamental form on 𝑆. This quan-
tity is necessary for defining the Laplacian-Beltrami operator. We also elaborate on the second
fundamental form in Appendix D, which will be used in Assumption 6.

The first fundamental form (or Riemannian metric). We define the Riemannian metric
𝑔𝑆 on 𝑆 as the pullback metric by including map 𝑖𝑆 : 𝑆 ↩→ R𝑑, i.e. 𝑔𝑆 = 𝑖∗

𝑆
(𝑔𝐸), where 𝑔𝐸 is

the standard Riemannian metric on R𝑑 and 𝑖∗
𝑆

is the pullback map associated with 𝑖𝑆 . Now we
can say that (𝑆, 𝑔𝑆 ) is a 𝑘-dimensional Riemannian submanifold on R𝑑 and the including map
𝑖𝑆 : (𝑆, 𝑔𝑆 ) ↩→ (R𝑑 , 𝑔𝐸) is a Riemannian embedding. Based on this Riemannian metric, on the local
chart (Γ, 𝜙), we can define the Laplacian-Beltrami operator Δ𝑔𝑆 as

−Δ𝑔𝑆 = − 1√︁
det(𝑔𝑆 )

𝑘∑︁
𝑖, 𝑗=1

𝜕

𝜕𝑢𝑖

(√︁
det(𝑔𝑆 )𝑔𝑖 𝑗

𝜕

𝜕𝑢 𝑗

)
𝑢 ∈ Γ, (10)

and the standard volume form 𝑑M as

𝑑M(𝑢) =
√︁

det(𝑔𝑆 )𝑑𝑢1 ∧ ... ∧ 𝑑𝑢𝑘 𝑢 ∈ Γ,

where det(𝑔𝑆 ) is the determinant of 𝑔𝑆 , and (𝑔𝑖 𝑗) is the inverse matrix of 𝑔𝑆 = (𝑔𝑖 𝑗). The reader
can find more details about these structures on the local chart (Γ, 𝜙) in Appendix D.

2.3 The Eigenvalue Problems of Laplacian and Laplacian-Beltrami Operators

2.3.1 Case ( ): Neumann Eigenvalue

In the next, we introduce the eigenvalue problem of the Laplacian operator with Neumann boundary
condition on a compact set Ω.

Definition 5. [Neumann eigenvalue of the Laplacian operator] Consider the eigenvalue problem
for the Laplacian operator on a closed domain Ω, subject to the Neumann boundary condition

−Δ𝑢 = 𝜆𝑢, 𝑥 ∈ int Ω and 𝜕𝑢/𝜕𝜈 = 0, 𝑥 ∈ 𝜕Ω,

where 𝜈 is the outward normal to 𝜕Ω and 𝑢 ∈ 𝑊1,2(Ω). The Neumann eigenvalue 𝜆𝑛1 (Ω) is defined
to be the minimum non-zero eigenvalue 𝜆 to the above problem.
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Recall the Poincaré inequality in Definition 1. It is known that 𝜆𝑛1 (Ω) matches the best Poincaré
constant for the Lebesgue measure on Ω. We can use Min-max formulation for Neumann eigenvalue
of Laplacian operator to derive this fact, see [Davies, 1995, Theorem 4.5.1], i.e., it admits the
following variational formulation

Remark 2 (Min-max formulation for Neumann eigenvalue). Consider the first non-zero Neumann
eigenvalue defined above. It admits the following variational formulation

𝜆𝑛1 (Ω) = inf
𝐿⊆W1,2 (Ω)
dim(𝐿)=2

sup
𝑢∈𝐿

{ |∇𝑢 |𝐿2 (Ω)
|𝑢 |𝐿2 (Ω)

}
= min

{ |∇𝑢 |𝐿2 (Ω)
|𝑢 |𝐿2 (Ω)

: 𝑢 ∈ 𝑊1,2(Ω)\{0},
∫
Ω

𝑢(𝑥)d𝑥 = 0

}
.

We will exploit the above formulation when Ω = 𝑆 and 𝑆 = 𝑈 in our analysis.

2.3.2 Case (#): Eigenvalue of Laplacian-Beltrami

Similarly to the previous subsection, we introduce the eigenvalue problem of the Laplacian-Beltrami
operator on the compact Riemannian submanifold 𝑆 without boundary. Unlike case ( ), it strongly
depends on the non-trivial metric 𝑔𝑆 .

Definition 6 (Eigenvalue of the Laplacian-Beltrami operator). Consider the eigenvalue problem for
the Laplacian-Beltrami operator on the compact Riemaniann submanifold (𝑆, 𝑔𝑆 ) without boundary,

−Δ𝑔𝑆 𝑢 = 𝜆𝑢, 𝑥 ∈ 𝑀,

where 𝑢 ∈ 𝑊1,2(𝑆) and −Δ𝑔𝑆 is the Laplacian-Beltrami operator on 𝑆 associated with metric 𝑔𝑆 .
The eigenvalue 𝜆1(Ω) is defined to be the minimum non-zero eigenvalue 𝜆 to the above problem.

Now we have the Dirichlet energy of Laplacian-Beltrami operator on 𝑆,

𝑄𝑆 ( 𝑓 , 𝑓 ) =

∫
𝑆

⟨ 𝑓 ,−Δ𝑔𝑆 𝑓 ⟩𝑔𝐸 𝑑M =

∫
𝑆

⟨𝑑𝑓 , 𝑑𝑓 ⟩𝑔𝑆 𝑑M, 𝑓 ∈ 𝑊1,2(𝑆),

+ ∞ otherwise,

Here 𝑑 is the exterior derivative on 𝑇∗𝑆, which can be written as 𝑑𝑓 =
∑𝑘

𝑖, 𝑗=1 𝑔
𝑖 𝑗 𝜕 𝑓

𝜕𝑢 𝑗
𝜕
𝜕𝑢𝑖

=
∑𝑘

𝑖=1 𝑔
𝑖 𝑗∇𝑢 𝑗 𝑓 ,

on the local chart (Γ, 𝜙) by the duality between 𝑇𝑆 and 𝑇∗𝑆. Then min-max theory tells us that

𝜆1(𝑆) = inf
𝐿:dim𝐿=2

sup
𝑢∈𝐿

𝑄𝑆 (𝑢, 𝑢)∫
𝑆
|𝑢 |2𝑑M

,

The reader could find more materials about this part in [Bérard, 1986, Chapter3].

2.4 Summary of Additional Assumptions

For the ease of reference, we summarize the required assumptions in this subsection.

Assumption 4 (Regularity of 𝑉 near the optimal set). The potential function 𝑉 is C2 and its
Hessian is locally 2−𝛼

𝛼−1 -Hölder continuous, i.e. for a sufficiently small 𝛿𝑉

∀𝑥, 𝑦 ∈ 𝑆𝛿𝑉 , |∇2𝑉 (𝑥) − ∇2𝑉 (𝑦) | ≤ 𝐿 |𝑥 − 𝑦 | 2−𝛼
𝛼−1 .

Remark 3. Our analysis also applies to the case of 𝛼 ∈ (1, 1.5), if 𝑉 has higher regularity.
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Assumption 5 (Behavior of 𝑉 beyond a compact set). Beyond a compact set, 𝑉 satisfies the error
bound inequality, i.e. ∃𝑅0 > 0 such that ∀|𝑥 | ≥ 𝑅0,

|∇𝑉 (𝑥) | ≥ 𝜈𝑒𝑏dist
1

𝛼−1 (𝑥, 𝑆). (11)

Moreover, Δ𝑉 := div∇𝑉 grows at most polynomially beyond a compact set, i.e. ∀|𝑥 | ≥ 𝑅0, |Δ𝑉 (𝑥) | ≤
𝐶𝑔 |𝑥 |

2
𝛼−1 . WLOG, we assume that 𝑅0 is sufficiently large so that for all 𝑥 ∈ 𝑆, |𝑥 | ≤ 𝑅0.

Clearly, eq. (11) in the above assumption implies Assumption 3.

Assumption 6. One of the following conditions holds:

(#) The optimal set 𝑆 is a compact C2 embedding submanifold without boundary. Let 𝑘 be the
dimension of 𝑆. We assume 𝑘 ≥ 1, i.e. 𝑆 is not a singleton. Moreover, we assume 𝑆 to have
bounded second fundamental form: On the local chart (Γ, 𝜙) of 𝑆, we assume

sup
𝑘+1≤𝑙≤𝑑

∥𝐺 (𝑙)∥∞4 < ∞. (12)

where 𝐺 (𝑙), 𝑙 = 𝑘 + 1, ..., 𝑑 are defined by (26).

( ) The optimal set 𝑆 has non-empty interior and satisfies 𝜕𝑆 ∈ Lip(𝑀, 𝛿, 𝑠,V,Λ).

Remark 4 (Dimension of 𝑆). Note that since 𝑆 is closed, its dimension 𝑘 is strictly smaller
than 𝑑 by [Boumal, 2023, Theorem 8.75], i.e. we are considering 1 ≤ 𝑘 ≤ 𝑑 − 1. For 𝑘 = 0,
i.e. 𝑆 degenerates to a singleton, the PI constant under a global 2-PL condition has been recently
established in [Chewi and Stromme, 2024]. In this case, the PI constant is of order Ω( 1

𝜖
) since C2

and the 2-PL condition implies that 𝑉 is locally strongly convex near the unique minimum.

Remark 5 (Local 2-PL implies manifold optimal set.). For a C𝑝 function satisfying the local 2-PL
condition in Assumption 1, Rebjock and Boumal [2024] show that the optimal set 𝑆 is locally a C𝑝−1

submainfold, for 𝑝 ≥ 2. Combining Theorem 8.75 in Boumal [2023] with Corollary 2.13 in Rebjock
and Boumal [2024], we know that the optimal set 𝑆 is a C𝑝−1 embedding submanifold of the ambient
space R𝑑, if 𝑆 contains only one connected component. Hence if we strengthen Assumption 4 to be
𝑉 ∈ C3, one can prove that for 𝛼 = 2, 𝑆 exactly matches case (#).

Remark 6 (𝜆1(𝑆) is non-trivial in case (#)). The Poincaré inequality on Riemannian manifold has
been well-studied, we refer readers [Hebey, 1999, Theorem 2.10] to the case of compact Riemannian
manifold, showing that 0 < 𝜆1(𝑆) < ∞.

Remark 7 (𝜆𝑛1 (𝑆) is non-trivial in case ( )). Note that the optimal set 𝑆 is connected and has
Lipschitz boundary, the Poincaré constant of 𝑆 exists, see [Evans, 2010, Theorem 3, §5.6], so that
𝜆1(𝑆) > 0. Moreover, we have 𝜆1(𝑆) < ∞ by [Burenkov and Davies, 2002, Remark 14].

4The boundedness condition of the second fundamental form is necessary. There exist curves in the plane that
do not have a bounded curvature. Let us take the curve as (𝑥(𝑡), 𝑦(𝑡)), then its second fundamental form is 𝜅(𝑡) =
|𝑥′′ (𝑡 )𝑦′ (𝑡 )−𝑥′′ (𝑡 )𝑦′ (𝑡 ) |

(𝑥′2 (𝑡 )+𝑦′2 (𝑡 ) )
3
2

. It is easy to know that it is not bounded for “Tractrix Curve”

(𝑥(𝑡), 𝑦(𝑡)) = (𝑎 sin 𝑡, 𝑎 ln(tan(𝑡/2)) + 𝑎 cos 𝑡), 𝜅(𝑡) =
��� tan 𝑡
𝑎

���
at the point (𝑎, 0).
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Remark 8 (Some incompatible configurations). While our result applies on different combinations
of the PL index 𝛼 and the two cases in Assumption 6, certain combinations are incompatible. One
most notable case is 𝛼 = 2 and 𝑆 is a Lipschitz domain with interior: If 𝑆 has interior, 𝑉 ≡ 0 on
𝑆 and hence ∇2𝑉 ≡ 0 on 𝜕𝑆 since 𝑉 ∈ C2. This contradicts with the quadratic growth of 𝑉 which
is implied by 2-PL [Rebjock and Boumal, 2024, Proposition 2.2]. Another interesting observation
is that if we strengthen the Hölder continuity of ∇2𝑉 to Lipschitz continuity in Assumption 4 for
𝛼 ∈ (1.5, 2), local 2-PL also holds. See the discussion in [Rebjock and Boumal, 2024, Remark 2.21].

3 Step 1: Reduction to the Neumman Eigenvalue Problem

We show that, when the temperature 𝜖 is sufficiently small, the Poincaré constant of the Gibbs
measure 𝜇𝜖 can be lower bounded by the Neumann eigenvalue of the Laplacian operator on a closed
domain 𝑈 in R𝑑. Here the choice of 𝑈 should satisfy some set inclusion relation (14). We will first
list a few useful properties of the Log-PL◦ measures and then present our proof.

3.1 Properties of the Log-PL◦ measures

The most important property of the Log-PL◦ measures is its uni-modality, proved in Appendix C.

Proposition 3.1 (Uni-modality). Under Assumptions 1 to 3, the set of all local minima of the
potential function 𝑉 is connected. Hence, 𝑉 has only one connected global minima set 𝑆 and the
Gibbs measure 𝜇𝜖 is single modal.

We then characterize the properties of 𝑉 in three different areas: (1) when 𝑥 is close to the
global minima set; (2) when 𝑥 is close to some local maximum; (3) otherwise.

Lemma 3.1. Under Assumptions 1, 2 and 5, the function 𝑉 satisfies the following properties:

• For any 𝑥 ∈ 𝜕N(𝑆), there exists some constant 𝛿0 > 0 such that dist(𝑥, 𝑆) ≥ 𝛿0.

• Let 𝑋 denote the set of all local maxima of the potential 𝑉 . If 𝑋 ≠ ∅, there exists constants
𝑅1 > 0 and 𝜇− > 0 such that for all 𝑥 ∈ N (𝑋) := {𝑥 : dist(𝑥, 𝑋) ≤ 𝑅1}, ∇2𝑉 (𝑥) ⪯ −𝜇− 𝐼𝑑.

• For 𝑥 ∉ N(𝑋) ∪ N (𝑆), there exists some constant 𝑔0 > 0 such that ∥∇𝑉 (𝑥)∥ ≥ 𝑔0.

3.2 Proof Sketch of Step 1

Our proof is built on the Lyapunov approach described in Theorem 2.1. To meet the requirements
in eq. (8), for any 𝑥 outside of a closed domain 𝑈, we need (i) a lower bound for the gradient norm
| |∇𝑉 (𝑥) | | and (ii) an upper bound for the Laplacian |Δ𝑉 (𝑥) |; further we need to (iii) specify the
choice of subdomain 𝑈.

(i) Lower bound of gradient norm ∥∇𝑉 (𝑥)∥. There are four situations.

• When 𝑥 is outside of a compact set, we utilize the error bound inequality in Assumption 5.

• When 𝑥 ∈ N (𝑆), we utilize the error bound inequality derived from the local PL Assumption 1:

Lemma 3.2. Suppose Assumptions 1 to 3 hold. The potential function 𝑉 satisfies the error
bound inequality in eq. (11) on N(𝑆), where we recall N(𝑆) in Assumption 2.

• When 𝑥 is close to a local maximum, it suffices to use the trivial bound | |∇𝑉 (𝑥) | | ≥ 0.

