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Abstract

For a class of mean-field particle systems, we formulate a criterion in terms of the free energy
that implies uniform bounds on the log-Sobolev constant of the associated Langevin dynamics.
For certain double-well potentials with quadratic interaction, the criterion holds up to the critical
temperature of the model, and we also obtain precise asymptotics on the decay of the log-Sobolev
constant when approaching the critical point. The criterion also applies to “diluted” mean-field
models defined on sufficiently dense, possibly random graphs. We further generalize the criterion
to non-quadratic interactions that admit a mode decomposition. The mode decomposition is
different from the scale decomposition of the Polchinski flow we used for short-range spin systems.

1 Introduction

Let V : Rd → R, W : Rd ×R
d → R be symmetric, C2 functions, and let T > 0. We are interested in

characterising the large time behaviour of the following Langevin mean-field dynamics for large N :

i 6 N, dXi
t = −

[

∇V (Xi
t) +

1

NT

N
∑

j=1

∇1W (Xi
t ,X

j
t )
]

dt+
√

2 dBi
t , (1.1)

where ∇1 denotes gradient with respect to the first coordinate and with the Bi
t independent standard

Brownian motions. The literature on this question and on the associated McKean–Vlasov equation,
obtained as the limiting dynamics of X1

t as N → ∞, is extremely vast, see e.g. the surveys [45, 20, 21]
and, in the McKean–Vlasov case, the landmark paper [19]. Below we will exclusively discuss the
interacting particle system (1.1). We shall only mention the works most relevant to our setting,
referring to the above works for additional bibliography.

Under suitable assumptions on the potentials V,W (referred to below as the confinement re-
spectively the interaction potential), the law of the dynamics (1.1) converges to a unique invariant
measure given by

mN
T (dx) =

1

ZNT
exp

[

− 1

2TN

N
∑

i,j=1

W (xi, xj)
]

N
∏

i=1

αV (dxi), (1.2)
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where αV ∈ M1(Rd) denotes the absolutely continuous probability measure

αV (dx) ∝ e−V (x) dx, (1.3)

and ∝ stands for equality up to a normalisation factor. Throughout the paper we always implicitly
assume that mN

T is a probability measure:

∀T > 0, ZNT <∞. (1.4)

For large N , the behaviour of the dynamics and the measure mN
T are governed by the free energy

FT (ρ), defined for an absolutely continuous probability measure ρ(dx) = ρ(x) dx on R
d by:

FT (ρ) =

∫

Rd

ρ(x) log ρ(x) dx +

∫

Rd

V (x) ρ(dx) +
1

2T

∫

(Rd)2
W (x, y) ρ(dx) ρ(dy), (1.5)

and equal to +∞ if ρ is not absolutely continuous. Under general conditions on V,W , it is known
that FT admits at least one minimiser, see [40] for the latest, most general results with references
to earlier works. Moreover, if T is large enough, then FT has a unique minimiser, see, e.g., [19, 31].
Conversely, minimisers (local or global) for small enough T are in general not unique [25, 42]. In
statistical mechanics terms the existence of a temperature Tc ∈ (0,∞) which separates regions where
uniqueness and non-uniqueness hold corresponds to a phase transition:

Tc := inf
{

T > 0 : FT ′ has a unique global minimiser for each T ′ > T
}

. (1.6)

We are interested in relating this critical temperature to relaxation properties of the dynam-
ics (1.1). The mean-field measure mN

T of (1.2) is said to satisfy a log-Sobolev inequality with constant
γ > 0 if, for any C∞ compactly supported F : (Rd)N → R+,

EntmNT
(F ) 6

2

γ

∫

|∇
√
F |2 dmN

T , (1.7)

with EntmNT
(F ) = EmNT

[F logF ]−EmNT
[F ] log EmNT

[F ]. Under mild conditions on V,W , this inequality

holds for an optimal constant γNLS(T ) > 0 (see e.g. [32] for background on log-Sobolev inequalities in
statistical mechanics context).

This paper focuses on deriving uniform in N estimates of the log-Sobolev constant from which
quantitative controls on the relaxation of the Langevin dynamics (1.1) follow. This also applies to
the limiting McKean–Vlasov equation, see for example the discussion in [31]. Our main interest is
in bounding the log-Sobolev constant under assumptions that only involve the free energy FT .

The question of uniform bounds on the log-Sobolev constant has already received a lot of atten-
tion. The equilibrium phase transitions are determined at the macroscopic level by the mean-field
functional FT (1.5) which records the contribution of the interaction and the entropy of the system.
In general, non-convexity of the interaction ρ 7→

∫

Wρ⊗2 may create a phase transition depending on
the temperature T . In this case, the log-Sobolev constant will vanish with N . In fact, even in absence
of a phase transition, the existence of local minima for FT will lead to a metastable behaviour of the
dynamics and the log-Sobolev constant in (1.7) is expected to also vanish with N , a fact established
quite generally in [25]. At sufficiently high temperature/small interaction one expects neither phase
transition nor metastability and therefore uniform bounds on the log-Sobolev constants should hold,
as was shown for a large class of V,W in [31]. Very recently, the log-Sobolev inequality was derived
for possibly large but flat convex interactions (see (1.19)) in [47, 22]. Building on the result of [47]
perturbations to the flat convex case were studied in [41]. In this work, under various assumptions
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on the confinement and interaction potentials V,W and on the temperature parameter T > 0, we are
going to relate the scaling of the log-Sobolev constant (1.7) to conditions on the mean-field functional
FT (1.5).

Our approach closely follows the strategy introduced in [7] based on renormalisation ideas, ex-
posed in much greater generality in the survey [11]. The method of [7] was applied in [14] to analyse
in depth the behaviour of the spectral gap for discrete mean-field models and its precise divergence
in N close to critical regimes. Here we use it to study the mean-field model (1.2) defined in the con-
tinuum, but also models beyond the strict (fully connected) mean-field setting. Indeed, the strategy
in [7, 11] is well suited to studying models with general, possibly random interactions as it relies
only on the spectral structure of the interaction matrix. It has for instance been extended in [10]
to study Kawasaki dynamics of the Ising model on random regular graphs and we extend it here to
continuous models on random graphs with sufficiently large degrees.

For quadratic interactions, either of mean-field type or on suitable random graphs, we will show
that for a large class of models the log-Sobolev inequality can be analysed up to the critical point,
characterised as above in terms of the free energy functional, see Theorem 1.3 in the quadratic case
and Theorem 1.5 on random graphs. For this, we use a spectral decomposition of the interaction
matrix to reduce, in the large N limit, the complexity of the microscopic dynamics to the analysis
of a single (slow) mode which determines the macroscopic behaviour. This spectral decomposition
is trivial for fully connected models and otherwise relies on expander properties of random graphs
with large degrees. Similar strategies based on spectral decomposition of the measure have recently
been employed to great success for discrete models, see e.g. [28, 27] and most recently in [2, 1, 39].