• Otherwise, we utilize the third property in Lemma 3.1.
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(ii) Upper bound of Laplacian |Δ𝑉 (𝑥) |. The point (ii) provides hint for the requirements of
the subdomain 𝑈 in point (iii) and is the major technical novelty of Step 1. To bound the Laplacian

|Δ𝑉 (𝑥) |, we partition the domain R𝑑\𝑆 (𝐶𝜖 ) 𝛼−1
𝛼 into a sequence of subdomains {Ξ𝑖}∞𝑖=−1:

R𝑑 = {𝑥 : 2𝑅0 ≤ ∥𝑥∥}︸              ︷︷              ︸
:=Ξ−1

∪ {𝑥 : (𝐶𝜖)𝑛1 ≤ dist(𝑥, 𝑆) and ∥𝑥∥ ≤ 2𝑅0}︸                                                  ︷︷                                                  ︸
:=Ξ0

∪ {𝑥 : (𝐶𝜖)𝑛𝑖+1 ≤ dist(𝑥, 𝑆) ≤ (𝐶𝜖)𝑛𝑖 }∞𝑖=1︸                                               ︷︷                                               ︸
:={Ξ𝑖 }∞𝑖=1

∪𝑆 (𝐶𝜖 ) 𝛼−1
𝛼
. (13)

Here, we recall 𝑅0 from Assumption 5, 𝐶 is some constant independent of 𝜖 , {𝑛𝑖}∞𝑖=1 is a se-
quence which depends on the parameter 𝛼 from Assumption 1. Both 𝐶 and {𝑛𝑖}∞𝑖=1 are defined in
Lemma 3.3. Importantly, we show that {𝑛𝑖}∞𝑖=1 is monotonously increasing and 𝑛∞ := lim𝑖→∞ 𝑛𝑖 =
𝛼−1
𝛼

, and hence the partition in eq. (13) indeed covers R𝑑.
We now sketch the treatment on the subdomains {Ξ𝑖}∞𝑖=−1 defined in eq. (13) and how the indices

{𝑛𝑖}∞𝑖=1 are identified successively.

• For 𝑥 ∈ Ξ−1 = {𝑥 : 2𝑅0 ≤ ∥𝑥∥}, we bound the Laplacian term |Δ𝑉 (𝑥) | by utilizing the growth
of Δ𝑉 from Assumption 5.

• For 𝑥 ∈ Ξ0 = {𝑥 : (𝐶𝜖)𝑛1 ≤ dist(𝑥, 𝑆) and ∥𝑥∥ ≤ 2𝑅0}, there are three situations: (1) 𝑥 is
close to some local maximum; (2) 𝑥 ∈ N (𝑆); (3) otherwise. We treat these three situations
separately. Moreover, we can identify the index 𝑛1 as the largest value such that the positivity
of 𝜎 in eq. (8) still holds when 𝑥 ∈ N (𝑆).

• The estimation on Ξ𝑖≥1 is achieved in a recursive manner: Suppose that 𝜖 is sufficiently small
so that Assumption 4 applies, i.e. (𝐶𝜖)𝑛𝑖 ≤ 𝛿. We can upper bound |Δ𝑉 (𝑥) | by exploiting the
facts that ∇2𝑉 (𝑥) ≡ 0 for 𝑥 ∈ 𝑆 and ∇2𝑉 is locally Hölder continuous. More precisely, we have

∥∇2𝑉 (𝑥) − ∇2𝑉 (𝑥∗)∥ ≤ 𝐿∥𝑥 − 𝑥∗∥ 2−𝛼
𝛼−1 ≤ 𝐿 (𝐶𝜖)𝑛𝑖 ·

2−𝛼
𝛼−1 .

We can identify the index 𝑛𝑖+1 as the largest value such that the positivity of 𝜎 in eq. (8) still
holds. Moreover, we explicitly calculate the expression of {𝑛𝑖}∞𝑖=1, show that 𝑛𝑖+1 > 𝑛𝑖, and
prove that the sequence converges to 𝛼−1

𝛼
.

Note that for every subdomain in {Ξ𝑖}∞𝑖=−1, there will be a corresponding value of 𝜎𝑖 and we set

𝜎 = inf 𝑖∈{−1,0,...,∞} 𝜎𝑖. Besides, since we will pick 𝑈 ⊆ 𝑆𝑐 (𝐶𝜖 ) 𝛼−1
𝛼 , we estimate 𝑏 by restricting 𝑥 on

𝑆𝑐 (𝐶𝜖 ) 𝛼−1
𝛼 . We prove that 𝜎 is of order Θ(𝜖 2

𝛼
−2).

(iii) Restriction on the choice of 𝑈. The above estimation of 𝜎, together with eq. (7) in
Theorem 2.1, hints to pick the subdomain 𝑈 of point (i) such that

𝑆 (𝐶𝜖 ) 𝛼−1
𝛼 ⊆ 𝑈 ⊆ 𝑆𝑐 (𝐶𝜖 ) 𝛼−1

𝛼
, (14)

with 𝑐 > 1 being some constant independent of 𝜖 . Indeed, under the above restriction, we can
bound 𝑏 to be of the same order as 𝜎 and hence we can lower bound the Poincaré constant of the
Gibbs measure 𝜇𝜖 with the one of the restricted measure 𝜇𝜖 ,𝑈, using Theorem 2.1. For the chosen
subdomain 𝑈, we will further relax the Poincaré constant of 𝜇𝜖 ,𝑈 to the Neumman eigenvalue of
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the Laplacian operator on 𝑈 by exploiting the perturbation principle in Theorem 2.2. We show
that such a relaxation introduces only factor independent of 𝜖 . See the discussion in Section 3.4.

Remark 9. The choice of 𝑈 slightly larger than 𝑆 (𝐶𝜖 )𝑛∞ is crucial to scenario ( ): It is generally
hard to characterize the boundary of the exact expansion 𝑆 (𝐶𝜖 )𝑛∞ and so does the corresponding
Neumann eigenvalue. The flexibility of this choice is key to our analysis.

The exact choice of 𝑈 will be the focus of Section 4.

3.3 Establishing the bound on 𝑏 and 𝜎.

The following lemma formally states the above results, whose proof is in Appendix E.3.

Lemma 3.3. Suppose that Assumptions 1, 2 and 4 to 6 hold. Define a constant 𝐶 = 4𝑑𝐿
𝜈2
𝑒𝑏

. Suppose

the temperature 𝜖 is sufficiently small such that 𝜖 ≤ 𝜈2
𝑒𝑏

64𝐶𝑔
, (𝐶𝜖)

𝛼−1
2 ≤ min{𝛿𝑉 , 𝛿0},

𝑔20
4𝜖 2 ≥ 𝑑𝐿

𝜖
. Define

two sequences {𝑛𝑖}∞𝑖=1 and {𝑚𝑖}∞𝑖=1 such that

𝑛1 =
𝛼 − 1

2
, 𝑚𝑖 =

1

𝑛𝑖+1
− 2, and 𝑚𝑖 · 𝑛𝑖 =

2𝑛𝑖+1
𝛼 − 1

. (15)

We have 𝑚𝑖 ≥ 2−𝛼
𝛼−1 and 𝑛𝑖+1 > 𝑛𝑖 for all 𝑖 ≥ 1, and lim𝑖→∞ 𝑛𝑖 =

𝛼−1
𝛼

. Moreover, on the subdomain

Ξ𝑖 = {𝑥 : (𝐶𝜖)𝑛𝑖+1 ≤ dist(𝑥, 𝑆) ≤ (𝐶𝜖)𝑛𝑖 }∞𝑖=1, we have eq. (8) hold with 𝜎𝑖 =
𝜈2
𝑒𝑏

8𝜖 2 (𝐶𝜖)𝑚𝑖𝑛𝑖+1.
For any subdomain 𝑈 satisfying eq. (14) with 𝑐 > 1, we have eq. (8) holds globally with

𝜎 = min

{
𝜈2
𝑒𝑏
𝑅

2
𝛼−1
0

128

1

𝜖2
,
𝑑𝜇−

2𝜖
,
𝜈2
𝑒𝑏

8𝜖2

(
𝐶𝜖

) 2
𝛼
}
, and 𝑏 = 𝜎 +

𝜈2
𝑒𝑏

8𝜖2

(
𝐶𝜖

) 2
𝛼

· 𝑐 2−𝛼
𝛼−1 . (16)

3.4 Perturbation near the optimal set

Applying the estimates from Lemma 3.3 to Theorem 2.1, we have reduced the estimation for the
Poincaré constant of the Gibbs measure 𝜇𝜖 to the estimation for the one of the truncated Gibbs
measure 𝜇𝜖 ,𝑈. Unfortunately, the latter remains elusive. In this section, we further reduce the
estimation of 𝜌𝜖 ,𝑈 to the estimation of the Neumman eigenvalue of the Laplacian operator on 𝑈.

Since all the points in the subdomain 𝑈 is sufficiently close to the optimal set 𝑆, one can
utilize the Taylor expansion of the potential 𝑉 to show that the density function of the truncated
Gibbs measure 𝜇𝜖 ,𝑈 is an 𝜖-perturbation of the uniform density function on 𝑈. We can utilize the
perturbation principle in Theorem 2.2 to conclude the following result, proved in in Appendix E.4.

Lemma 3.4. Suppose that the assumptions and requirements in Lemma 3.3 hold. If the uniform
measure 𝜇𝑈 satisfies PI(𝜌𝑈), then the truncated Gibbs measure 𝜇𝜖 ,𝑈 also satisfies PI(𝜌𝜖 ,𝑈) with

exp{𝐶}𝜌𝜖 ,𝑈 ≥ 𝜌𝑈 = 𝜆𝑛1 (𝑈),

where 𝐶 = 4𝐿𝑐
𝛼

𝛼−1𝐶 and recall that 𝜆𝑛1 (𝑈) is the Neumann eigenvalue on 𝑈.

Combining Lemmas 3.3 and 3.4, we obtain the main conclusion of this section.

Theorem 3.1. Suppose that the assumptions and requirements in Lemma 3.3 hold and further

suppose that 𝜖 is sufficiently small so that 𝜎 = min{ 𝑑𝜇
−

2𝜖 ,
𝜈2
𝑒𝑏

8𝜖 2

(
𝐶𝜖

) 2
𝛼

} in eq. (16). For any subdomain

𝑈 such that the relation (14) holds, for some constant 𝑐 > 1, we have 𝜌𝜇𝜖
≥ 1

2𝑐
− 2−𝛼

𝛼−1 exp(−𝐶)𝜆𝑛1 (𝑈).
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4 Step 2: Stability Analysis of the Neumman Eigenvalue

In the previous section, we reduce the estimation of the Poincaré constant of 𝜇𝜖 to 𝜆𝑛1 (𝑈), the
Neumann eigenvalue of the Laplacian operator on the subdomain 𝑈. In this section, we focus on
the construction of 𝑈. While the construction is temperature-dependent, we can explicitly state
the dependence of 𝜆𝑛1 (𝑈) on 𝜖 . This is possible since our construction ensures that 𝜕𝑈 inherits the
nice properties of 𝑆 in both scenarios ( ) and (#), where the regularity of 𝜕𝑈 plays a key role in
determining 𝜆𝑛1 (𝑈).

4.1 Case ( ): 𝑆 is a Lipschitz Domain

We sketch our idea as follows. Choose parameters as in Corollary 1 to conclude the target result.

• For a Lipschitz domain 𝑆, we explicitly construct a diffeomorphism P : R𝑑 → R𝑑 and set
𝑈 = P(𝑆)5. In this way, we have the explicit control of 𝜕𝑈 = 𝜕P(𝑆), making the stability
analysis possible. The construction of P is inspired by [Burenkov and Davies, 2002].

• Given the above construction of 𝑈, a crucial step is to show that eq. (14) is satisfied. While
the R.H.S. is simple to establish, the L.H.S. is the major technical challenge of this section.
We address this challenge by showing that the boundary of 𝑈 is pushed sufficiently far away
from 𝜕𝑆 by the map P. Note that in general, the map P does not push the point on 𝜕𝑆

equally away, and hence our analysis does not apply when 𝑈 is an exact expansion of 𝑆, i.e.
𝑈 = 𝑆𝑎 = {𝑥 : dist(𝑥, 𝑆) ≤ 𝑎} for some constant 𝑎. This highlights the importance of the
flexibility of choosing 𝑈 in Lemma 3.3.

• We lower bound 𝜆𝑛1 (𝑈) by exploiting its min-max variational formulation in Remark 2.

4.1.1 Construction of the map P and the subdomain 𝑈

Figure 2: A zoom-in view of
Figure 1. P pushes 𝜕𝑆 (black
solid line) in the direction of 𝜉2
to 𝜕𝑈 (the black dashed line).
The light blue area is the orig-
inal area while the light green
area is the expanded area. 𝛽

shoud be sufficently small so
that 𝜕𝑈 remains in V 𝑗 , high-
lighted by the red dashed line.

Consider a Lipschitz domain 𝑆 ⊆ R𝑑, i.e. 𝜕𝑆 ∈ Lip(𝑀, 𝛿, 𝑠,V,Λ),
where we recall the definition of the Lipschitz boundary in Def-
inition 3. Let functions 𝜓 𝑗 ∈ 𝐶∞(R𝑑) satisfy 0 ≤ 𝜓 𝑗 ≤ 1,
supp 𝜓 𝑗 ⊂ (V 𝑗) 3

4 𝛿
, |∇𝜓 𝑗 | ≤ 𝑏

𝛿
where 𝑏 > 0 is a constant, 𝑗 ∈ [𝑠]

and
∑𝑠

𝑗=1 𝜓 𝑗 (𝑥) = 1, for 𝑥 ∈ 𝑆, i.e. {𝜓 𝑗}𝑠𝑗=1 is a partition of unity

w.r.t the open set family {(V 𝑗) 3
4 𝛿

}𝑠
𝑗=1. Since R𝑑 is flat, such a

partition of unity always exists. See a specific construction in [Tu,
2010, Proposition 13.6].

Let 𝑒𝑑 = (0, ..., 0, 1) and 𝜉 𝑗 = Λ−1
𝑗
(𝑒𝑑), 𝑗 ∈ [𝑠]. Here Λ 𝑗 is

invertible since it is a rotation. For 𝑥 ∈ R𝑑 and 𝛽 ∈ (0, 𝛿4 ] define

P(𝑥) = 𝑥 + 𝛽
𝑠∑︁
𝑗=1

𝜉 𝑗𝜓 𝑗 (𝑥). (17)

Lemma 4.1. Let a bounded open set 𝑆 ⊂ R𝑑 be such that 𝜕𝑆 ∈
Lip(𝑀, 𝛿, 𝑠,V,Λ). Then there exist 𝐴1, 𝐴2, 𝜖0 > 0, depending only
on 𝑑, 𝑀, 𝛿, 𝑠,V,Λ such that for all 0 < 𝛽 ≤ 𝜖0����𝜕P𝑖

𝜕𝑥 𝑗
(𝑥) − 𝛿𝑖 𝑗

���� ≤ 𝐴1𝛽, 𝑥 ∈ R𝑑 , (18)

5Note that the construction of the map exploits the structure of 𝑆 . This dependence is omitted for brevity.
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and the determinant of the Jacobian 𝐽𝑎𝑐(P, 𝑥) satisfies

1

2
≤ 1 − 𝐴2𝛽 ≤ det (𝐽𝑎𝑐(P, 𝑥)) ≤ 1 + 𝐴2𝛽, 𝑥 ∈ R𝑑 . (19)

Consequently, P is a diffeomorphism from R𝑑 to R𝑑 and we have P(𝜕𝑆) = 𝜕P(𝑆).