For non-quadratic interactions, the dimensional reduction is less straightforward and we focus
on fully connected graphs, i.e., on the mean-field measure (1.2). For flat convex interactions, there
is no phase transition as the mean-field functional FT (1.5) is strictly convex at all temperatures.
In this case the log-Sobolev inequality was derived in [47, 22]. We consider a specific kind of non-
convex interactions for which the mode decomposition used in the quadratic interaction case can be
generalised. By projecting the mean-field functional FT on the modes, we obtain a criterion involving
only FT which implies that the log-Sobolev inequality holds uniformly in N .

In specific instances, using detailed features of these models, we were previously able to analyse
short-range spin and field theory models, such as continuum limits which arise as invariant measures
of singular SPDEs or critical Ising models in d > 5, see [8, 9, 13, 12] and [11] for an introduction. An
essential feature in the analysis of these models is a scale decomposition in terms of the Polchinski flow
[11]. For mean-field particle systems, the perspective is different. In the interpretation of the particle
system as a spin system (with spins taking values in R

d corresponding to particle positions), there is
essentially only a single scale (the mean field). On the other hand, possibly more complicated particle
interaction is captured by the structure of the interaction potential which can now have different
modes (compared to the spins systems which have short-range, but usually quadratic interaction
potentials). This requires a mode decomposition (instead of scale decomposition) that we explore in
the mean-field setting in this paper. For quadratic interactions there will only be a single mode.

The main results of this paper are stated in the next subsections as well as more specific references
depending on the structure of the interactions. To avoid technical issues, we restrict to the following
class of confinement potentials:

Assumption 1.1 (Assumptions on V ). The potential V ∈ C2(Rd,R) can be decomposed as V = Vc+Ṽ ,
where Vc ∈ C2(Rd,R) satisfies HessVc > id and where Ṽ is Lipschitz or bounded.

1.1. Quadratic interactions. We first consider the simplest case of a quadratic interaction of the form
W (x, y) = −(x, y) which leads to a single mode (and a single scale). The continuous Curie–Weiss
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model (see (1.12) below) is the prototypical example in this class. The results in this case generalise
the method of [7, 11] (in the mean-field case) and prepare for the developments of Sections 1.2 and
1.3 by providing a new perspective that focuses on the mean-field free energy functional.

For m ∈ R
d, define the (one mode) coarse grained free energy as:

F̂T (m) = inf

{

FT (ρ), ρ such that

∫

x ρ(dx) = m

}

. (1.8)

Our goal is to relate the log-Sobolev inequality of the mean-field measure mN
T (1.2) to properties of

the free energy F̂T , i.e. to macroscopic properties of the system. In particular, for T > Tc, we are
going to assume that the gradient flow associated with F̂T ,

ṁt = −∇F̂T (m), m0 ∈ R
d, (1.9)

relaxes exponentially fast to the global minimum m⋆, i.e., F(mt)−F(m⋆) 6 e−2γt(F(m0)−F(m⋆)).
It is known (see [33, 23] for references) that this exponential relaxation of the dynamics is equivalent
to the following Polyak- Lojasiewicz inequality with constant γ = γPL,

F̂T (m) − F̂T (m⋆) 6
1

2γPL
‖∇F̂T (m)‖2, ∀m ∈ R

d. (1.10)

It is implied by uniform convexity of F̂T (but more general). In addition, it is shown in [23, Theorem 1]
that inequality (1.10) implies the following log-Sobolev inequality.

Lemma 1.2. ([23, Theorem 1]) The Polyak- Lojasiewicz inequality (1.10) holds with constant γPL > 0

if and only if the probability measure ∝ e−NF̂T (m) dm has a log-Sobolev constant γPLN(1 + oN (1)).

The following theorem shows that inequality (1.10) implies a log-Sobolev inequality for the mean-
field measure mN

T (1.2) uniformly in N .

Theorem 1.3 (Quadratic interaction). Let the confinement potential V satisfy Assumption 1.1 and
the interaction be given by:

W (x, y) = −(x, y), x, y ∈ R
d. (1.11)

Let T > Tc (defined in (1.6)) and assume that F̂T satisfies a Polyak- Lojasiewicz inequality (1.10).
Then the measure mN

T satisfies a log-Sobolev inequality with a constant independent of N .

For a large class of potentials, Theorem (1.3) implies a log-Sobolev inequality up to Tc:

Corollary 1.4 (Double well confinement potentials). Under the same conditions as the previous the-
orem, let d = 1, and consider the choice of confinement potential of the form

V (x) =
x4

4
− λ

x2

2
, x, y, λ ∈ R, (1.12)

or more generally suppose that V is in the GHS class, i.e. satisfies Assumption 2.4 below. Then
for any T > Tc (defined in (1.6)), the measure mN

T satisfies a log-Sobolev inequality with a constant
independent of N . Moreover, the log-Sobolev constant vanishes linearly at Tc:

lim sup
N→∞

γNLS(T ) 6 c1(T − Tc), γNLS(T ) > c2(T − Tc), N > 1, (1.13)

for some constants c1, c2 > 0.

Note that a similar result would hold for the interaction W (x, y) = 1
2(x− y)2 as one can recover

the structure (1.11) by rewriting the Hamiltonian and changing V as:

1

4TN

N
∑

i,j=1

(xi − xj)
2 +

N
∑

i=1

V (xi) = − 1

TN

N
∑

i,j=1

xixj +

N
∑

i=1

(

V (xi) +
x2i
T

)

. (1.14)
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1.2. Quadratic interactions on non-complete graphs. For many applications, it is natural to consider
interactions on general graphs with large degrees but which are not fully connected. In this case, the
mean-field theory does not apply and a specific analysis is needed (see e.g. [36, 37, 4, 38]). In this
section, we consider interactions indexed by the edges of random graphs and extend to this case the
method implemented to prove Theorem 1.3.

We first introduce some notation. Consider a graph GN on {1, . . . , N} with adjacency matrix:

Aij = 1i∼j , Aii = 0, i, j ∈ GN , (1.15)

where i ∼ j means that there is an edge between i, j in GN . We consider the following probability
measure on R

N with interactions restricted to the edges of the graph GN :

mGN
T (dx) =

1

ZGNT
exp

[ 1

2TdN
(x,Ax)

]

N
∏

i=1

αV (dxi), (1.16)

where dN is the average degree of the graph, see Theorem 1.5 below for a precise definition of dN .
Write γGNLS (T ) for the log-Sobolev constant (1.7) for the measure (1.16).

Theorem 1.5. Let V (x) = x4

4 − λx
2

2 (λ ∈ R) or more generally suppose that V satisfies Assump-
tion 2.4. Let Tc denote the critical temperature (1.6) of the fully connected mean-field-model mN

T

with W (x, y) = −xy. Let PN be the uniform measure on random regular graphs GN in {1, . . . , N}
with fixed degree dN at each site or the measure of Erdös-Rényi graphs with mean degree dN .

Assume either that limN→∞ dN = ∞ in the random regular graph case, or that limN→∞ dN/ logN =
∞ in the Erdös-Rényi case. Then:

(i) For T > Tc, there is a constant γT > 0 such that

lim
N→∞

PN

[

γGNLS (T ) > γT
]

= 1. (1.17)

(ii) For T < Tc, there is a sequence (δN ) converging to 0 such that:

lim
N→∞

PN

[

γGNLS (T ) 6 δN
]

= 1. (1.18)

Remark 1.6. (i) The proof of Theorem 1.5 provides a bound of the log-Sobolev constant at fixed
N , on any graph which is a sufficiently good expander. This is a condition that only involves
the spectrum of the adjacency matrix (see Assumption 3.1 and Remark 3.3). The precise
distribution of the random graphs is therefore not relevant.

(ii) A natural extension of Theorem 1.5 would be to analyse the critical behavior on random
graphs with large, but finite degrees. This question was addressed in [43] for discrete models,
and adapted to our framework in [11, Example 6.19].

(iii) As for Theorem 1.3, a uniform log-Sobolev inequality for mGN
T holds for more general V satis-

fying only Assumption 1.1. The log-Sobolev inequality is then valid up to a temperature that
may be higher than Tc.
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1.3. General interactions. For general interactions W , the validity of the log-Sobolev inequality is
less understood. Let W be an interaction with bounded second derivatives. It was recently shown
in [47, 22] that if W is flat convex, i.e., for each ρ1, ρ2 ∈ M1(Rd),

u ∈ [0, 1] 7→
∫

W+(x, y)ρu(dx) ρu(dy) is convex
(

ρu := (1 − u)ρ1 + uρ2
)

, (1.19)

then a uniform log-Sobolev inequality holds for every T > 0. In this case, FT is convex for any T
and there is no phase transition so that the critical value defined in (1.6) is such that Tc = 0. Note
that more general convex interactions than the two body potential W (x, y) are covered by [47, 22].
In [41], the results [47] were extended beyond the flat convex case.

Suppose that the confinement potential V satisfies Assumption 1.1. We consider a class of
interaction potentials W with a non-convex part.

Assumption 1.7 (Assumptions on W ). W ∈ C2(Rd×R
d,R) is symmetric and can be decomposed as:

W = W+ −W−, W± ∈ C2(Rd × R
d,R), (1.20)

where W± are symmetric, and:

• W+ is bounded and flat convex (see (1.19)) and HessW+ has a uniformly bounded operator
norm.

• W− is given by the sum of a quadratic function, and a function which admits a bounded,
Lipschitz mode decomposition in the following sense. There is a sequence of functions nk :
R
d → R[−1, 1] and coefficients α > 0, w−

k > 0 (k ∈ N) such that:

W−(x, y) := α (x, y) +
∑

k>0

w−
k nk(x)nk(y) :=

∑

k>−d

w−
k nk(x)nk(y), (1.21)

where we set w−
−i = α and n−i(x) = x(i) for i ∈ {1, ..., d}, and:

sup
x,y∈Rd

∣

∣W−(x, y) − α (x, y)
∣

∣ <∞,
∑

k>0

w−
k sup
x∈Rd

|∇nk(x)|2 <∞. (1.22)

The functions W± do not play the same role: W+ cannot induce a phase transition contrary
to the interaction W− which may do so depending on α,w−

k , nk. In order to determine a threshold
for the validity of the log-Sobolev inequality, we are going to define the restriction of the mean-field
free energy FT (1.5) to the modes nk. Given m = (mk)k>−d, we consider the subset of probability
densities with prescribed modes

P(m) =
{

ρ ∈ M1(R
d); mk =

∫

Rd

nk(x)ρ(dx)
}

(1.23)

and define the coarse grained free energy as

F̂T (m) = inf
{

FT (ρ), ρ ∈ P(m)
}

, (1.24)

with the convention FT (m) = +∞ if P(m) = ∅. This is a multi-mode generalisation of (1.8).
The functional F̂T is strongly convex if there is δ > 0 such that for any m

1 = (m1
k)k≥−d,

m
2 = (m2

k)k≥−d and t ∈ [0, 1] then

tF̂T (m1) + (1 − t)F̂T (m2) > F̂T
(

αm1 + (1 − α)m2
)

+
δ

2
t(1 − t)

∑

k≥−d

w−
k

(

m1
k −m2

k

)2
. (1.25)

6



For a smooth functional F̂T , the previous condition is equivalent to assuming that the Hessian is
bounded from below by a diagonal matrix with coefficients (δ w−

k )k>−d. We also say that F̂T is
δ-convex if (1.25) holds with a specific δ > 0.

Theorem 1.8. Let V be a confinement potential and W an interaction respectively satisfying Assump-
tions 1.1 and 1.7. If F̂T is strongly convex, then the mean-field measure mN

T satisfies a log-Sobolev
inequality with a constant independent of N .

Theorem 1.8 relies on [47] to deal with the interaction term W+ and uses a decomposition similar
to the one introduced in the proof of Theorem 1.3 to handle the quadratic potential.

Remark 1.9. The quadratic interaction considered in Theorem 1.3 falls into the class of the interaction
potential (1.21) (by choosing w−

k = 0 for k > 0). In this case, there are confinement potentials for

which the strong convexity of F̂T is a sharp condition as seen in Corollary 1.4.

The representation (4.1) is motivated by the Fourier decomposition. In particular, in the periodic
domain [0, 2π)d, any smooth symmetric interaction potential of the form W (x, y) = w(x− y) can be
decomposed as (1.26) (with coefficient α = 0): for x, y ∈ [0, 2π)d,

w(x− y) =
∑

k>0

ŵk cos((k, x− y))

=
∑

k>0

ŵk cos((k, x)) cos((k, y)) + ŵk sin((k, x)) sin((k, y)). (1.26)

The function W can then be split into W+,W− according to the sign of the Fourier coefficients. The
Lipschitz assumption (1.22) on the nk is implied by sufficient smoothness of w.

As a consequence Theorem 1.8 (or rather its proof which also applies on the torus) implies the
following result in the periodic case.

Corollary 1.10. Consider the mean-field measure on the periodic domain [0, 2π]d with smooth periodic
potentials V (x) and W (x, y) = w(x− y). If F̂T is strongly convex, then the mean-field measure mN

T

satisfies a log-Sobolev inequality with a constant independent of N .