Please find the proof in Appendix F.1.

4.1.2 Establishing the Relation in Equation (14) for 𝑈

Lemma 4.2. Consider the map P constructed in eq. (17). There exists 0 < 𝐴3 < 1 depending only
on 𝑑, 𝑀, 𝛿, 𝑠,V,Λ such that for all 0 < 𝛽 ≤ 𝜖0,

𝑆𝐴3𝛽 ⊆ P(𝑆) ⊆ 𝑆𝛽 . (20)

The proof of Lemma 4.2 can be found in Appendix F.3. Proving the R.H.S. of eq. (20) is
straight forward, by noting that ∥P(𝑥) − 𝑥∥ ≤ 𝛽. To prove the L.H.S, we split into two steps: (1)
𝑆 ⊂ P(𝑆); and (2) 𝑆𝐴3𝛽 ∩ (int 𝑆)𝑐 ⊆ P(𝑆) ∩ (int 𝑆)𝑐. Clearly these two steps together lead to the
conclusion. For point (2), our proof is built on the following key lemma, proved in Appendix F.2,
which states that P pushes the boundary sufficiently far away.

Lemma 4.3. For 𝑦 ∈ 𝜕P(𝑆), 𝑑𝑆 (𝑦) ≥ 𝐴3𝛽, where we recall 𝑑𝑆 (𝑥) := dist(𝑥, 𝜕𝑆).

4.1.3 Estimation of the Neumman Eigenvalue on 𝑈

Theorem 4.1. Consider the map P constructed in eq. (17). There exists 𝐴 depending only on
𝑑, 𝑀, 𝛿, 𝑠,V,Λ such that for all 0 < 𝛽 ≤ 𝛿/4, such that the following estimation holds,

𝜆𝑛1 (P(𝑆)) ≥ (1 − 𝐴𝛽)𝜆𝑛1 (𝑆).

Please find its proof in Appendix F.4.

Corollary 1. Suppose that the optimal set 𝑆 satisfies Assumption 6. Take 𝛽 = (𝐶𝜖) 𝛼−1
𝛼 /𝐴3 and

𝑐 = 1/𝐴3 in Theorem 4.1, where we recall 𝐴3 ∈ (0, 1) is a constant independent of 𝜖 defined in
lemma 4.2. We have that 𝑈 = P(𝑆) satisfies 𝜆𝑛1 (𝑈) ≥ (1 − 𝐴𝛽)𝜆𝑛1 (𝑆) and meets requirement (14).

4.2 Case (#): 𝑆 is a C2 embedding submanifold of R𝑑

We now sketch the choice of 𝑈 for the case where 𝑆 is a embedding submanifold of R𝑑 without
boundary. The construction of 𝑈 for case ( ) no longer applies here: Applying any diffeomorphism
on 𝑆, the dimension remains 𝑘 (𝑘 < 𝑑 by Remark 4), but we need 𝑈 to be a closed domain
with interior under the topology of R𝑑, which has dimension 𝑑. Fortunately, any C2 embedding
submanifold admits a tubular neighborhood 𝑇 (𝜖), a kind of special neighborhood in the ambient
space, as described in Theorem 4.2. We take 𝑈 = 𝑇 (𝜖) with 𝜖 = (𝐶𝜖) 𝛼−1

𝛼 . Moreover, the tubular
neighborhood coincides with the expansion of 𝑆, i.e. 𝑇 (𝜖) = 𝑆 𝜖 , and hence it naturally satisfies
eq. (14) with 𝑐 = 1.

4.2.1 Tubular Neighborhood of a C2 Embedding Submanifold

As an important property of embedding submanifold in R𝑑, let us introduce the tubular neighbor-
hood theorem (See [LectureNote, 2023, Theorem 2.1]).
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Theorem 4.2 (Tubular neighborhood theorem). Let 𝑀 be a compact C2 embedding submanifold
in R𝑑. Let 𝑇 (𝜖) be the tubular neighborhood of 𝑀, defined as

𝑇 (𝜖) = {𝑦 ∈ R𝑑 : |𝑦 − 𝑚 | ≤ 𝜖, 𝑚 ∈ 𝑀}.

There exists a positive number 𝜖TN, such that for all 0 < 𝜖 ≤ 𝜖TN, one has

1. each 𝑦 ∈ 𝑇 (𝜖) possesses a unique closest point 𝜋(𝑦) ∈ 𝑀;

2. the projection map 𝜋 : 𝑇 (𝜖) → 𝑀 is a submersion. That is to say, the linear map 𝐷𝑦𝜋 :
𝑇𝑦𝑇 (𝜖) → 𝑇𝜋 (𝑦)𝑀 is surjective at each point 𝑦 ∈ 𝑇 (𝜖).

There is a more concrete representation for the tubular neighborhood, which we adopt in the rest
of the paper: For any 𝑦 ∈ 𝑇 (𝜖), 𝑦 can be written as 𝑦 = 𝑚 + 𝜈, where 𝑚 is a point on 𝑀 and 𝜈 ⊥ 𝑀

at 𝑚 with |𝜈 | ≤ 𝜖 , and the map 𝑦 → (𝑚, 𝜈) is a diffeomorphism. More precisely, under the local
chart (Γ, 𝜙), the diffeomorphism 𝑦 → (𝑚, 𝜈) can be written as

𝑦(𝑢, 𝑟) = M(𝑢) +
𝑑∑︁

𝑙=𝑘+1
𝑟 𝑙N𝑙 (𝑢), 𝑢 ∈ Γ ⊂ R𝑘 , (𝑟𝑘+1, ..., 𝑟𝑑) ∈ 𝐵(𝜖) ⊂ R𝑑−𝑘 . (21)

Here M(𝑢) is local coordinate representation of the including map 𝑖 : 𝑀 → R𝑑 in (9), N𝑘+1, ...,N𝑑 :
Γ → R𝑑 are 𝑑 − 𝑘 normal vector fields on 𝑀 which are also orthogonal to each other, and 𝐵(𝜖)
denotes ball with radius 𝜖 in R𝑑−𝑘 . We refer readers to Appendix D for more details about these
vector fields on the local chart (Γ, 𝜙). For brevity, we also denote 𝑟 = (𝑟𝑘+1, ..., 𝑟𝑑) with |𝑟 | ≤ 𝜖 .

4.2.2 Stability of the Neumann Eigenvalue on the Tubular Neighborhood

We now focus on the stability of 𝜆𝑛1 (𝑇 (𝜖)) w.r.t. 𝜖 , where 𝑇 (𝜖) is a tubular neighborhood of 𝑆. Given
the special structure of 𝑇 (𝜖), our idea is to exploit the tensorization of the Poincaré inequality.

Theorem 4.3 (Tensorization, Proposition 4.3.1 in [Bakry et al., 2014]). If (𝐸1, 𝜇1) and (𝐸2, 𝜇2) are
two probability spaces with probability 𝜇1 and 𝜇2, and they satisfy Poincaré inequality with constants
𝐶1 and 𝐶2 respectively. Then the product space (𝐸1 × 𝐸2, 𝜇1 × 𝜇2) satisfies a Poincaré inequality
with constant 𝐶 = max{𝐶1, 𝐶2}.

To utilize the above theorem, recall the min-max variational principle of PI in Section 2.3, which
consists of the 𝐿2 norm and the W1,2 norm on 𝑇 (𝜖). To bound these integrals, we show that the
uniform measure on 𝑇 (𝜖) can be decomposed as the product of a pair of decoupled measures on
the manifold 𝑆 and the subspace of the normal coordinates 𝑟, up to an O(𝜖) perturbation:

• We decompose the integral in 𝑇 (𝜖) as the integral in the product space 𝑆 × 𝐵(𝜖) with an
additional factor of order 1 + O(𝜖). This is possible since for any 𝑥 ∈ 𝑆, an 𝜖1-neighborhood
of 𝑥 under the topology of R𝑑 can be viewed, up to a diffeomorphism, as the product space
𝐵𝑆 (𝑥, 𝜖2) × 𝐵(𝜖3). Here 𝐵𝑆 (𝑥, 𝜖2) ⊂ 𝑆 is a ball in 𝑆 with center 𝑥 and radius 𝜖2 (defined
according to the geodesic distance on 𝑆) and 𝐵(𝜖3) is a ball in 𝑑 − 𝑘 normal directions of 𝑆
at 𝑥 with radius 𝜖3. Equivalently, we turn the uniform measure on 𝑇 (𝜖) to the product of the
volume measure induced by the including map 𝑖𝑆 on 𝑆 and the uniform measure on 𝐵(𝜖).

• With the above decomposition, we show that both 𝐿2 and W1,2 norm on 𝑇 (𝜖) are bounded
by their counterparts on the the product space 𝑆 × 𝐵(𝜖) with an 𝜖 perturbation.
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(a) (b) (c)

Figure 3: Using the tubular neighborhood theorem, in a local region of 𝑈 (outlined with the red
dashed line) we transform the uniform measure to a pair of decoupled measures on the tangent
and normal directions. (a) Uniform measure 𝜇𝑈 (over (𝑥, 𝑦)) under the Cartisian coordinate (𝑥, 𝑦);
(b) Uniform measure 𝜇𝑈 (over (𝑥, 𝑦)) under the local coordinate (𝜃, 𝑟); (c) Uniform measure (over
(𝜃, 𝑟)) under the local coordinate (𝜃, 𝑟). Importantly, when the radius of the tubular neighborhood
is small, the densities in (b) and (c) point-wisely control each other. The circle in (a) can be
represented using two local charts (blue and green). The above derivation already allows us to
exploit the min-max formulation of the Laplacian-Beltrami eigenvalue and the tensorization of the
Poincaré inequality to conclude the target result.

With the above derivation, we turn our focus to the PIs of the two decoupled measures. The
PI constant of the volume measure on 𝑆 is inherent to 𝑆 and is temperature-independent. The PI
constant of the measure on the normal coordinates has been explicitly calculated in the literature.

Lemma 4.4. (PI for Lebesgue measure on a ball, [Evans, 2010, Page 293, Theorem 2]) Assume
1 ≤ 𝑝 ≤ ∞. Then there exists a constant 𝐶, depending only on 𝑑 and 𝑝, such that{∫

𝐵(𝜖 )

(
𝑓 −

∫
𝐵(𝜖 )

𝑓 d𝑥

) 𝑝
d𝑥

} 1
𝑝

≤ 𝐶𝜖
{∫

𝐵(𝜖 )
|∇ 𝑓 |𝑝d𝑥

} 1
𝑝

,

for each ball 𝐵(𝜖) ⊂ R𝑑 and each function 𝑓 ∈ 𝑊1, 𝑝 (𝐵(𝜖)).

Combining with Theorem 4.3, we know 𝜆𝑛1 (𝐵(𝜖) is dominated by 𝜆1(𝑆) when 𝜖 is sufficiently
small and hence 𝜆𝑛1 (𝑇 (𝜖) is determined by 𝜆1(𝑆). We now make the above reasoning rigorous.

Lemma 4.5. Weyl [1939] Let 𝜑 : 𝑇 (𝜖) → R be a integrable function on tubular neighborhood 𝑇 (𝜖),
then we have∫

𝑇 (𝜖 )
𝜑(𝑦)𝑑𝑦 =

∫
𝑆

{ ∫
𝐵(𝜖 )

𝜑(𝑦(𝑢, 𝑟))
���det

(
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
) ���𝑑𝑟𝑘+1...𝑑𝑟𝑑}𝑑M,

where the variable 𝑦 on the right hand side uses the expression of the local coordinate (21), 𝐼𝑘 is
𝑘 × 𝑘 identity matrix and 𝐺 (𝑙) is defind by (26).

To relate 𝜆𝑛1 (𝑈) to 𝜆1(𝑆) through their min-max variational principles, we need the following
expression of the gradient under change of variables.

Lemma 4.6. Let 𝜑(𝑦) ∈ 𝑊1,2(𝑇 (𝜖)), then, on each local chart (Γ, 𝜙), we have

∇(𝑢,𝑟 )𝜑(𝑦(𝑢, 𝑟)) = ∇𝑦𝜑 · [ 𝜕M
𝜕𝑢1

, ...,
𝜕M
𝜕𝑢𝑘

,N𝑘+1, ...,N𝑑] ·
[
𝐼𝑘 +

∑𝑑
𝑙=𝑘+1 𝑟𝑙𝐺 (𝑙) 0

0 𝐼𝑑−𝑘

]
,
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in the sense of distribution, where the matrix 𝐺 (𝑙) is defined by (26) and 𝐼𝑘 is 𝑘 × 𝑘 identity matrix.

We are now ready to state the estimation of 𝜆𝑛1 (𝑈) in case (#). Note that the choice of
𝑈 = 𝑇 (𝜖) can also be regarded as a domain expansion, so the following result is also a stability
analysis. However, one should keep in mind that the domain expansion is performed under the
topology of the ambient space R𝑑, so 𝑈 and 𝑆 do not have the same dimension.

Proposition 4.1. Suppose that Assumptions 1, 2 and 4 to 6 hold, then we have the non-asymptotic
estimates of 𝜆𝑛1 (𝑇 (𝜖)) based on 𝜆1(𝑆)

𝜆1(𝑆) (1 − 𝐵𝜖) ≤ 𝜆𝑛1 (𝑇 (𝜖)) ≤ 𝜆1(𝑆) (1 + 𝐵𝜖),

for some constant 𝐵 = 𝐵(𝑑, 𝑘, 𝐺 (𝑙)) > 0 when 𝜖 is small enough. Here 𝑘 denotes the dimension of
𝑆 and 𝐺 (𝑙) denotes the second fundamental form of 𝑆 defined in Appendix D.

5 Poincaré Inequality for the Log-PL◦ Measure

We now combine the results in Sections 3 and 4 to conclude the Poincaré inequality for the Gibbs
measure 𝜇𝜖 . Please find the proof in Appendix H.1.

Theorem 5.1. Suppose that Assumptions 1, 2 and 4 to 6 and the requirements in Lemma 3.3 hold.
We have the following conclusions for the two cases in Assumption 6.

( ) (Lipschitz Domain of R𝑑) Pick 𝑐 and 𝐴 according to Corollary 1 and suppose that the tem-

perature 𝜖 in addition satisfies 𝜖 ≤ min
{
𝛿
4 ,

1
𝐶

(
1

2𝐴𝑐

) 𝛼
𝛼−1 }

, where 𝛿 is defined in Definition 3.

Recall that 𝜆𝑛1 (𝑆) denotes the Neumann eigenvalue on 𝑆 define in Definition 5. We have

𝜌𝜇𝜖
≥ 𝐶𝑃𝜆

𝑛
1 (𝑆).

(#) (Embedding submanifold of R𝑑) Set 𝑐 = 1 and suppose that the temperature 𝜖 in addition sat-

isfies 𝜖 ≤ min
{
𝜖TN,

1
𝐶

(
1

2𝐵𝑐

) 𝛼
𝛼−1 }

, where 𝜖TN and 𝐵 appear in Theorem 4.2 and Proposition 4.1

respectively. Recall that 𝜆1(𝑆) denotes the Neumann eigenvalue on 𝑆 define in Definition 6.
We have

𝜌𝜇𝜖
≥ 𝐶𝑃𝜆1(𝑆).