Remark 1.11. In Appendix B, we check that for the XY model, Corollary 1.10 implies the log-Sobolev
inequality all the way to the critical threshold Tc = 1/2. Note that this was already established in [7].
The mode decomposition did not appear there, but in this special situation, it is equivalent to the
R
2-valued external field that appeared instead.

Using spherical harmonics, this can similarly be extended to rotation invariant interactions on
S
d, d > 2, i.e., W (x, y) = W (x · y). In particular, for the mean-field O(n) model, in which xi ∈ S

n−1,
the addition theorem for spherical harmonics [3, Theorem 2.9] implies that

−W (xi, xj) = xi · xj =
|Sn−1|
N1,n

∑

m

Y m
1 (xi)Y

m
1 (xj) (1.27)

where (Y m
1 )16m6N1,n is an orthonormal basis of the spherical harmonics of order 1 in n dimensions.

This can be arranged into real form so that the right-hand side becomes
∑

k nk(xi)nk(xj). For xi ∈ S
2

this reduces to the trigonometric identity

xi · xj = cos(θi) cos(θj) + cos(ϕi) sin(θi) cos(ϕj) sin(θj) + sin(ϕi) sin(θi) sin(ϕj) sin(θj)

= n1(xi)n1(xj) + n2(xi)n2(xj) + n3(xi)n3(xj), (1.28)

and the nk(x) are simply the spherical coordinates of x ∈ S
2. In the same way as for the XY model,

it was shown in [7] that the critical threshold Tc = 1/n for the O(n) model can be reached using this
decomposition, for any n.
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1.4. Possible generalisations. We conclude this section by mentioning a series of open problems to
generalise Theorem 1.8.

(i) In the compact situation (torus or sphere) the mode decomposition into Fourier modes or
spherical harmonics seems very natural. On the other hand, the assumption of bounded modes
is less relevant on an unbounded space. Can the proof be adapted to the case where W− only
has bounded Hessian?

(ii) The strong convexity assumption on F̂T applies to all modes simultanously. This is in the spirit
of the Bakry–Émery criterion, but different from the scale decomposition in the Polchinski
renormalisation group flow [11], where the scales are effectively revealed one after another from
the smallest to the largest scales. Is there a version of this renormalisation group strategy that
would explore modes rather than scales in an ordered fashion?

(iii) The convexity criterion on F̂T has been introduced to provide a simple criterion in terms of the
mean-field free energy FT (1.5), but we do not expect this condition to be optimal in general.

If the coarse grained free energy F̂T depends only on a finite number of modes and satisfies a
Polyak- Lojasiewicz inequality of the form (1.10) then the same discussion as in Theorem 1.3
would imply the conclusion of Theorem 1.8, i.e., the uniform log-Sobolev inequality.

More generally, it would be interesting to investigate if the log-Sobolev inequality for the particle
system could be implied by an assumption on a uniform rate of exponential relaxation for the
gradient flow associated with FT (in the sense of [19]). We refer to [25, Conjecture 1] for a
precise conjecture.

2 Quadratic interaction potential

In this section, we prove Theorem 1.3 and Corollary 1.4 for quadratic interactions W (x, y) = −(x, y).
This example also illustrates the general strategy in the simplest instance of one mode.

We first prove a log-Sobolev inequality up to a certain convexity threshold on the temperature
for potentials V satisfying Assumption 1.1 and d-dimensional spin variables xi ∈ R

d. The analysis
is carried out in terms of an auxiliary functional, the renormalised potential, defined in (2.5). For a
certain class of double well potentials V , we show in Section 2.4 that this threshold coincides with the
critical temperature Tc of the free energy and that the log-Sobolev constant diverges like (T − Tc)

−1

as T ↓ Tc.

2.1. Renormalised potential and renormalised measure. Our starting point is the following elemen-

tary identity, valid for all (x1, . . . , xN ) ∈ (Rd)N :

exp

[

1

2NT

N
∑

i,j=1

(xi, xj)

]

= constant

∫

Rd

exp

[

−N |ϕ|2
2T

+
1

T

(

ϕ,

N
∑

i=1

xi

)

]

dϕ, (2.1)

where the constant is (N/(2πT ))d/2 and is not relevant. The identity (2.1) induces a decomposition
of the mean-field measure mN

T (1.2). Indeed for any test function F : (Rd)N → R, one gets

EmNT
[F ] =

constant

ZNT

∫

(Rd)N

∫

Rd

F (x) exp

[

−N |ϕ|2
2T

+
1

T

(

ϕ,

N
∑

i=1

xi

)

]

dϕ

N
∏

i=1

αV (dxi). (2.2)
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This decouples the interaction between the spins, so that the mean-field measure can be rewritten,
after exchanging the order of integration, as

EmNT
[F ] = EνrT

[

EµϕT
[F ]

]

, (2.3)

with the renormalised measure νrT and the fluctuation measure µϕT (ϕ ∈ R
d) given by:

νrT (dϕ) ∝ e−NVT (ϕ) dϕ ∈ M1(Rd), µϕT (dx) ∝
N
∏

i=1

e
1
T
(ϕ,xi)αV (dxi) ∈ M1

(

(Rd)N
)

. (2.4)

The measure αV (dx) ∝ e−V (x) dx is the one defined in (1.3). The renormalised potential VT is defined
for T > 0 and ϕ ∈ R

d by:

VT (ϕ) =
|ϕ|2
2T

− log

∫

Rd

e
(x,ϕ)
T αV (dx). (2.5)

Note that the normalisation factor ZNT in (2.2) cancels with the normalisation factors of the proba-
bility measures νrT , µ

ϕ
T .

The measure decomposition (2.3) says that the mean-field quadratic interaction can be realised as
N independent copies of the measure αV coupled with an external field ϕ distributed according to the
probability measure νrT . In the next section, we use this decomposition to prove a uniform log-Sobolev
inequality for mN

T provided the measure exp(−NVT ) satisfies a suitable log-Sobolev inequality.

2.2. Log-Sobolev inequality in the high temperature phase. We are going to show that the mean-
field measure mN

T satisfies a log-Sobolev inequality with constant bounded uniformly in N for any
temperature at which the renormalised measure νrT satisfies a log-Sobolev inequality with constant
NλT for some constant λT independent of N . Throughout the section, γV > 0 is such that αhV (dx) ∝
e(h,x)−V (x) dx satisfies a log-Sobolev inequality with constant γV uniform in h ∈ R

d. Such a γV exists
if the confinement potential V satisfies Assumption 1.1.