Here 𝐶𝑝 = 1
4𝑐

− 2−𝛼
𝛼−1 exp(−𝐶) is a temperature-independent constant.
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A Related Work

Functional inequalities. Poincaré inequality is a crucial topic in domains like probability, anal-
ysis, geometry and so on. We categorize the results according to the property of the energy.

• When the potential function 𝑉 is strongly convex, the famous Bakry-Emery criterion ensures
that the PI constant is of order Θ( 1

𝜖
) Bakry and Émery [2006]. See for more detailed discussion

in the book Bakry et al. [2014].

• When the potential function 𝑉 is convex, there two prominent strategies to study the PI
constant: the Lyapunov function approach [Bakry et al., 2008a] and the approach initiated
by Cheeger [1970] which relates the PI constant to the isoperimetric constant of the target
measure and the KLS conjecture [Kannan et al., 1995, Lee and Vempala, 2024].
Following [Bakry et al., 2008b], Bakry et al. [2008a] reduce the Poincaré inequality on R𝑑

into a small compact region 𝑈 if 𝑉 satisfies a Lyapunov condition. Convex functions that
are exponentially integrable is proved to satisfy this condition and hence the corresponding
log-concave measure satisfies Poincaré inequality. However, they do not consider the low
temperature region and if we naively utilize the Holley-Stroock perturbation principle to
derive the Poincaré inequality in the said compact region 𝑈, the resulting Poincaré constant
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on R𝑑 is Ω(exp( 1
𝜖
)).

Another important research line is Cheeger’s inequality Cheeger [1970], which relates the
Poincaré constant on a compact set with the Cheeger constant, describing the geometrical
property of the set. Later on, the KLS conjecture extends the Cheeger constant in Eucildean
space with log-concave measure in Kannan et al. [1995]. We recommend a good survey Lee and
Vempala [2018] and reference therein for more precise introduction and recent progress. We
mention a very important method to prove this conjecture — stochastic localization, which
starts from Eldan’s work in Eldan [2013], and then generalized by Lee and Vempala [2024]
and Chen [2020]. We note that KLS conjecture pays more attention to the independence
of dimension. However, it also helps to derive the relationship of temperature and Poincaré
constant for log-concave measure. In fact, if we combine the Lyapunov function approach
with the KLS conjecture, we can prove that for a log-concave measure, the Poincaré constant
remains temperature-independent in the low temperature regime.

• The convergence behavior of the Langevin dynamics on a non-log-concave measure is also a
crucial research problem in various domains. In particular, here we focus on the case where
the potential function 𝑉 has at least two separated (local) minima. As mentioned in the
introduction, in this case, there is a two time-scale phenomenon in the convergence behavior
in the low temperature region. The exponential dependence on the inverse temperature in the
slow scale is classically known as the Arrhenius law [Arrhenius, 1967], which can be proved
for example by the Freidlin-Wentzell theory on large deviation [Freidlin and Wentzell, 2012].
With additional assumptions that 𝑉 is a Morse function and its saddle points has exactly
one negative eigenvalue, this subexponential factor in the convergence behavior is captured
in [Eyring, 1935, Kramers, 1940] and rigorously proved by [Bovier et al., 2004, Gayrard et al.,
2005] through potential theory. Menz and Schlichting [2014] study the same problem, but
through the functional inequality perspective. Following the two-scale approach in [], Menz
and Schlichting [2014] split the variance (the term Var𝜇 ( 𝑓 ) in eq. (3)) into local variances
and coarse-grained variances. The estimations on both variances can be combined together
to obtain the global Poincaré inequality.

Spectral stability. One of the most important arguments in our paper is the spectral stability of
Laplacian operator under domain perturbation. However, it is known that the Neumann eigenvalue
is not continuous w.r.t. general perturbation. A counterexample is given in [Courant and Hilbert,
1954, page 420]. Arrieta Arrieta [1995] also describes the sudden jump of eigenvalues of Laplacian
operator under the dumbbell shaped perturbations. However, there also many positive result if
we restrict types of domains and perturbations. In [Courant and Hilbert, 1954, Theorem 10], it
is also proved that continuity holds if a bounded domain with a C2 boundary is deformed by
a “continuously differentiable transformation”, in which case the normals to the boundary are
deformed continuously. In [Arrieta and Carvalho, 2004, Theorem 6] it is proved that if Ω has a
Hölder continuous boundary, 𝜆𝑛1 (Ω) is continuous Hölder continous w.r.t. perturbation of domain
shrinkage. Specifically, let 𝛾 ∈ (0, 1] be the Hölder index. There exists a factor 𝑐 depending on Ω1

such that for all Ω2 satisfying (Ω1)𝜖 ⊂ Ω2 ⊂ Ω1, the follow inequality holds

|𝜆𝑛1 (Ω1) − 𝜆𝑛1 (Ω2) | ≤ 𝑐(Ω1)𝜖𝛾 ,

where Ω2 should has a Hölder continuous boundary with the exact same parameters as Ω1. We

highlight that their result does not apply to our case since Ω1 corresponds to 𝑆𝑐 (𝐶𝜖 )
𝛼−1
𝛼 here and

hence 𝑐 is temperature-dependent. Later, in [Arrieta and Carvalho, 2004] some conditions ensuring
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the continuous dependence of the eigenvalues and also eigenfunctions of the Neumann Laplacian
upon domain perturbation are given. In [Lamberti and de Cristoforis, 2005], an estimate for
|𝜆𝑛1 (Ω1) − 𝜆𝑛1 (Ω2) | is obtained, under minimal assumptions on the open set Ω1, when Ω2 = 𝜙(Ω1)
and 𝜙 is a locally Lipschitz continuous homeomorphism of Ω1 onto Ω2. Also we mention that, by
using this approach, differentiability and analyticity properties of eigenvalues and eigenfunctions
upon domain perturbation have been investigated in [Lamberti and Lanza De Cristoforis, 2004,
Lamberti and de Cristoforis, 2007].

B Poincaré constant for log-concave measure in the low temper-
ature regime

Suppose the potential function 𝑉 is convex and WLOG 𝑉∗ = 0. Suppose that 𝑉 is exponentially
integrable for 𝜖 = 1, i.e.

∫
R𝑑

exp(−𝑉 (𝑥))d𝑥 < ∞. We prove that the Poincaré constant 𝜌𝜇𝜖
is Ω(1).

Our proof is a combination of the Lyapunov function approach [Bakry et al., 2008a] and the KLS
conjecture [Lee and Vempala, 2024].

Recall point (2) in [Bakry et al., 2008a, Lemma 2.2] which states that under the integrablity
assumption, one has

∃𝛼 > 0, 𝑅 > 0, s.t.∀|𝑥 | ≥ 𝑅,𝑉 (𝑥) −𝑉 (0) ≥ 𝛼 |𝑥 |.

Moreover, let us choose a Lyapunov function as 𝑊 (𝑥) = exp(𝑊̃ (𝛾 |𝑥 |)) where 𝛾 = 𝛼
3

𝑊̃ (𝑧) =


𝑧 𝑧 ≥ 𝑅

− 12
𝑅2 𝑧

3 + 28
𝑅
𝑧2 − 19𝑧 + 4𝑅 𝑅/2 ≤ 𝑧 ≤ 𝑅

0 𝑧 ≤ 𝑅/2
.

We can compute for |𝑥 | ≥ 𝑅

𝜖−1L𝑊 (𝑥) = 𝛾
(
𝑛 − 1

|𝑥 | + 𝛾 − 𝑥 · ∇𝑉 (𝑥)
𝜖 |𝑥 |

)
𝑊 (𝑥).

Note that 𝑊 ∈ C2 and 𝑊 (𝑥) ≥ 1 for all 𝑥 ∈ R𝑑. Recall Theorem 2.1. Set 𝜃 = 𝛼
𝜖
− 𝛾 − (𝑑−1)

𝑅
and set

𝑏 = 𝜃 + sup
∥𝑥 ∥≤𝑅

𝜖−1L𝑊 (𝑥).

With with parameters 𝜃, 𝑏,𝑈 = 𝐵(0, 𝑅), 𝑊 is a valid Lyapunov function. Moreover, it can be easily
checked that 𝑏 ≤ 𝜃 + 𝐶1

𝜖
+ 𝐶2 for some temperature-independent constants 𝐶1 and 𝐶2 since both 𝑉

and 𝑊 are C2 and 𝑊 is a constant for ∥𝑥∥ ≤ 𝑅/2.
Finally, the Poincaré constant for the truncated Gibbs measure can be bounded using the KLS

conjecture: According to [Lee and Vempala, 2024, Theorem 13], the Cheeger constant of a log-
concave measure can be lower bounded by (a polynomial of) the spectral norm of its covariance
matrix. Since the truncated Gibbs measure is supported on a compact set, its Cheeger constant
is lower bounded by a temperature-independent constant. Using the Cheeger’s inequality, we have
the conclusion.

C Log-PL◦ measures has a single modal

Proof. Note that by Assumption 3, 𝑉 is not a constant function. Recall Assumption 1. We have
that for any 𝑆 ′ and any 𝑥 ∈ N (𝑆 ′), if ∇𝑉 (𝑥) = 0, 𝑉 (𝑥) = min𝑥∈N(𝑆 ′ ) 𝑉 (𝑥), i.e. 𝑥 ∈ N (𝑆 ′) is a local
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minimizer if it is critical point.
Let 𝑋 denote the set of local maxima of 𝑉 , which implies that ∀𝑥′ ∈ 𝑋,∇𝑉 (𝑥′) = 0.
Some useful facts are listed as follows

• 𝑋 ∩N(𝑆 ′) = ∅ for any 𝑆 ′: Let 𝑥′ ∈ 𝑋 ∩N(𝑆 ′). One has ∇𝑉 (𝑥′) = 0, i.e. 𝑥′ is a local minimizer
in N(𝑆 ′). But this contradicts with the assumption that 𝑥′ is a local maximizer.

• 𝑋 is either empty or a collection of singletons: Since for any 𝑥′ ∈ 𝑋 (if 𝑋 ≠ ∅), one has
∇𝑉 (𝑥′) = 0. Therefore, by Assumption 2, ∇2𝑉 (𝑥′) ≺ 0. Hence every 𝑥′ is a strict local
maximizer, i.e. 𝑋 is a collection of singletons.

• The set of all local minima of 𝑉 has at most a finite number of separated components: We
prove via contradiction. Suppose that the set of all local minima of 𝑉 has infinitely many
separated components. From Assumption 3, all local minima are contained within a compact
set. Denote the collection of all separated components of local minima of 𝑉 as {𝑆 ′𝑖}. For
every 𝑖, pick a representative point 𝑥𝑖 ∈ 𝑆 ′𝑖. Clearly all 𝑥𝑖 are contained in a compact set.
From Bolzano–Weierstrass theorem, we have that {𝑥𝑖} (as an infinite sequence) has at least
one accumulation point 𝑥. Since 𝑉 is C1, ∇𝑉 (𝑥) = 0, i.e. 𝑥 is also a critical point.

– If 𝑥 ∉ N(𝑆) (recall the definition of N(𝑆) in Assumption 2), 𝑥 is a local maximum by
Assumption 2, which contradicts with the fact that in every neighborhood of 𝑥 there is
a local minimum (since 𝑥 is a accumulation point of {𝑥𝑖}).

– If 𝑥 ∈ N (𝑆), there exists some 𝑆 𝑖′ such that 𝑥 ∈ N (𝑆 𝑖′). If 𝑥 ∈ 𝑆 𝑖′ , it cannot be an
accumulation point of {𝑥𝑖}, as in N(𝑆 𝑖′) there is only one representative point 𝑥𝑖′ . If
𝑥 ∈ N (𝑆 𝑖′)\𝑆 𝑖′ , ∇𝑉 (𝑥) ≠ 0, which again contradicts with the fact that ∇𝑉 (𝑥) = 0.

We can now prove that Log-PL◦is uni-modal via contradiction. Suppose that the local minima of
𝑉 has at least two separated components. Pick any two separated components 𝑆 ′1 and 𝑆 ′2 and let
𝑥1 and 𝑥2 be two points in these two components respectively. WLOG, assume 𝑓 (𝑥1) ≥ 𝑓 (𝑥2).

Theorem C.1 (Katriel [1994], Theorem 2.1). Let 𝑓 : R𝑛 → R be C1 and coercive. Let 𝑥1, 𝑥2 ∈ R𝑛
and let 𝑃 ⊂ R𝑛 separate 𝑥1 and 𝑥2 (that is, 𝑥1 and 𝑥2 lie in different components of R𝑛 \ 𝑃 ), and:

max { 𝑓 (𝑥1) , 𝑓 (𝑥2)} < inf
𝑥∈𝑃

𝑓 (𝑥) = 𝑝

Then there exists a point 𝑥3 which is a critical point of 𝑓 , with: 𝑓 (𝑥3) > max { 𝑓 (𝑥1) , 𝑓 (𝑥2)}.
Moreover, 𝑥3 is either a local minimum or a global mountain passing point6.

To apply the above theorem, take 𝑃 to be a subset of N(𝑆 ′1)\𝑆 ′1 such that ∀𝑦 ∈ 𝑃, 𝑉 (𝑦) >
𝑉 (𝑥1) ≥ max{𝑉 (𝑥1), 𝑉 (𝑥2)}. This is always according to Assumption 1. Consequently, according
to the above theorem, we can find a critical point 𝑥3 which is either a local minimum or a global
mountain passing point. Consider two cases:

1. 𝑥3 is not a local minimum but a global mountain passing point. Since 𝑥3 is a critical point,
Assumption 2 implies that 𝑥3 is a strict local maximum. However, for 𝑑 ≥ 2, this is not
possible, as in this case a strict local minimum point is not a global mountain passing point.

6A point 𝑥 is called a global mountain passing point of 𝑓 if for every neighborhood N(𝑥), the set {𝑦 : 𝑓 (𝑦) <
𝑓 (𝑥)} ∩ N (𝑥) is disconnected.
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2. 𝑥3 is a local minimum. If this is the case, we now pick 𝑥1 and 𝑥3 and apply Theorem C.1. It
gives us a new local minimum 𝑥4 (note that 𝑥4 cannot be a global mountain passing point as
discussed in the first case). Important, note that every time we have 𝑉 (𝑥𝑖+1) > 𝑉 (𝑥𝑖) and that
every 𝑥𝑖 is a local minimum. We can only do this a finite number of times since the collection
of local minima of 𝑉 has at most a finite number of separated components (i.e. there can
only be a finite number of different values of 𝑉 on the collection of local minima of 𝑉).

Consequently, none of the above two cases is possible and the local minima of 𝑉 has only one
connected component, i.e. 𝜇𝜖 is uni-modal. □

D Local coordinate representation of geometric structures in Sec-
tion 2.2.2

The first fundamental form. Using the local chart (Γ, 𝜙) of 𝑆, the Riemannian metric 𝑔𝑆 can
be written as

𝑔𝑆 =

𝑘∑︁
𝑖, 𝑗=1

𝑔𝑖 𝑗 (𝑢)𝑑𝑢𝑖𝑑𝑢 𝑗 , 𝑢 ∈ Γ ⊂ R𝑘 , (22)

where

𝑔𝑖 𝑗 (𝑢) =
𝜕M(𝑢)
𝜕𝑢𝑖

· 𝜕M(𝑢)
𝜕𝑢 𝑗

, 𝑢 ∈ Γ ⊂ R𝑘 .