Proposition 2.1. Let T > 0 be such that νrT (dϕ) ∝ e−NVT (ϕ) dϕ satisfies a log-Sobolev inequality with
constant NλT for some λT > 0. Then mN

T satisfies a log-Sobolev inequality with constant:

1

γNLS(T )
6

1

γV
+

1

γ2V T
2 λT

. (2.6)

The assumption of the proposition holds if HessVT > λT id with λT > 0 by the Bakry–Émery
criterion [6]. More generally, we will show in Proposition 2.3 in the next subsection that it is implied
by a Polyak- Lojasiewicz inequality (1.10) for the coarse grained free energy F̂T .

Proof. The measure mN
T has been split into two measures which are well behaved in the sense that

they both satisfy a log-Sobolev inequality under the assumptions of Proposition 2.1. By assumption
νrT (dϕ) satisfies a log-Sobolev inequality with constant NλT > 0. By Assumption 1.1, the measure

µϕ,iT (dxi) ∝ e
1
T
(ϕ,xi)αV (dxi) satisfies a log-Sobolev inequality with constant γV independent of ϕ ∈ R

d

(1 6 i 6 N). Thus the same is true for the product measure µϕT .

Let G(ϕ) = EµϕT
[F 2]1/2. Then the measure decomposition (2.3) implies the following standard

entropy decomposition:

EntmNT
(F 2) = EνrT

[

EntµϕT
(F 2)

]

+ EntνrT (G(ϕ)2). (2.7)
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As the measures νrT , µ
ϕ
T satisfy a log-Sobolev inequality, we deduce that

EntmNT
(F 2) 6

2

γV

N
∑

i=1

EνrT
EµϕT

[

|∇xiF |2
]

+
2

NλT
EνrT

[

|∇ϕG(ϕ)|2
]

. (2.8)

By (2.3), the first term is precisely (2/γV )EmNT
[|∇F |2]. For the second term, notice:

∇ϕG(ϕ) =
∇ϕEµϕT

[F 2]

2EµϕT
[F 2]1/2

=
1

2T

CovµϕT

(

F 2,
∑N

i=1 xi
)

EµϕT
[F 2]1/2

. (2.9)

The covariance is estimated by Lemma A.1 applied to H(x) =
∑

i xi which satisfies |∇∑

i xi(a)| =√
N for each 1 6 a 6 d:

CovµϕT

(

F 2,

N
∑

i=1

xi

)2
6

4N

γ2V
EµϕT

[

F 2
]

N
∑

i=1

EµϕT

[
∣

∣∇xiF
∣

∣

2 ]
. (2.10)

Together with (2.8) this completes the proof.

2.3. Renormalised potential and coarse grained free energy - Proof of Theorem 1.3. To prove Theo-
rem 1.3, it suffices to show that the assumption of Proposition 2.1 is implied by the Polyak- Lojasiewicz
inequality (1.10) for F̂T . This is done in Proposition 2.3 below. We start with a general correspon-
dence between the renormalised potential and the free energy that will be used extensively in Section 4
in a more general context.

Lemma 2.2. Let ϕ ∈ R
d. Then the renormalised potential introduced in (2.5) can be rewritten as

VT (ϕ) = inf
ρ∈M1(Rd)

{

FT (ρ) +
1

2T

(

ϕ−
∫

x ρ(dx)
)2

}

= inf
m∈Rd

{

F̂T (m) +
1

2T
|ϕ−m|2

}

, (2.11)

and there are as many global minimisers for the free energy FT as for the renormalised potential VT .

The formula (2.11) is reminiscent of the Hopf–Lax formula for Hamilon–Jacobi equations, but
F̂T in the argument also depends on T . We refer to [11, Appendix A] for a discussion on the
renormalisation group flow and the Hamilton–Jacobi equation.

Proof of Lemma 2.2. Recall the definition (2.5) of VT : for each N > 1,

VT (ϕ) =
|ϕ|2
2T

− log

∫

R

e
(x,ϕ)
T αV (dx1) =

|ϕ|2
2T

− 1

N
log

∫

RN

N
∏

i=1

e
(x,ϕ)
T αV (dxi). (2.12)

Taking the large N limit, Sanov’s theorem gives:

VT (ϕ) =
|ϕ|2
2T

− sup
ρ∈M1(Rd)

{

1

T

(

ϕ,

∫

x ρ(dx)
)

−
∫

V (x) ρ(dx) −
∫

ρ(x) log ρ(x) dx

}

= inf
ρ∈M1(Rd)

{

FT (ρ) +
1

2T

∣

∣

∣
ϕ−

∫

x ρ(dx)
∣

∣

∣

2
}

. (2.13)

This formula is the counterpart of (4.7) which will be established later on in a more general framework.
The argument of the variational principle in the first line above is strictly convex in ρ. There is thus a
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unique critical point ρmϕ , parametrised by its magnetisation mϕ =
∫

x ρmϕ(dx), and explicitly given
by:

ρmϕ(dx) ∝ e
(x,ϕ)
T

−V (x) dx. (2.14)

In terms of the coarse grained free energy (1.24), the variational formula (2.13) can be rewritten as

VT (ϕ) = inf
m

{

F̂T (m) +
1

2T

∣

∣

∣
ϕ−m

∣

∣

∣

2
}

= inf
m∗

F̂T (m∗) + inf
m

{

(

F̂T (m) − inf
m∗

F̂T (m∗)
)

+
1

2T

∣

∣

∣
ϕ−m

∣

∣

∣

2
}

. (2.15)

This implies that the global minima of VT coincide exactly with the global minima of F̂T . As all ρm
have different mean, there are therefore as many global minimisers for the free energy FT as for the
renormalised potential VT .

Proposition 2.3. Let T > Tc and assume that F̂T satisfies a Polyak- Lojasiewicz inequality (1.10).
Then the renormalised measure νrT satisfies a log-Sobolev with constant NλT for some constant λT > 0
independent of N .

Proof. By definition (1.6), for T > Tc the free energy FT has a unique minimiser. Therefore F̂T has
a unique minimiser m⋆, and Lemma 2.2 implies that VT has a unique minimum at m⋆. It is shown
in [23, Theorem 1] that if VT satisfies a Polyak- Lojasiewicz inequality for some constant γ > 0,

VT (ϕ) − VT (m⋆) 6
1

2γ
‖∇VT (ϕ)‖2, ∀ϕ ∈ R

d, (2.16)

then the renormalised measure νrT (dϕ) ∝ e−NVT (ϕ) dϕ satisfies a log-Sobolev inequality with constant
Nγ(1 + oN (1)), which is at least NλT for some λT > 0 and all large enough N . Thus to conclude
Proposition 2.3, it is enough to show that (2.16) holds thanks to the assumption on F̂T .