Here {𝜕M/𝜕𝑢𝑖}𝑘
𝑖=1 are actually 𝑘 tangent vector fields of 𝑘-dimensional embedding submanifold 𝑆,

they generate the tangent plane on each point of 𝑆, i.e.

𝑇𝑚𝑆 = Span⟨𝜕M(𝑢)
𝜕𝑢1

, ...,
𝜕M(𝑢)
𝜕𝑢𝑘

⟩, 𝑚 = (𝑚1(𝑢), ..., 𝑚𝑑 (𝑢)) ∈ 𝑆,

and “·” is standard inner product on R𝑑. Also, these 𝑘 tangent vector fields decide 𝑑 − 𝑘 normal
vector fields on 𝑆 by following global equation group

𝜕M(𝑢)
𝜕𝑢𝑖

· N𝑙 (𝑢) ≡ 0, 𝑖 = 1, ..., 𝑘, 𝑙 = 𝑘 + 1, ..., 𝑑, 𝑢 ∈ Γ ⊂ R𝑘 , (23)

moreover, we can take N𝑘+1, ...,N𝑑 as standard normal vector fields by following global equation
group,

N𝑖 (𝑢) · N𝑗 (𝑢) ≡ 𝛿𝑖 𝑗 , 𝑖, 𝑗 = 𝑘 + 1, ..., 𝑑, 𝑢 ∈ Γ ⊂ R𝑘 , (24)

they generate the normal bundle 𝑁 on 𝑆, i.e.

𝑁 (𝑚) = Span⟨N𝑘+1(𝑢), ...,N𝑑 (𝑢)⟩, 𝑚 = M(𝑢) ∈ 𝑀, 𝑢 ∈ Γ ⊂ R𝑘 ,

The second fundamental form. We define the second fundamental form as a symmetric
quadratic form on the local chart (Γ, 𝜙),

Π = −
𝑑∑︁

𝑙=𝑘+1

{
𝑡𝑙

𝑘∑︁
𝑖, 𝑗=1

𝐺𝑖 𝑗 (𝑙)𝑑𝑢𝑖𝑑𝑢 𝑗

}
, 𝑢 ∈ Γ ⊂ R𝑘 , 𝑡 ∈ 𝐵(𝜖) ⊂ R𝑑−𝑘 , (25)

25



where the matrix 𝐺 (𝑙) = (𝐺𝑖 𝑗 (𝑙)) is symmetric for each 𝑙 = 𝑘 + 1, ..., 𝑑. We also use the following
notation

𝐺𝑖
𝑗 (𝑙) =

𝑘∑︁
𝑠=1

𝑔𝑖𝑠𝐺𝑠 𝑗 (𝑙), 𝑙 = 𝑘 + 1, ..., 𝑑. (26)

It is easy to see that the matrix 𝐺 (𝑙) = (𝐺𝑖
𝑗
(𝑙)) is also symmetric since the metric tensor (𝑔𝑖 𝑗) is

symmetric. Then, matrices {𝐺 (𝑙)}𝑑
𝑙=𝑘+1 of the second fundamental form Π can be locally written as

𝐺𝑖 𝑗 (𝑙) (𝑢) =
𝜕M(𝑢)
𝜕𝑢𝑖

· 𝜕N𝑙 (𝑢)
𝜕𝑢 𝑗

, 𝑢 ∈ Γ ⊂ R𝑘 .

Moreover, by constraint (24) of normal vector fields N𝑙, 𝑙 = 𝑘 + 1, ..., 𝑑, we also have

𝐺𝑖 𝑗 (𝑙) (𝑢) =
𝜕M(𝑢)
𝜕𝑢𝑖

· 𝜕N𝑙 (𝑢)
𝜕𝑢 𝑗

= − M(𝑢)
𝜕𝑢𝑖𝜕𝑢 𝑗

· N𝑙 (𝑢), 𝑢 ∈ Γ ⊂ R𝑘 ,

which implies that the matrix 𝐺 (𝑙) = (𝐺𝑖 𝑗 (𝑙)) is naturally symmetric and Π is a symmetric quadratic
form. The geometric meaning of the second fundamental form of Riemannian submanifold 𝑆 by
embedding structure (9) is the projection of the variation of normal vector fields along the tangent
space of Riemannian submanifold (𝑆, 𝑔𝑆 ) based on the ambient space (R𝑑 , 𝑔𝐸).

E Proofs of results in Section 3

E.1 Proof of Lemma 3.1

Property 1. We prove via contradiction. Suppose that there is a sequence 𝑥𝑖 ∈ 𝜕N(𝑆) such that
lim𝑖→∞ dist(𝑥𝑖 , 𝑆) = 0. Note that 𝜕N(𝑆) is bounded. Hence, WLOG, we assume 𝑥𝑖 is convergent,
since otherwise we can always take a convergent subsequence. Denote 𝑥 = lim𝑖→∞ 𝑥𝑖. By construc-
tion, 𝑥 ∈ 𝜕N(𝑆), boundary of an open neighborhood of 𝑆, but since dist(𝑥, 𝑆) = 0, 𝑥 ∈ 𝑆, which
leads to a contradiction.

Property 2. Note that under Assumptions 1, 2 and 5, 𝑋 contains at most finitely many singletons.
This can be proved via contradiction: Suppose that there is an infinite sequence 𝑥𝑖 ∈ 𝑋. Note that
𝑋 is bounded by Assumption 5. Hence, WLOG, we assume 𝑥𝑖 is convergent, since otherwise we
can always take a convergent subsequence. Denote 𝑥 = lim𝑖→∞ 𝑥𝑖. From the construction of {𝑥𝑖}, in
any neighborhood of 𝑥, there is another local maximum point, which contracts with Assumption 2
and 𝑉 ∈ C2, since 𝑥 is a strict local maximum.

Property 3. We know from Assumption 5, ∇𝑉 (𝑥) ≠ 0 for any 𝑥 beyond a compact set. Denote
this compact set by Y. We now focus our discussion in Y and prove via contradiction. Suppose that
within the said compact set there is a sequence 𝑥𝑖 ∈ Y∩ (N (𝑋) ∪ N (𝑆))𝑐 such that lim𝑖→∞ ∇𝑉 (𝑥𝑖) =
0. Note that (N (𝑋) ∪ N (𝑆))𝑐 is bound. WLOG, we assume 𝑥𝑖 is convergent, since otherwise we can
always take a convergent subsequence. Denote 𝑥 = lim𝑖→∞ 𝑥𝑖. We know that 𝑥 ∈ (N (𝑋) ∪ N (𝑆))𝑐
since this set is closed. Moreover, since ∇𝑉 (𝑥) = 0, we have 𝑥 ∈ 𝑆 or 𝑥 ∈ 𝑋, which leads to a
contradiction.
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E.2 Proof of Lemma 3.2

Proof. Take 𝑈 (𝑥) = (𝑉 (𝑥) −𝑉∗)1−
1
𝛼 . Using Assumption 1, one has

|∇𝑈 (𝑥) | = (1 − 1

𝛼
) (𝑉 (𝑥) −𝑉∗)−

1
𝛼 |∇𝑉 (𝑥) | ≥ (1 − 1

𝛼
) (𝑉 (𝑥) −𝑉∗)−

1
𝛼 𝜈

1
𝛼 (𝑉 (𝑥) −𝑉∗)

1
𝛼 = (1 − 1

𝛼
)𝜈 1

𝛼 .

For any point 𝑥 ∉ 𝑆, using [Drusvyatskiy et al., 2015, Lemma 2.5] with 𝐾 = 𝑈 (𝑥) 1

(1− 1
𝛼
)𝜈 1

𝛼
, 𝛼 = 0,

𝑟 = (1 − 1
𝛼
)𝜈 1

𝛼 , one has

dist(𝑥, 𝑆) ≤ 1

(1 − 1
𝛼
)𝜈 1

𝛼

𝑈 (𝑥) = 𝛼

(𝛼 − 1)𝜈 1
𝛼

(𝑉 (𝑥) −𝑉∗)1−
1
𝛼

≤ 𝛼

(𝛼 − 1)𝜈 1
𝛼

𝜈
1
𝛼
−1 |∇𝑉 (𝑥) |𝛼−1 = 𝛼𝜈−1

(𝛼 − 1) |∇𝑉 (𝑥) |
𝛼−1.

We have that Equation (11) holds for some constant 𝜈𝑒𝑏. □

E.3 Proof of Lemma 3.3

Subdomain Ξ−1 = {𝑥 : 2𝑅0 ≤ ∥𝑥∥}. Recall 𝑅0 from Assumption 5. One has

dist(𝑥, 𝑆) ≥ |𝑥 | − 𝑅0 ⇒ dist(𝑥, 𝑆) ≥ 1

2
|𝑥 |.

From Assumption 5 and Lemma 3.2, one has

L𝑊
𝜖𝑊

≤
𝐶𝑔 |𝑥 |

2
𝛼−1

2𝜖
− 1

4𝜖2
𝜈2𝑒𝑏 · dist

2
𝛼−1 (𝑥, 𝑆) ≤

𝐶𝑔 |𝑥 |
2

𝛼−1

2𝜖
− 1

64𝜖2
𝜈2𝑒𝑏 |𝑥 |

2
𝛼−1 .

Recall that 𝜖 ≤ 𝜈2
𝑒𝑏

64𝐶𝑔
and |𝑥 | ≥ 2𝑅0 ≥ 𝑅0. We have

L𝑊
𝜖𝑊

≤
𝐶𝑔 |𝑥 |

2
𝛼−1

2𝜖
− 1

64𝜖2
𝜈2𝑒𝑏 |𝑥 |

2
𝛼−1 ≤ −

𝜈2
𝑒𝑏
|𝑥 | 2

𝛼−1

128

1

𝜖2
≤ −

𝜈2
𝑒𝑏
𝑅

2
𝛼−1
0

128

1

𝜖2
.

Now we can select the parameter 𝜎 in (6) as 𝜎−1 =
𝜈2
𝑒𝑏

𝑅
2

𝛼−1
0

128
1
𝜖 2 in this region. Consequently we can

establish the inequality (6) for |𝑥 | ≥ 2𝑅0.

Subdomain Ξ0 = {𝑥 : (𝐶𝜖)𝑛1 ≤ dist(𝑥, 𝑆) and ∥𝑥∥ ≤ 2𝑅0}. Since 𝑉 ∈ C2, we have that 𝑀Δ :=
sup |𝑥 | ≤2𝑅0

|Δ𝑉 (𝑥) | < ∞. WLOG, we assume 𝑀Δ ≤ 𝑑𝐿 (otherwise simply set 𝐿 =
𝑀Δ

𝑑
in Assump-

tion 4), where we recall the definition of 𝐿 in Assumption 4.
Recall that 𝑋 is the collection of all local minima of 𝑉 in Lemma 3.1. There are three cases.

• 𝑥 is in the 𝑅1 neighborhood of 𝑋: Using the second property of Lemma 3.1, we have

L𝑊
𝜖𝑊

≤ −𝑑𝜇
−

2𝜖
.

Note that the value 𝜎1
0 =

𝑑𝜇−

2𝜖 in this region.
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• 𝑥 ∈ N (𝑆): Using the error bound in Lemma 3.2, one has

L𝑊
𝜖𝑊

≤ 𝑑𝐿

2𝜖
− 1

4𝜖2
𝜈2𝑒𝑏 · dist

2
𝛼−1 (𝑥, 𝑆).

Consequently, we can establish the inequality (6) for 𝑥 ∈ N (𝑆) with 𝑛1 =
𝛼−1
2 and 𝐶 = 4𝑑𝐿

𝜈2
𝑒𝑏

by

− 1

4𝜖2
𝜈2𝑒𝑏 · dist

2
𝛼−1 (𝑥, 𝑆) ≤ −𝑑𝐿

𝜖
.

Note that the value 𝜎2
0 = 𝑑𝐿

2𝜖 in this region.

• 𝑥 is in the compact set, but not in the above two cases, i.e.

𝑥 ∈ ({𝑥 : dist(𝑥, 𝑋) ≤ 𝑅1} ∪ N (𝑆))𝑐 ∩ {𝑥 : ∥𝑥∥ ≤ 2𝑅0}.

According to Lemma 3.1, there exists a constant lower bound of ∥∇𝑉 (𝑥)∥ ≥ 𝑔0 > 0 in this
regime. One has

L𝑊
𝜖𝑊

≤ 𝑑𝐿

2𝜖
−
𝑔20

4𝜖2
≤ −𝑑𝐿

4𝜖
.

For a sufficiently small 𝜖 , such that
𝑔20
4𝜖 2 ≥ 𝑑𝐿

𝜖
. Note that the value 𝜎3

0 = 𝑑𝐿
4𝜖 in this region.

WLOG, we assume 𝑑𝐿
4𝜖 ≥ 𝑑𝜇−

2𝜖 (otherwise simply set 𝜇− = 𝐿/2 in Lemma 3.1). We have 𝜎0 =

min{𝜎1
0 , 𝜎

2
0 , 𝜎

3
0 } =

𝑑𝜇−

2𝜖 .

Subdomains Ξ𝑖≥1 := {𝑥 : (𝐶𝜖)𝑛𝑖+1 ≤ dist(𝑥, 𝑆) ≤ (𝐶𝜖)𝑛𝑖 } Recall that (𝐶𝜖)
𝛼−1
2 ≤ 𝛿 and hence As-

sumption 4 already applies on Ξ𝑖≥1. WLOG, assume that the parameter 𝛿 satisfies 𝛿 ≤ 1. Clearly
for any 𝑚𝑖 ≥ 2−𝛼

𝛼−1 , the following inequality holds

∀𝑥, 𝑦 ∈ 𝑆𝛿 , |∇2𝑉 (𝑥) − ∇2𝑉 (𝑦) | ≤ 𝐿 |𝑥 − 𝑦 |𝑚𝑖 .

Moreover, since one has that for 𝑥 ∈ 𝑆, ∇2𝑉 (𝑥) = 0, from Assumption 6, we further have

|Δ𝑉 (𝑥) | ≤ 𝑑𝐿dist𝑚𝑖 (𝑥, 𝑆)

Now set 𝑚𝑖 =
1

𝑛𝑖+1
−2. From the construction of {𝑛𝑖}∞𝑖=1, we can easily check 𝑚𝑖 ≥ 2−𝛼

𝛼−1 . Consequently,
we can establish the inequality (6) for 𝑥 by

𝑑𝐿dist𝑚𝑖 (𝑥, 𝑆)
2𝜖

− 1

4𝜖2
𝜈2𝑒𝑏 · dist

2
𝛼−1 (𝑥, 𝑆) ≤ 𝑑𝐿

2𝜖

(
𝐶𝜖

)𝑚𝑖𝑛𝑖

− 1

4𝜖2
𝜈2𝑒𝑏 (𝐶𝜖)

2𝑛𝑖+1
𝛼−1

=
1

4𝜖2
𝜈2𝑒𝑏

(
1

2
𝐶𝜖 · (𝐶𝜖)𝑚𝑖𝑛𝑖 − (𝐶𝜖)

2𝑛𝑖+1
𝛼−1

)
.

From the construction of {𝑛𝑖}∞𝑖=1, we have 1 + 𝑚𝑖𝑛𝑖 =
2𝑛𝑖+1
𝛼−1 and hence

𝑑𝐿dist𝑚𝑖 (𝑥, 𝑆)
2𝜖

− 1

4𝜖2
𝜈2𝑒𝑏 · dist

2
𝛼−1 (𝑥, 𝑆) ≤ − 1

8𝜖2
𝜈2𝑒𝑏 (𝐶𝜖)

𝑚𝑖𝑛𝑖+1 := −𝜎𝑖 .
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Global estimation of 𝜎. Since we need eq. (8) to hold on R𝑑\𝑆 (𝐶𝜖 ) 𝛼−1
𝛼 , we take

𝜎 = inf
𝑖∈{−1,0,...}

𝜎𝑖 = min

{
𝜎−1 =

𝜈2
𝑒𝑏
𝑅

2
𝛼−1
0

128

1

𝜖2
, 𝜎0 =

𝑑𝜇−

2𝜖
, 𝜎∞ =

𝜈2
𝑒𝑏

8𝜖2

(
𝐶𝜖

) 2
𝛼
}

(27)

Clearly, this estimation also holds for 𝑈 since R𝑑\𝑈 ⊂ R𝑑\𝑆 (𝐶𝜖 ) 𝛼−1
𝛼 .

Estimation of 𝑏. Since we will pick 𝑈 ⊆ 𝑆𝑐· (𝐶𝜖 ) 𝛼−1
𝛼 , from Assumption 4, we can set

𝑏 := 𝜎 + 𝑑𝑙
2𝜖

(
𝑐(𝐶𝜖) 𝛼−1

𝛼

) 2−𝛼
𝛼−1

= 𝜎 + 𝑑𝑙
2𝜖
𝑐

2−𝛼
𝛼−1 (𝐶𝜖) 2−𝛼

𝛼 = 𝜎 +
𝜈2
𝑒𝑏

8𝜖2
𝑐

2−𝛼
𝛼−1 (𝐶𝜖) 2

𝛼 . (28)

E.4 Proof of Lemma 3.4

Proof. Let 𝑥 ∈ 𝑈\𝑆. Since the optimal set 𝑆 is compact, there exists 𝑥′ ∈ 𝑆 such that

|𝑥 − 𝑥′ | = dist(𝑥, 𝑆) ≤ 𝑐(𝐶𝜖) 𝛼−1
𝛼 . (29)

Moreover, we have ∇𝑉 (𝑥′) = 0 by 𝑥′ ∈ 𝑆, and ∇2𝑉 (𝑥′) = 0 by Assumption 6. Now we use Taylor
expansion with integral reminder for potential function 𝑉 (𝑥) at 𝑥′ up to the second order, we have

𝑉 (𝑥) −𝑉 (𝑥∗) =
∫ 1

0
𝑠2(𝑥 − 𝑥∗)⊤∇2𝑉 (𝑥∗ + 𝑠(𝑥 − 𝑥∗)) (𝑥 − 𝑥∗)d𝑠

≤ ∥𝑥 − 𝑥∗∥2
∫ 1

0
𝑠2



∇2𝑉 (𝑥∗ + 𝑠(𝑥 − 𝑥∗)) − ∇2𝑉 (𝑥∗)


 d𝑠

≤ 𝐿∥𝑥 − 𝑥∗∥2
∫ 1

0
𝑠2 ∥𝑠(𝑥 − 𝑥∗)∥

2−𝛼
𝛼−1 d𝑠 = 𝐿∥𝑥 − 𝑥∗∥ 𝛼

𝛼−1 ≤ 𝐿𝑐
𝛼

𝛼−1𝐶𝜖.

Using Theorem 2.2, we have the conclusion.
□

F Proof of results in Section 4.1

F.1 Proof of Lemma 4.1

Proof. Since the Jacobi matrix of the map P has the form 𝐼 + 𝛽𝐵 where 𝐼 is the identity matrix
and 𝐵 is a matrix whose elements 𝑏𝑖 𝑗 are independent of 𝛽 and bounded: |𝑏𝑖 𝑗 | ≤ 𝑏

𝛿
𝑠, it follows

that there exists 𝐴1 > 0, depending only on 𝑑, 𝛿 and 𝑠 such that inequality (18) is satisfied for all
0 < 𝛽 < 1. Hence, for all sufficiently small 𝛽 > 0 and for all 𝑥 ∈ R𝑑 the inequality (19) is satisfied.
Consequently, for all those 𝛽 the map

P : R𝑑 → R𝑑

is one to one. Indeed, it is locally one-to-one since 𝐽𝑎𝑐(P, 𝑥) ≥ 1
2 and it is also globally one-to-one

since |𝑥 − 𝑦 | ≥ 2𝛽 implies P(𝑥) ≠ P(𝑦). Since P is continuously differentiable and its determinant
is non-zero for all 𝑥 ∈ R𝑑, by the inverse function theorem, it is a diffeomorphism and moreover it
preserves boundary.

□
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F.2 Proof of Lemma 4.3

We first define a series of functions {𝑑 𝑗}𝑠𝑗=1 associated with the family of open sets V = {V 𝑗}𝑠𝑗=1:

𝑑 𝑗 (𝑥) = |𝜙 𝑗 (Λ 𝑗 (𝑥)1:𝑑−1) − (Λ 𝑗 (𝑥))𝑑 |, 𝑥 ∈ V 𝑗 . (30)

Lemma F.1. There exist 𝐴4 > 0 such that for all 𝑗 = 1, ..., 𝑠 and all 𝑥 ∈ P(Ω̄) ∩Ω𝑐 ∩ (V 𝑗) 𝛿
2

,

𝐴4𝑑 𝑗 (𝑥) ≤ 𝑑Ω(𝑥) ≤ 𝑑 𝑗 (𝑥).

Proof. Let us take any 𝑦 ∈ P(Ω̄) ∩ Ω𝑐 ∩ (V 𝑗) 𝛿
2

and set 𝑃 = [Λ 𝑗 (𝑦)1:𝑑−1, 𝜙 𝑗 (Λ 𝑗 (𝑦)1:𝑑−1)] ∈ R𝑑. Let

𝑄 be the projection of 𝑦 on 𝜕Ω w.r.t. the Euclidean distance. We have

𝑑 𝑗 (𝑦) = |𝑦 − 𝑃 | ≥ 𝑑Ω(𝑦) = |𝑦 −𝑄 |.

Here the inequality holds since 𝑃,𝑄 ∈ 𝜕Ω and the definition of 𝑄, and consequently the R.H.S.
is proved. We now focus on the L.H.S.. Note that point 𝑄 not be unique and in that case we
only need to pick up one to continue our discussion. Since 𝑦 ∈ P(Ω̄) ∩ Ω𝑐 ∩ (V 𝑗) 𝛿

2
, we have

𝑑Ω(𝑦) ≤ 𝑑 𝑗 (𝑦) ≤ 𝜖 ≤ 𝛿
4 , then we obtain 𝑃,𝑄 ∈ ((V 𝑗) 𝛿

2
) 𝛿
4 ⊂ (V 𝑗) 𝛿

4
⊂ V 𝑗 . This means that we can

use the coordinate defined by Λ 𝑗 on V 𝑗 to represent points 𝑦, 𝑃, 𝑄 at the same time. Let us denote
the coordinate of 𝑄 under Λ 𝑗 by 𝑄 = (𝑦′1:𝑑−1, 𝜙 𝑗 (𝑦′1:𝑑−1)), for some 𝑦′ ∈ Λ 𝑗 (𝜕Ω ∩ V 𝑗). Observing
that {Λ 𝑗}𝑠𝑗=1 is a family of rotation, we know the distance 𝑑Ω(𝑥) : P(Ω̄) ∩ Ω𝑐 ∩ (V 𝑗) 𝛿

2
→ [0, 𝛿4 ]

remains invariant under the coordinate representation defined by Λ 𝑗 . Using this kind of coordinate,
on the one hand, we have 𝑑2

𝑗
(𝑦) = |𝑦 − 𝑃 |2 = (𝜙 𝑗 (Λ 𝑗 (𝑦)1:𝑑−1) − (Λ 𝑗 (𝑦))𝑑)2 by (30) and

𝑑2(𝑦) = |𝑦 −𝑄 |2 = (Λ 𝑗 (𝑦)1:𝑑−1 − 𝑦
′
1:𝑑−1︸                     ︷︷                     ︸

:=Θ2

)2 + ((Λ 𝑗 (𝑦))𝑑 − 𝜙 𝑗 (𝑦′1:𝑑−1)︸                         ︷︷                         ︸
:=Θ1

)2

by Pythagoras theorem. On the other hand,

|𝜙 𝑗 (Λ 𝑗 (𝑦)1:𝑑−1) − 𝜙 𝑗 (𝑦′1:𝑑−1) | =|𝜙 𝑗 (Λ 𝑗 (𝑦)1:𝑑−1) − (Λ 𝑗 (𝑦))𝑑 + (Λ 𝑗 (𝑦))𝑑 − 𝜙 𝑗 (𝑦′1:𝑑−1)) |
=|𝑑 𝑗 (𝑦) + Θ1 | ≤ 𝑀 |Λ 𝑗 (𝑦)1:𝑑−1 − 𝑦

′
1:𝑑−1 | = 𝑀 |Θ2 |.

by 𝜕Ω ∈ Lip(𝑀, 𝛿, 𝑠,V,Λ). We have

|𝑑 𝑗 (𝑦) + Θ1 | ≤ |Θ2 | and 𝑑2(𝑦) = Θ2
1 + Θ2

2.

Using Young inequality, we have for some constant 𝐴4

𝐴2
4𝑑

2
𝑗 (𝑦) ≤ |Θ1 |2 + |Θ2 |2 = 𝑑2(𝑦).

□

Finally, let us show the left hand side of (20), i.e. any point in 𝜕P(Ω) is far away from 𝜕Ω. For
𝑥 ∈ R𝑑, let

𝐽 (𝑥) := { 𝑗 ∈ 1, ..., 𝑠 : 𝑥 ∈ (V 𝑗) 3
4 𝛿

}.
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The inclusion supp 𝜓𝑖 ⊂ (V 𝑗) 3
4 𝛿

implies that 𝜓 𝑗 (𝑥) = 0 for 𝑗 ∉ 𝐽 (𝑥) and

P(𝑥) = 𝑥 + 𝛽
∑︁

𝑗∈𝐽 (𝑥 )
𝜉 𝑗𝜓 𝑗 (𝑥),

i.e. we only need to consider the contribution from V 𝑗 with 𝑗 ∈ 𝐽 (𝑥).
Now consider 𝑦 ∈ 𝜕P(Ω). In the proof of Lemma 4.2, when showing the point 1. of the L.H.S.

of eq. (20), we have shown that Ω ⊆ P(Ω). Consequently, we have 𝑦 ∈ 𝜕P(Ω) ⊆ Ω𝑐. Besides,
since 𝜕P(Ω) = P(𝜕Ω), for any point 𝑦 ∈ 𝜕P(Ω), there exists 𝑥 ∈ 𝜕Ω such that 𝑦 = P(Ω). Further,
we know that |𝑦 − 𝑥 | ≤ 𝛽 ≤ 𝛿

4 . These results together imply that for any 𝑗 ∈ 𝐽 (𝑥), we have
𝑦 ∈ Ω𝑐 ∩ (V 𝑗) 𝛿

2
. Hence, the result in Lemma F.1 applies here.

In the following argument, we show that for any 𝑗 ∈ 𝐽 (𝑥), even if we take a step back from 𝑦

along the direction of 𝜉 𝑗 , the resulting point is still in P(Ω) ∩Ω𝑐 ∩ (V 𝑗)𝛿/2: Note that

𝑦 − 𝛽𝜉 𝑗𝜓 𝑗 (𝑥) = 𝑥 + 𝛽
∑︁

𝑖∉𝐽 (𝑥 ) ,𝑖≠ 𝑗

𝜉𝑖𝜓𝑖 (𝑥),

i.e. taking a step back from 𝑦 is equivalent to taking |𝐽 (𝑥) | −1 steps from 𝑥, but outwards. We show
𝑥 + 𝛽∑𝑖∉𝐽 (𝑥 ) ,𝑖≠ 𝑗 𝜉𝑖𝜓𝑖 (𝑥) ∈ Ω𝑐. WLOG, suppose that 𝐽 (𝑥) = {1, . . . , 𝑚} for 𝑚 = |𝐽 (𝑥) | and suppose
𝑗 = 𝑚 is the last index in 𝐽 (𝑥). Define 𝑥0 = 𝑥 and 𝑥𝑖 = 𝑥𝑖−1 + 𝛽𝜉𝑖𝜓𝑖 (𝑥), for 𝑖 = 1, . . . , 𝑚 − 1. Clearly
|𝑥𝑖 − 𝑥 | ≤ 𝛽 ≤ 𝛿/4 and hence 𝑥𝑖 ∈ ∩𝑚

𝜄=1(𝑉𝜄)𝛿/2 for 𝑖 = 0, . . . , 𝑚 − 1.
Since 𝑥0 ∈ (𝑉1) 3

4 𝛿
∩𝜕Ω ⊆ (𝑉1) 1

2 𝛿
∩Ω𝑐 and Λ1(𝑉1∩Ω𝑐) is the epigraph of the function 𝜙1, it follows

that 𝑥1 = 𝑥0 + 𝛽𝜉1𝜓1(𝑥) ∈ Ω𝑐. But we also have 𝑥1 ∈ ∩𝑚
𝜄=1(𝑉𝜄)𝛿/2 and hence 𝑥1 ∈ ∩𝑚

𝜄=1(𝑉𝜄)𝛿/2 ∩ Ω𝑐.
In particular, we have 𝑥1 ∈ (𝑉1)𝛿/2 ∩ Ω𝑐. Next, note that Λ2(𝑉2 ∩ 𝜕Ω) is the epigraph of the
function 𝜙2, it follows that 𝑥2 = 𝑥1 + 𝛽𝜉2𝜓2(𝑥) ∈ Ω𝑐. But we also have 𝑥2 ∈ ∩𝑚

𝜄=1(𝑉𝜄)𝛿/2 and hence
𝑥2 ∈ ∩𝑚

𝜄=1(𝑉𝜄)𝛿/2 ∩Ω𝑐. In particular, we have 𝑥2 ∈ (𝑉2)𝛿/2 ∩Ω𝑐. Repeat this process for 𝑚 − 1 times,
we have 𝑥𝑚−1 ∈ ∩𝑚

𝜄=1(𝑉𝜄)𝛿/2 ∩Ω𝑐 ⊆ Ω𝑐. Note that 𝑦 − 𝛽𝜉 𝑗𝜓 𝑗 (𝑥) = 𝑥𝑚−1.
After the argument above, we have Λ 𝑗 (𝑥𝑚−1)𝑑 ≥ 𝜙 𝑗 (Λ 𝑗 (𝑥𝑚−1)1:𝑑−1), and hence (note |𝜉 𝑗 | = 1

since Λ 𝑗 is a rotation)
𝑑 𝑗 (P(𝑥)) ≥ 𝛽𝜓 𝑗 (𝑥), 𝑥 ∈ 𝜕Ω.

Thus for all 𝑗 ∈ 𝐽 (𝑥)
𝑑Ω(P(𝑥)) ≥ 𝐴4𝛽𝜓 𝑗 (𝑥), 𝑥 ∈ 𝜕Ω,

and
𝑠𝑑Ω(P(𝑥)) ≥ |𝐽 (𝑥) |𝑑Ω(P(𝑥)) ≥ 𝐴4𝛽

∑︁
𝑗∈𝐽 (𝑥 )

𝜓 𝑗 (𝑥) = 𝐴4𝛽, 𝑥 ∈ 𝜕Ω.