To see this, we use the variational formula derived in Lemma 2.2 above: for each ϕ ∈ R
d,

VT (ϕ) = inf
m∈Rd

{

F̂T (m) +
1

2T
|ϕ−m|2

}

= F̂T (mϕ) +
1

2T
|ϕ−mϕ|2. (2.17)

If F̂T is regular enough, the argmin is determined as a solution of:

1

T
(ϕ−mϕ) = ∇F̂T (mϕ). (2.18)

To establish regularity of F̂T , note from its explicit expression (2.5) that VT ∈ C∞(Rd). The same
is therefore true of ϕ 7→ mϕ =

∫

x ρϕ(dx) = ϕ− T∇VT (ϕ). Since mϕ has differential ∇mϕ = Covρϕ
which is positive definite for each ϕ ∈ R

d by Assumption 1.1 on V , the local inversion theorem
implies that m−1

ϕ : m 7→ ϕm, where
∫

x ρϕm(dx) = m, is also smooth. Equation (2.17) then implies

F̂T ∈ C1(Rd) as desired. Assuming sufficient regularity on the potentials, one further has

∇VT (ϕ) =
1

T
(ϕ−mϕ) = ∇F̂T (mϕ).

If F̂T satisfies a Polyak- Lojasiewicz inequality (1.10) with constant γPL, then we get from (2.17) that
VT satisfies also a Polyak- Lojasiewicz inequality :

VT (ϕ) − VT (m⋆) 6
1

2γPL
‖∇F̂T (mϕ)‖2 +

T

2
‖∇VT (ϕ)‖2 =

(

1

2γPL
+
T

2

)

‖∇VT (ϕ)‖2, (2.19)

where we used that VT (m⋆) = F̂T (m⋆) by Lemma 2.2. This implies the inequality (2.16) and therefore
completes the proof.
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2.4. Critical point for double well potentials - Proof of Corollary 1.4. Proposition 2.1 implies a log-
Sobolev inequality for mN

T for each temperature such that the renormalised potential VT is uniformly

convex (by the Bakry–Émery criterion for VT ). The aim of this section is to exhibit a class of double-
well potentials V for which this criterion is sharp, in the sense that uniform convexity of VT holds
for any T > Tc, with Tc the critical temperature (1.6) above which the free energy (1.5) has a unique
minimiser.

Assumption 2.4 (GHS double-well potentials). Let d = 1, and in addition to Assumption 1.1, assume
the potential V is in the Griffiths–Hurst–Simon (GHS) class [29]. That is, V ∈ C1(R,R) is even with
lim|x|→∞ V (x) = +∞, and the restriction of V ′ to [0,∞) is convex.

Note that the potential V (x) = x4

4 − λx
2

2 in (1.11) satisfies Assumption 2.4. A consequence of
Assumption 2.4 is the following useful bound on the variance of αhV ∝ ehxαV (dx):

∀h ∈ R, VarαhV
(x) 6 VarαV (x). (2.20)

Proposition 2.5. Suppose Assumption 2.4 applies. Then Tc = VarαV (x) and

inf
ϕ
∂2ϕVT (ϕ) =

T − Tc
T 2

. (2.21)

As a consequence, VT is uniformly convex for T > Tc and the first part of Corollary 1.4 follows by
applying Proposition 2.1.

Proof of Proposition 2.5. An elementary computation using the definition of the renormalised po-
tential (2.5) and (2.20) (from Assumption 2.4) gives:

∂2ϕVT (ϕ) =
1

T
− 1

T 2
Var

α
ϕ/T
V

(x) > ∂2ϕVT (0) =
1

T
− 1

T 2
VarαV (x). (2.22)

This implies that VT is uniformly convex for any T > VarαV (x). Furthermore, for T < VarαV (x),
then ∂2ϕVT (0) < 0 so that the even function VT has at least two distinct minimisers. By Lemma 2.2,
this implies that Tc = VarαV (x) as FT and VT have the same number of global minimisers.

Under Assumption 2.4 on V , we further characterise the behaviour of the log-Sobolev constant
close to Tc. The following two propositions complete the proof of Corollary 1.4.

Proposition 2.6 (Lower bound). Suppose Assumption 2.4 on V . Recall that γV denotes a uniform
bound on the log-Sobolev constant of αhV (dx) ∝ ehxαV (dx) (h ∈ R). Then, for each T > Tc, the
log-Sobolev constant γNLS(T ) of the mean-field measure mN

T satisfies:

1

γNLS(T )
6

1

γV
+

1

(T − Tc)γ
2
V

. (2.23)

Proof. Proposition 2.1 implies the following bound on the log-Sobolev constant:

1

γNLS(T )
6

1

γV
+

1

T 2 γ2V infϕ∈R ∂2ϕVT (ϕ)
. (2.24)

The lower bound (2.21) concludes the derivation of Proposition 2.6.

To get a matching upper bound, we just need to find a good test function.
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Proposition 2.7 (Upper bound). Let V satisfy Assumption 2.4. There is C > 0 such that, for all
T > Tc, one gets for N large enough

γNLS(T ) 6 C(T − Tc). (2.25)

Proof. A log-Sobolev inequality implies a Poincaré inequality with the same constant. Taking as test
function F = N−1/2

∑

i xi, we find:

γNLS(T ) 6
1

χNT
, χNT :=

N
∑

i=1

CovmNT
(x1, xi) = EmNT

[( 1√
N

N
∑

i=1

xi

)2]

. (2.26)

The susceptibility χNT can be bounded using the measure decomposition (2.3) as we now explain.
One has

χNT = EνT

[

VarµϕT

( 1√
N

∑

i

xi

)]

+ VarνT

(

EµϕT

[ 1√
N

∑

i

xi

])

> N VarνT

(

EµϕT
[x1]

)

= NEνT

[

EµϕT
[x1]2

]

, (2.27)

using the symmetry between the random variables and the fact that EνT

[

EµϕT
[x1]

]

= EmNT
[x1] = 0.

Estimating (2.27) from below boils down to studying one dimensional measures. For ϕ small, one
can easily estimate by Taylor expansion, the behavior of the expectation

EµϕT
[x1] = E

α
ϕ/T
V

[x1] >
1

2T
Varα0

V
[x1]ϕ. (2.28)

For T > Tc, the renormalised potential is a convex function reaching its minimum at 0 and the second
derivative at 0 is given by λT = T−Tc

T 2 (2.21). Thus the field ϕ under the renormalised measure is
concentrated close to 0 on a set of size 1/

√
NλT . As a consequence, for some c(T ) > 0

EνT [ϕ2
1|ϕ|>1] 6 e−Nc(T ). (2.29)

From this upper bound and (2.28), we get

EνT

[

EµϕT
[x1]2

]

>
Varα0

V
[x1]

2

4T 2
∫

R
e−NVT (ϕ) dϕ

×
∫

R

ϕ2e−NVT (ϕ) dϕ+ e−Nc(T ). (2.30)

The field ϕ in the right-hand side and (2.30) can be estimated by using Laplace method (see e.g. [48,
Theorem 3, p.495]) when N tends to infinity :

EνT

[

EµϕT
[x1]2

]

>
Varα0

V
[x1]2

4T 2NλT
(1 + oN (1)) =

C(1 + oN (1))

N(T − Tc)
. (2.31)

Combined with (2.26) and (2.27), this completes the proof of Proposition 2.7.