Consequently, for any 𝑦 ∈ P(Ω)
𝑑Ω(𝑦) ≥

𝐴4

𝑠
𝛽.

F.3 Proof of Lemma 4.2

Proving R.H.S. of eq. (20). Recall the definition of P in eq. (17). Note that for any 𝑥 ∈ Ω,
one has

|𝑥 − P(𝑥) | = 𝛽
��� 𝑠∑︁
𝑗=1

𝜉 𝑗𝜓 𝑗 (𝑥)
��� ≤ 𝛽

𝑠∑︁
𝑗=1

𝜓 𝑗 (𝑥) = 𝛽.

We immediately have P(Ω) ⊂ Ω𝛽.
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Proving L.H.S. of eq. (20) In order to show the left hand side of (20), we establish the following
two statements:

1. Ω ⊂ P(Ω).

2. Ω𝐴3𝛽 ∩Ω𝑐 ⊆ P(Ω) ∩Ω𝑐.

Clearly the above two statements together give the left hand side of (20).

Proving point 1. To prove point 1 above, by definition, it is equivalent to show

∀𝑥 ∈ Ω, there exists 𝑦 ∈ Ω such that P(𝑦) = 𝑥.

Recall the definition of P in eq. (17), which is globally invertible by Hadamard’s global inverse
function theorem. Consequently, for every 𝑥, there exists 𝑦 such that

𝑦 = 𝑥 − 𝛽
𝑠∑︁
𝑗=1

𝜉 𝑗𝜓 𝑗 (𝑦). ⇒ |𝑥 − 𝑦 | ≤ 𝛽 ≤ 𝛿/4.

One can easily check that

𝜕Ω ∈ Lip(𝑀, 𝛿
4
, 𝑠, {(V 𝑗) 𝛿

2
}𝑠𝑗=1,Λ). (31)

where we note (V 𝑗) 𝛿
2
= Λ−1

𝑗
((W 𝑗) 𝛿

2
× (𝑎𝑑 𝑗 , 𝑏𝑑 𝑗)) with 𝑎𝑑 𝑗 = 𝑎𝑑 𝑗 + 𝛿

2 and 𝑏𝑑 𝑗 = 𝑏𝑑 𝑗 − 𝛿
2 .

Recall that eq. (31) where we have for any 𝑥 ∈ Ω, there exists at least one V 𝑗 such that
𝑥 ∈ (V 𝑗)𝛿/2. Define an index set 𝐽 = { 𝑗 ∈ [𝑠], 𝑥 ∈ (V 𝑗)𝛿/2}. We have that 𝑦 ∈ ∩ 𝑗∈𝐽 (V 𝑗)𝛿/4. We now
prove that 𝑦 ∈

(
∩ 𝑗∈𝐽V 𝑗

)
∩Ω: Let 𝑥1 = 𝑥. Clearly 𝑥1 ∈ Ω∩𝑉 𝑗1 for some 𝑗1 ∈ 𝐽, which means that 𝑥1

is in the subgraph of the function 𝜙 𝑗1 . Consequently 𝑥2 = 𝑥1 − 𝛽𝜉 𝑗1𝛼 𝑗𝑖 ∈ Ω∩𝑉 𝑗1 . Moreover, we also
have 𝑥2 ∈ 𝑉 𝑗2 for some 𝑗2 ∈ 𝑗 but 𝑗2 ≠ 𝑗1 since |𝑥2−𝑥 | ≤ 𝛽 ≤ 𝛿/4. This implies that 𝑥2 ∈ 𝑉 𝑗1∩𝑉 𝑗2∩Ω,
in particular, 𝑥2 ∈ 𝑉 𝑗2 ∩Ω. This means that 𝑥2 is in the subgraph of the function 𝜙 𝑗2 and hence we
can repeat the above argument to conclude that 𝑦 ∈

(
∩ 𝑗∈𝐽V 𝑗

)
∩Ω and hence 𝑦 ∈ Ω.

Proving point 2. Suppose that Lemma 4.3 holds. We prove point 2 via contradiction: Suppose

that there exists a point 𝑥 ∈ Ω𝐴3𝛽 ∩Ω𝑐 that satisfies 𝑥 ∉ P(Ω) ∩Ω𝑐. There are two cases: (I) If
there exists a neighborhood 𝑈 of 𝑥 such that 𝑈 ∩ (P(Ω) ∩Ω𝑐) = ∅, there exists a largest open set
𝑈′ that contains 𝑈 but satisfies 𝑈′ ∩ (P(Ω) ∩Ω𝑐) = ∅. However, this means that there exists a
point 𝑥′ ∈ 𝜕𝑈′ ⊂ 𝜕P(Ω) such that 𝑑 (𝑥′) < 𝐴3𝛽, which contradicts with Lemma 4.3. (II) For any
neighborhood 𝑈 of 𝑥, 𝑈 ∩ (P(Ω) ∩Ω𝑐) ≠ ∅. We can hence construct a sequence of points 𝑦𝑛 such
that for every 𝑛, 𝑦𝑛 ∈ P(Ω) ∩ Ω𝑐, and lim𝑛→∞ 𝑦𝑛 = 𝑥. However, since P(Ω) ∩Ω𝑐 is a closed set,
𝑥 ∈ P(Ω) ∩Ω𝑐 which contradicts with the assumption that 𝑥 ∉ P(Ω) ∩Ω𝑐.

F.4 Proof of Theorem 4.1

Next we obtain a lower bound for the Neumann eigenvalue on 𝑈 = P(Ω) based on the variational
method. Recall that P is globally one-to-one. We denote Q(𝑦) := (P)−1(𝑦). If 𝐿 is an 2-dimensional
subspace of 𝐿2(Ω), then

𝐿̃ = { 𝑓 ◦ Q, 𝑓 ∈ 𝐿}
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is an 2-dimensional subspace of 𝐿2(𝑈). And conversely, if 𝐿̃ is an 2-dimensional subspace of 𝐿2(𝑈),
then

𝐿 = {𝑔 ◦ P, 𝑔 ∈ 𝐿̃}

is an 2-dimensional subspace of 𝐿2(Ω). Therefore

𝜆𝑛1 (𝑈) = inf
𝐿:dim𝐿=2

sup
𝑔∈𝐿

∫
𝑈
|∇𝑔(𝑦) |2𝑑𝑦∫

𝑈
|𝑔(𝑦) |2𝑑𝑦

= inf
𝐿:dim𝐿=2

sup
𝑓 ∈𝐿

∫
𝑈
|∇( 𝑓 (Q(𝑦))) |2𝑑𝑦∫
𝑈
| 𝑓 (Q(𝑦)) |2𝑑𝑦

.

Note that

|∇( 𝑓 (Q(𝑦))) |2 =
𝑑∑︁
𝑖=1

|∇𝑦𝑖 ( 𝑓 (Q(𝑦))) |2 =
𝑑∑︁
𝑖=1

��� 𝑑∑︁
𝑗=1

(
𝜕 𝑓

𝜕𝑥 𝑗

)
(Q(𝑦))

𝜕 (Q(𝑦)) 𝑗
𝜕𝑦𝑖

���2
=

𝑑∑︁
𝑖=1

����( 𝜕 𝑓𝜕𝑥𝑖
)
(Q(𝑦))

����2����𝜕 (Q(𝑦))𝑖
𝜕𝑦𝑖

����2
+

𝑑∑︁
𝑖=1

∑︁
𝑘,𝑙≠𝑖

(
𝜕 𝑓

𝜕𝑥𝑘

)
(Q(𝑦))

(
𝜕 𝑓

𝜕𝑥𝑙

)
(Q(𝑦)) 𝜕 (Q(𝑦))𝑘

𝜕𝑦𝑖

𝜕 (Q(𝑦))𝑙
𝜕𝑦𝑖

.

From Cramer’s rule of matrix inversion and the inverse function theorem, one has

𝜕 (Q(𝑦))𝑘
𝜕𝑦𝑖

=
(−1)𝑘+𝑖Δ𝑘𝑖

det (𝐽𝑎𝑐(P,Q(𝑦))) ,

where Δ𝑘𝑖 is the (𝑘, 𝑖)-minor of 𝐽𝑎𝑐(P,Q(𝑦)), i.e. the determinant of the matrix obtained by deleting
𝑘-th row and 𝑖-th column in the Jacobian matrix 𝐽𝑎𝑐(P,Q(𝑦)). The Jacobian matrix of the map
P has the form 𝐼 + 𝛽𝐵, where 𝐼 is 𝑑 × 𝑑 identity matrix and 𝐵 is defined by the second term of
construction (17) in above lemma. Hence Δ𝑘𝑖 is the determinant of matrix 𝐼𝑘𝑖 + 𝛽𝐵𝑘𝑖, where 𝐼𝑘𝑖 and
𝐵𝑘𝑖 are obtained by deleting 𝑘-th rows and 𝑖-th columns in matrices 𝐼 and 𝐵. Since |𝐼𝑖𝑖 | = 1 and
|𝐼𝑘𝑖 | = 0 if 𝑘 ≠ 𝑖 and the elements of the matrix 𝐵 are uniformly bounded, there exists 𝐴8, 𝜖

′
0 > 0,

depending on 𝑑, 𝛿, 𝑠 such that for all 0 < 𝜖 ≤ 𝜖 ′0 and 𝑦 ∈ 𝑈,

1

2
≤ 1 − 𝐴8𝛽 ≤

����𝜕 (Q(𝑦))𝑖
𝜕𝑦𝑖

���� ≤ 1 + 𝐴8𝛽, 𝑖 = 1, ..., 𝑑,

and ����𝜕 (Q(𝑦))𝑘
𝜕𝑦𝑖

���� ≤ 𝐴8𝛽, 𝑘, 𝑖 = 1, ..., 𝑑, 𝑘 ≠ 𝑖.

Consequently, there exists 𝐴9 > 0, depending only on 𝑑, 𝛿 and 𝑠 such that for all 0 < 𝜖 < 𝜖0 and
𝑦 ∈ 𝑈

(1 − 𝐴9𝛽) | (∇ 𝑓 ) (Q(𝑦)) |2 ≤ |∇( 𝑓 (Q(𝑦))) |2 ≤ (1 + 𝐴9𝛽) | (∇ 𝑓 ) (Q(𝑦)) |2.
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Therefore, by changing of variables 𝑦 = P(𝑥) and taking into account Lemma 4.1, we have

𝜆𝑛1 (𝑈) ≥(1 − 𝐴9𝛽) inf
𝐿:dim𝐿=2

sup
𝑓 ∈𝐿

∫
𝑈
| (∇ 𝑓 ) (Q(𝑦)) |2𝑑𝑦∫
𝑈
| 𝑓 (Q(𝑦)) |2𝑑𝑦

=(1 − 𝐴9𝛽) inf
𝐿:dim𝐿=2

sup
𝑓 ∈𝐿

∫
Ω
| (∇ 𝑓 ) (𝑥) |2 |det (𝐽𝑎𝑐(P, 𝑥)) |𝑑𝑥∫
Ω
| 𝑓 (𝑥) |2 |det (𝐽𝑎𝑐(P, 𝑥)) |𝑑𝑥

≥(1 − 𝐴9𝛽) (1 − 𝐴2𝛽) (1 + 𝐴2𝛽)−1 inf
𝐿:dim𝐿=2

sup
𝑓 ∈𝐿

∫
Ω
| (∇ 𝑓 ) (𝑥) |2𝑑𝑥∫
Ω
| 𝑓 (𝑥) |2𝑑𝑥

.

Hence, there exist 𝐴, depending on 𝑑, 𝑀, 𝛿,V,Λ such that for 0 ≤ 𝛽 ≤ min{𝜖0, 𝜖 ′0}

𝜆𝑛1 (𝑈) ≥ (1 − 𝐴𝛽)𝜆𝑛1 (Ω).

G Proof of results in Section 4.2

G.1 Proof of Lemma 4.5

Proof. Based on the representation of local coordinate (21), we use the formula of change of vari-
ables, ∫

𝑇 (𝜖 )
𝜙(𝑦)𝑑𝑦 =

∫
𝑇 (𝜖 )

𝜙(𝑦) |𝐽 (𝑢, 𝑟) |𝑑𝑢𝑑𝑟,

where 𝐽 (𝑢, 𝑟) is Jacobian determinant of change of variables of differmorphism 𝑦 → 𝑚 + 𝜈 defined
by (21). We can easily compute the Jacobian determinant 𝐽 (𝑢, 𝑡) on each local chart (Γ, 𝜙) as

𝐽 (𝑢, 𝑟) =
��� [ 𝜕𝑦
𝜕𝑢1

, ...,
𝜕𝑦

𝜕𝑢𝑘
,
𝜕𝑦

𝜕𝑟𝑘+1
, ...,

𝜕𝑦

𝜕𝑟𝑑

] ���
=

��� [ 𝜕𝑦
𝜕𝑢1

, ...,
𝜕𝑦

𝜕𝑢𝑘
,N𝑘+1, ...,N𝑑

] ���
=

��� [ (𝜕M
𝜕𝑢1

+
𝑑∑︁

𝑙=𝑘+1
𝑟 𝑙
𝜕N𝑙

𝜕𝑢1

)
, ...,

(𝜕M
𝜕𝑢𝑘

+
𝑑∑︁

𝑙=𝑘+1
𝑟 𝑙
𝜕N𝑙

𝜕𝑢𝑘

)
,N𝑘+1, ...,N𝑑

] ���
=

��� [ (M1 +
𝑑∑︁

𝑙=𝑘+1
𝑟 𝑙N𝑙,1

)
, ...,

(
M𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙N𝑙,𝑘

)
,N𝑘+1, ...,N𝑑

] ���.
We emphisize that these vector fields

{M𝑖}𝑘𝑖=1, {N𝑖}𝑑−𝑘𝑖=1 , {{N𝑙, 𝑗}𝑑𝑙=𝑘+1}
𝑘
𝑗=1,

only depend on variable 𝑢 ∈ Γ ⊂ R𝑘 , i.e. they are only defined on Riemannian submanifold 𝑆.
Moreover, each vector at the point 𝑚 = M(𝑢) ∈ 𝑆 is a linear combination of these 𝑑 basic vectors
{{M𝑖 (𝑢)}𝑘𝑖=1, {N𝑙 (𝑢)}𝑑𝑙=𝑘+1}. Then we have

N𝑙, 𝑗 =

𝑘∑︁
𝑖=1

𝑇 𝑖
𝑗 (𝑙)M𝑖 +

𝑑∑︁
𝑠=𝑘+1

𝑇 𝑠
𝑗 (𝑙)N𝑠 .
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By constrain (23) and (24), we can easily compute that
𝑇 𝑖
𝑗 (𝑙) =

𝑘∑︁
𝑝=1

𝑔𝑖 𝑝𝐺 𝑝 𝑗 (𝑙) = 𝐺𝑖
𝑗 (𝑙) 𝑖 = 1, ..., 𝑘,

𝑇 𝑠
𝑗 (𝑙) ≡ 0, 𝑠 = 𝑘 + 1, ..., 𝑑,

where (𝑔𝑖 𝑝) = (𝑔𝑖 𝑝)−1 is the inverse matrix of 𝑘 × 𝑘 matrix (𝑔𝑖 𝑗) in the Riemannian metric tensor
(22). Hence we have

N𝑙, 𝑗 =

𝑘∑︁
𝑖=1

𝐺𝑖
𝑗 (𝑙)M𝑖 .

Now we back to the original computation,∫
𝑇 (𝜖 )

𝜙(𝑦)𝑑𝑦 =
∫
𝑇 (𝜖 )

𝜙(𝑦) |𝐽 (𝑢, 𝑟) |𝑑𝑢𝑑𝑟

=

∫
𝑇 (𝜖 )

𝜙(𝑦)
���det

( (
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
) [
M1, ...,M𝑘 ,N𝑘+1, ...,N𝑑

] )���𝑑𝑢𝑑𝑟,
we observe that

det
( [
M1, ...,M𝑘 ,N𝑘+1, ...,N𝑑

]𝑇 [
M1, ...,M𝑘 ,N𝑘+1, ...,N𝑑

] )
= det(𝑔)

by (23), (24) and (22), and the determinant det(𝑔) does not depend on variable 𝑟 ∈ 𝐵(𝜖) ⊂ R𝑑−𝑘 ,
we finally have∫

𝑇 (𝜖 )
𝜙(𝑦)𝑑𝑦 =

∫
𝑇 (𝜖 )

𝜙(𝑦)
���det

( (
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
) [
M1, ...,M𝑘 ,N𝑘+1, ...,N𝑑

] )���𝑑𝑢𝑑𝑟
=

∫
𝑇 (𝜖 )

𝜙(𝑦)
���det

(
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
) ���√︁det(𝑔)𝑑𝑢𝑑𝑟

=

∫
Γ

{ ∫
𝐵(𝜖 )

𝜙(𝑦)
���det

(
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
) ���𝑑𝑟𝑘+1...𝑑𝑟𝑑}𝑑M(𝑢),

now we finish the proof. □
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G.2 Proof of Lemma 4.6

Proof. For the direction of the parameter 𝑢𝑖, by chain rule we have

∇𝑢𝑖𝜙(𝑦(𝑢, 𝑟)) = ∇𝑦𝜙 · 𝜕𝑦
𝜕𝑢𝑖

=∇𝑦𝜙 · [ 𝜕M
𝜕𝑢𝑖

+
𝑑∑︁

𝑙=𝑘+1
𝑟 𝑙
𝜕N𝑙

𝜕𝑢𝑖
]

=∇𝑦𝜙 · [M𝑖 +
𝑑∑︁

𝑙=𝑘+1
𝑟 𝑙
𝜕N𝑙

𝜕𝑢𝑖
]

=∇𝑦𝜙 · [M𝑖 +
𝑑∑︁

𝑙=𝑘+1
𝑟𝑙

𝑘∑︁
𝑗=1

𝐺
𝑗

𝑖
(𝑙)M 𝑗]

=∇𝑦𝜙 · [M1, ...,M𝑑] · [𝐼𝑘 +
𝑑∑︁
𝑙=𝑘

𝑟 𝑙𝐺 (𝑙)] .

For the direction of the parameter 𝑡𝑖, by chain rule we have

∇𝑟 𝑖𝜙(𝑦(𝑢, 𝑟)) = ∇𝑦𝜙 · 𝜕𝑦
𝜕𝑟 𝑖

= ∇𝑦𝜙 · N𝑖 .

Combining these two results, we have

∇(𝑢,𝑟 )𝜙(𝑦(𝑢, 𝑟)) = ∇𝑦𝜙 · [M1, ...,M𝑘 ,N𝑘+1, ...,N𝑑] ·
[
𝐼𝑘 +

∑𝑑
𝑙=𝑘+1 𝑟𝑙𝐺 (𝑙) 0

0 𝐼𝑑−𝑘

]
.

Now we finish the proof. □

G.3 Proof of Proposition 4.1

Proof. Our main idea to describe the asymptotic behavior of Poincaré constant 𝜆1(𝑇 (𝜖)) is try to
obtain the lower and upper bound of 𝜆1(𝑇 (𝜖)) based on the first eigenvalue of Laplacian-Beltrami
operator on a trivial product Riemannian manifold (𝑆 × 𝐵(𝜖), 𝑔𝑆 + 𝑔𝐵(𝜖 ) ) and small 𝜖 perturbation
issues. Here 𝑔𝐵(𝜖 ) = 𝑖

∗
𝐵(𝜖 ) (𝑔𝐸) is the standard Riemannian metric on 𝐵(𝜖) ⊂ R𝑑−𝑘 , i.e. the pullback

of 𝑔𝐸 by the including map 𝑖𝐵(𝜖 ) . In the next we try to show

𝜆1(𝑇 (𝜖)) ∼ 𝜆1(𝑆 × 𝐵(𝜖)) +𝑂 (𝜖).

We start from the min-max formula and divide the estimates into two parts.

• The lower and upper bound of 𝐿2 norm in (𝑇 (𝜖), 𝑔𝐸) based on the 𝐿2 norm in (𝑆 × 𝐵(𝜖), 𝑔𝑆 +
𝑔𝐵(𝜖 ) ) and 𝜖 perturbation. By expansion formula of determinant,

det
(
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
)
= 1 +

𝑘∑︁
𝑖=1

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺𝑖
𝑖 (𝑙) + . . . ,

and combine with bounded condition (12) about the second fundamental form Π for Rieman-
nian submanifold 𝑆, we have

1 − 𝐴2𝜖 ≤ det
(
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
)
≤ 1 + 𝐴2𝜖 .
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for some constant 𝐴2 = 𝐴2(𝑑, 𝑘, 𝐺 (𝑙)). Using integral formula in Lemma 4.5, we have∫
𝑇 (𝜖 )

|𝜙(𝑦) |2𝑑𝑦 ≤ (1 + 𝐴2𝜖)
∫
Γ

{ ∫
𝐵(𝜖 )

|𝜙(𝑦) |2𝑑𝑟𝑘+1...𝑑𝑟𝑑
}
𝑑M,∫

𝑇 (𝜖 )
|𝜙(𝑦) |2𝑑𝑦 ≥ (1 − 𝐴2𝜖)

∫
Γ

{ ∫
𝐵(𝜖 )

|𝜙(𝑦) |2𝑑𝑟𝑘+1...𝑑𝑟𝑑
}
𝑑M .

• The lower and upper bound of Dirichlet energy in (𝑇 (𝜖), 𝑔𝐸) based on the Dirichlet energy in
(𝑆 × 𝐵(𝜖), 𝑔𝑆 + 𝑔𝐵(𝜖 ) ) and 𝜖 perturbation. By Lemma 4.6, we have

∇𝑦𝜙(𝑦) = ∇(𝑢,𝑟 )𝜙(𝑦(𝑢, 𝑟)) ·
[
(𝐼𝑘 +

∑𝑑
𝑙=𝑘+1 𝑟

𝑙𝐺 (𝑙))−1 0
0 𝐼𝑑−𝑘

]
· [M1, ...,M𝑘 ,N1, ...,N𝑑−𝑘]−1,

then we obtain

|∇𝑦𝜙(𝑦) |2 = ∇(𝑢,𝑟 )𝜙(𝑦(𝑢, 𝑟))·
[
(𝐼𝑘 +

∑𝑑
𝑙=𝑘+1 𝑟

𝑙𝐺 (𝑙))−1(𝑔)−1(𝐼𝑘 +
∑𝑑

𝑙=𝑘+1 𝑟
𝑙𝐺 (𝑙))−1 0

0 𝐼𝑑−𝑘

]
·∇(𝑢,𝑟 )𝜙(𝑦(𝑢, 𝑟))𝑇 .

Selecting 𝑡 small enough and using bounded condition (12), we have{
|∇𝑦𝜙(𝑦) |2 ≤ (1 + 𝐴1𝜖) (∇𝑢𝜙(𝑦(𝑢, 𝑟)) (𝑔)−1∇𝑢𝜙(𝑦(𝑢, 𝑟))𝑇 + |∇𝑟𝜙(𝑦(𝑢, 𝑟)) |2),
|∇𝑦𝜙(𝑦) |2 ≥ (1 − 𝐴1𝜖) (∇𝑢𝜙(𝑦(𝑢, 𝑟)) (𝑔)−1∇𝑢𝜙(𝑦(𝑢, 𝑟))𝑇 + |∇𝑟𝜙(𝑦(𝑢, 𝑟)) |2),

for some constant 𝐴1 = 𝐴1(𝑑, 𝑘, 𝐺 (𝑙)) > 0. Recall the duality between 𝑇𝑆 and 𝑇∗𝑆 induced by
metric 𝑔,

𝑑𝑢𝜙 =

𝑘∑︁
𝑖, 𝑗=1

𝑔𝑖 𝑗
𝜕𝜙

𝜕𝑢 𝑗

𝜕

𝜕𝑢𝑖
=

𝑘∑︁
𝑖=1

𝑔𝑖 𝑗∇𝑢 𝑗𝜙,

where 𝑑𝑢 is external derivative associated with parameter 𝑢, then we have∫
𝑇 (𝜖 )

|∇𝑦𝜙(𝑦) |2𝑑𝑦 =
∫
𝑆

{ ∫
𝐵(𝜖 )

|∇𝑦𝜙(𝑦) |2
���det

(
𝐼𝑘 +

𝑑∑︁
𝑙=𝑘+1

𝑟 𝑙𝐺 (𝑙)
) ���𝑑𝑟𝑘+1...𝑑𝑟𝑑}𝑑M

≤(1 + 𝐴2𝜖)
∫
𝑆

{ ∫
𝐵(𝜖 )

|∇𝑦𝜙(𝑦) |2𝑑𝑟𝑘+1...𝑑𝑟𝑑
}
𝑑M

≤(1 + 𝐴2𝜖) (1 + 𝐴1𝜖)
∫
𝑆

{ ∫
𝐵(𝜖 )

( |𝑑𝑢𝜙 |2 + |∇𝑟𝜙(𝑦) |2)𝑑𝑟𝑘+1...𝑑𝑟𝑑
}
𝑑M .

Similarly, we also have∫
𝑇 (𝜖 )

|∇𝑦𝜙(𝑦) |2𝑑𝑦 ≥ (1 − 𝐴2𝜖) (1 − 𝐴1𝜖)
∫
𝑆

{ ∫
𝐵(𝜖 )

( |𝑑𝑢𝜙(𝑦) |2 + |∇𝑟𝜙(𝑦) |2)𝑑𝑟𝑘+1...𝑑𝑟𝑑
}
𝑑M .

Combining all these estimates together, we have∫
𝑇 (𝜖 ) |∇𝑦𝜙(𝑦) |2𝑑𝑦∫
𝑇 (𝜖 ) |𝜙(𝑦) |2𝑑𝑦

≤ (1 + 𝐴1𝜖) (1 + 𝐴2𝜖)2
∫
𝑆

{ ∫
𝐵(𝜖 ) ( |𝑑

𝑢𝜙(𝑦) |2 + |∇𝑟𝜙(𝑦) |2)𝑑𝑟𝑘+1...𝑑𝑟𝑑
}
𝑑M∫

𝑆

{ ∫
𝐵(𝜖 ) |𝜙(𝑦) |2𝑑𝑟𝑘+1...𝑑𝑟𝑑

}
𝑑M
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and ∫
𝑇 (𝜖 ) |∇𝑦𝜙(𝑦) |2𝑑𝑦∫
𝑇 (𝜖 ) |𝜙(𝑦) |2𝑑𝑦

≥ (1 − 𝐴1𝜖) (1 − 𝐴2𝜖)2
∫
𝑆

{ ∫
𝐵(𝜖 ) ( |𝑑

𝑢𝜙(𝑦) |2 + |∇𝑟𝜙(𝑦) |2)𝑑𝑟𝑘+1...𝑑𝑟𝑑
}
𝑑M∫

𝑆

{ ∫
𝐵(𝜖 ) |𝜙(𝑦) |2𝑑𝑟𝑘+1...𝑑𝑟𝑑

}
𝑑M

.

These two kinds of estimates imply us that the eigenvalues of Laplacian-Beltrami operator on 𝑇 (𝜖)
is equivalent to the eigenvalues of Laplacian-Beltrami operator of the following product Riemannian
manifold

(𝑆 × 𝐵(𝜖), 𝑔𝑆 + 𝑔𝐵(𝜖 ) ).

It is easy to know that

𝜆1(𝑆 × 𝐵(𝜖)) = min
{
𝜆1(𝑆, 𝑔𝑆 ), 𝜆1(𝐵(𝜖), 𝑔𝐵(𝜖 ) )

}
.

Now we complete our discussion of this problem and get conclusion

𝜆1(𝑆) (1 − 𝐵𝜖) ≤ 𝜆(𝑇 (𝜖)) ≤ 𝜆1(𝑆) (1 + 𝐵𝜖),

for some constant 𝐵 = 𝐵(𝐴1, 𝐴2) > 0 when 𝜖 small enough. □

H Proof of results in Section 5

H.1 Proof of Theorem 5.1

The proof need to combine Lyapunov approach in Section 3 with spectral stability analysis in
Section 4. Recall the final result in Theorem 3.1,

𝜌𝜇𝜖
≥ 1

2
𝑐−

2−𝛼
𝛼−1 exp(−𝐶)𝜆𝑛1 (𝑈)

for some constant 𝑐 > 1, and some subdomain 𝑈 ⊂ R𝑑 which satisfies

𝑆 (𝐶𝜖 ) 𝛼−1
𝛼 ⊆ 𝑈 ⊆ 𝑆𝑐 (𝐶𝜖 ) 𝛼−1

𝛼
.

Let us focus on dealing with 𝜆𝑛1 (𝑈) by conclusions in Section 4,

1. Case (#): 𝑆 is a submanifold of R𝑑. We use Proposition 4.1 with 𝜖 = 𝑐(𝐶𝜖) 𝛼−1
𝛼 , then we have

𝜆1(𝑆) (1 − 𝐵𝑐(𝐶𝜖) 𝛼−1
𝛼 ) ≤ 𝜆𝑛1 (𝑈) ≤ 𝜆1(𝑆) (1 + 𝐵𝑐(𝐶𝜖) 𝛼−1

𝛼 ).

We finally have

𝜌𝜇𝜖
≥ 1

2
𝑐−

2−𝛼
𝛼−1 exp(−𝐶)𝜆𝑛1 (𝑈) ≥

1

4
𝑐−

2−𝛼
𝛼−1 exp(−𝐶)𝜆1(𝑆),

when 𝜖 ≤ 1
𝐶

(
1

2𝐵𝑐

) 𝛼
𝛼−1

is small enough. Recall that 𝑐 = 1 in this case.

2. Case ( ): 𝑆 is a Lipschitz Domain. We use Corollary 1 with 𝛽 = 𝑐(𝐶𝜖) 𝛼−1
𝛼 , then we have

𝜆𝑛1 (𝑈) ≥ (1 − 𝐴𝑐(𝐶𝜖) 𝛼−1
𝛼 )𝜆𝑛1 (𝑆).
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We finally have

𝜌𝜇𝜖
≥ 1

2
𝑐−

2−𝛼
𝛼−1 exp(−𝐶)𝜆𝑛1 (𝑈) ≥

1

4
𝑐−

2−𝛼
𝛼−1 exp(−𝐶)𝜆𝑛1 (𝑆),

when 𝜖 ≤ 1
𝐶

(
1

2𝐴𝑐

) 𝛼
𝛼−1

is small enough.

Now we finish the proof.

I Example

Figure 4: Uni-modal PL function
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