Remark 2.8. By adapting the proof of Proposition 2.7, one could also compute the divergence with
respect to N of the log-Sobolev constant at Tc.

3 Quadratic interaction potential on random graphs

In this section, we prove Theorem 1.5 for models with quadratic interactions indexed by graphs
satisfying Assumption 3.1 below. For a confinement potential V satisfying Assumption 2.4, we first
prove an explicit bound on the log-Sobolev constant when T > Tc in Theorem 3.4. The T < Tc case
is treated in Section 3.6. Here Tc refers to the critical temperature of the fully connected mean-field
model introduced in (1.6).
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3.1. Assumption on graphs. For a graph GN , denote its adjacency matrix by A:

Aij = 1i∼j , Aii = 0, i, j ∈ GN . (3.1)

We consider sequences (GN )N>1 under the sole assumption that the largest eigenvalue in the spectrum
of A is isolated in the following sense. Let ‖M‖ denote the operator norm of a matrix M :

‖M‖ = sup
x,y∈RN

|x|=1=|y|

(Mx, y). (3.2)

Let also P = 1
N 1⊗ 1 denote the orthonormal projector on the constant mode 1 = (1, . . . , 1).

Assumption 3.1. There are sequences dN , εN > 0 (N > 1) such that limN→∞ εN = 0 and the
adjacency matrix of the graph satisfies

‖A− dNP‖ 6 εNdN . (3.3)

Assumption 3.1 holds with large probability for different types of random graphs as stated next.

Lemma 3.2. Let EN denote the expectation associated with a random regular graph with degree dN or
an Erdös-Rényi random graph with mean degree dN and assume limN→∞ dN/ logN = +∞. Then:

EN

[

‖A− dNP‖
]

= O(
√

dN ). (3.4)

In the random regular graph case assuming only limN dN = +∞ is in fact sufficient.

Proof. For the random regular graph, the claim is proven in [46, Theorem A] (if dN > Nα for some
α > 0) and [24, Theorem 1.1] (if 1 ≪ dN = O(N2/3)) which state:

EN

[

‖A− EN [A]‖
]

= O(
√

dN ). (3.5)

In the Erdös-Rényi case, the claim is a special case of Theorem 3.2 in [15] which in particular states:

EN

[

‖A− EN [A] ‖
]

= 2
√

dN (1 + oN (1)). (3.6)

Remark 3.3. Assumption 3.1 says that the eigenvalues of A− dNP are negligible with respect to dN .
This is a natural condition for us because P = 1

N 1⊗1 corresponds to EN [A] when A is the adjacency
matrix of the models of random graphs considered in Theorem 1.5.

However, the specific choice of the projector P onto the span of 1 is not necessary. For example,
if the graph is a good expander, in the sense that:

‖A− dNPN‖ 6 εNdN , (3.7)

where dN is now the Perron–Frobenius eigenvalue of A and PN is now the orthonormal projector on
the corresponding eigenspace (which is not necessarily 1 if the graph is not regular), then one can
check that the uniform log-Sobolev inequality of Theorem 1.8(i) for T > Tc still holds under this
assumption, with a nearly identical proof.
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3.2. Measure decomposition. Introduce the reduced adjacency matrix:

B := A− dNP, P =
1

N
1⊗ 1. (3.8)

Using the relation A = B+dNP , we proceed as in (2.4) and decompose the Gibbs measure introduced
in (1.16) into two measures:

E
m
GN
T

[F ] = EνBr,T

[

E
µB,ϕT

[F ]
]

, (3.9)

where the fluctuation measure is defined in terms of the external field ϕ ∈ R as

µB,ϕT (dx) ∝ exp

[

1

2TdN
(x,Bx) +

ϕ(x,1)

T

] N
∏

i=1

αV (dxi), (3.10)

and the renormalised measure νBr,T ∝ e−NV
B
T (ϕ) dϕ now involves an N -dependent renormalised po-

tential V B
T that reads:

e−NV
B
T (ϕ) = exp

[

−N ϕ2

2T

]
∫

exp

[

1

2TdN
(x,Bx) +

ϕ(x,1)

T

] N
∏

i=1

αV (dxi). (3.11)

Compared with (2.4), the fluctuating measure is no longer product. Nevertheless, we will see that,
under Assumption 3.1, the contribution of B can be neglected and the behaviour of the renormalised
potential is accurately described in terms of the product measure:

µ0,ϕT (dx) ∝ exp
[ϕ(x,1)

T

]

N
∏

i=1

αV (dxi). (3.12)

We write a superscript 0 to emphasise the difference with µB,ϕT , but note that this measure is exactly
the fluctuation measure appearing in the decomposition (2.4) of the mean-field measure mN

T (2.3)
(i.e. on the complete graph). We similarly write ν0r,T for the mean-field renormalised measure:

ν0r,T (dϕ) ∝ e−NV
0
T (ϕ) dϕ, (3.13)

with the mean-field renormalised potential V 0
T given by (2.5):

e−NV
0
T (ϕ) =

∫

RN

exp
[

− N ϕ2

2T
+
ϕ(x,1)

T

]

N
∏

i=1

αV (dxi), ϕ ∈ R. (3.14)

The next theorem shows that the log-Sobolev inequality for mGN
T is determined by the critical

temperature of the mean-field model.

Theorem 3.4. Let GN satisfy Assumption 3.1 and V satisfy Assumption 2.4. Let T > Tc, the critical
temperature (1.6) in the mean-field case. Then, for N large enough depending only on T, γV , the
measure mGN

T satisfies a log-Sobolev inequality with constant:

1

γGNLS (T )
6

1

(T − Tc)γ
2
V

+
1

γV
+O(εN ), (3.15)

where the constant γV depends only on the confinement potential V .

By Lemma 3.2, Assumption 3.1 is satisfied for random regular graphs and Erdös-Rényi random
graphs with large degrees. Thus Theorem 3.4 implies part (i) of Theorem 1.5. Part (ii) is derived in
Section 3.6.
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3.3. Proof of Theorem 3.4. Using the representation (3.9), the entropy under mGN
T decomposes as:

Ent
m
GN
T

(F 2) = EνBr,T

[

Ent
µB,ϕT

(F 2)
]

+ EntνBr,T

(

E
µB,ϕT

[F 2]
)

. (3.16)

The following two propositions, proven in the next sections, provide an estimate for each of the above
terms.

The next proposition is basically [7]. The result there is stated on a compact state space and
established using slightly different properties of Gaussian measures, so we reprove it at the end of
the section.

Proposition 3.5. The measure µB,ϕT satisfies a log-Sobolev inequality with constant γBLS(T ) independent
of ϕ and bounded as follows, as soon as the expression between parentheses is strictly positive:

1

γBLS(T )
6

1

γ2V

( 1

3TεN
− 1

T 2γV

)−1
+

1

γV
=

1

γV
+O(εN ), (3.17)

where the constant γV depends only on the confinement potential V .

The next proposition controls the renormalised measure and is proven in Section 3.5.

Proposition 3.6. Let T > 0 and suppose that V satisfies Assumption (2.4). If V 0
T is uniformly convex,

then for N large enough so is V B
T . Explicitly, for any N > 1:

inf
ϕ∈R

∂2ϕV
B
T (ϕ) > inf

ϕ∈R
∂2ϕV

0
T (ϕ) −O(εN ). (3.18)

Proof of Theorem 3.4. Fix T > Tc. Since V 0
T coincides with the renormalised mean-field potential

(2.5), we get by (2.21) that:

inf
ϕ∈R

∂2ϕV
0
T (ϕ) =

T − Tc
T 2

> 0. (3.19)

Proposition 3.5 controls the first term in the right-hand side of (3.16):

EνBr,T

[

Ent
µB,ϕT

(F 2)
]

6
2

γBLS(T )
E
m
GN
T

[

|∇F |2
]

=
2

γV +O(εN )
E
m
GN
T

[

|∇F |2
]

. (3.20)

On the other hand, Proposition 3.6 enables us to apply the Bakry–Émery criterion to the renormalised
measure:

EntνBr,T

(

E
mB,ϕT

[F 2]
)

6
2

N infϕ ∂2ϕV
B
T (ϕ)

EνBr,T

[

∣

∣∇ϕ

√

E
µB,ϕT

[F 2]
∣

∣

2
]

6
2

N
(

infϕ ∂2ϕV
0
T (ϕ) +O(εN )

)EνBr,T

[

∣

∣∇ϕ

√

E
µB,ϕT

[F 2]
∣

∣

2
]

. (3.21)

We conclude on a log-Sobolev inequality for mGN
T using Lemma A.1 exactly as in the quadratic case,

see Section 2.2:

∣

∣∇ϕ

√

E
µB,ϕT

[F 2]
∣

∣

2
=

1

4T 2

Cov
µB,ϕT

(

F 2,
∑N

i=1 xi
)2

E
µB,ϕT

[F 2]
6

N

γBLS(T )2 T 2
EµϕT

[
∣

∣∇F
∣

∣

2 ]
. (3.22)

Thus (3.21) becomes

EntνBr,T

(

E
mB,ϕT

[F 2]
)

6
2

γBLS(T )2 T 2

1
(

infϕ ∂2ϕV
0
T (ϕ) +O(εN )

)E
m
GN
T

[

∣

∣∇F
∣

∣

2
]

. (3.23)

By (3.19), this proves Theorem 3.4 with constant:

1

γGNLS (T )
6

1

γ2V (T − Tc) +O(εN )
+

1

γV +O(εN )
. (3.24)
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3.4. Estimates for the fluctuation measure.

Proof of Proposition 3.5. To prove the log-Sobolev inequality for µB,ϕT , we proceed as before and split
the measure into two parts in order to decouple the scales. The dominant contribution is given by a
product measure coupled to a fluctuating weak external field. Recall that from Assumption 3.1, this
matrix has spectrum in [−εNdN , εNdN ]. Define the following shifted matrix:

C :=
1

dN
B + 2εN id > εN id > 0. (3.25)

Introduce also the potential U as:

U(y) = V (y) +
εN
T
y2, y ∈ R. (3.26)

The measure µB,ϕT then reads:

µB,ϕT (dx) ∝ exp

[

1

2T
(x,Cx) +

ϕ(x,1)

T

] N
∏

i=1

αU (dxi). (3.27)

We will prove a slighty stronger statement than Proposition 3.5 and establish the log-Sobolev in-
equality for the probability measure:

µC,hT (dx) ∝ exp

[

1

2T
(x,Cx) +

1

T
(h, x)

] N
∏

i=1

αU (dxi), (3.28)

where the field h now takes values in R
N . For h = ϕ1 then µB,ϕT = µC,hT .

By Assumption 3.1, the matrix C has spectrum in [εN , 3εN ]. The following moment generating
function formula for Gaussian random variables holds:

exp
[ 1

2T
(x,Cx)

]

∝
∫

RN

exp
[

− (y,C−1y)

2T
+

1

T
(x, y)

]

dy, x ∈ R
N . (3.29)

We use it to decompose µC,hT as follows: for any test function F : RN → R,

E
µC,hT

[F ] = EνCr,T

[

E
µh+yT

[F ]
]

. (3.30)

Above, the fluctuation measure µh+yT is product:

µh+yT (dx) ∝ exp
[ 1

T
(x, y + h)

]

N
∏

i=1

αU (dxi). (3.31)

The renormalised measure νCr,T is this time a probability measure on R
N :

νCr,T (dy) ∝ exp
[

− V N
T (y)

]

dy. (3.32)

The renormalised potential V N
T is also a function from R

N to R, given by:

e−V
N
T (y) := exp

[

− (y,C−1y)

2T

]

∫

RN

exp
[ 1

T
(x, y + h)

]

N
∏

i=1

αU (dxi). (3.33)
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Since C−1 satisfies:

C 6 3εN id ⇒ C−1
>

1

3εN
id, (3.34)

the Hessian of V N
T reads

HessV N
T (y) =

1

T
C−1 − 1

T 2
Cov

µy+hT
>

1

3TεN
id − 1

γV T 2
id, (3.35)

where Cov
µy+hT

=
(

Cov
µy+hT

(xi, xj)
)

i,j6N
stands for the (diagonal) covariance matrix of the product

measure µh+yT (recall (3.31)), which can easily be bounded from above by a Poincaré inequality. Note
in particular that, informally speaking, (3.35) implies that the measure νCr,T is concentrated around

0, so that the measure µC,hT = νCr,Tµ
h+y
T is well described by µh+yT when y is negligible. We make this

precise next when proving a log-Sobolev inequality. To do so, decompose the entropy as in (3.16):

Ent
µC,hT

(F 2) = EνCr,T

[

Ent
µh+yT

(F 2)
]

+ EntνCr,T

(

E
µh+yT

[F 2]
)

. (3.36)

First note that Assumption 1.1 remains valid for the potential U defined in (3.26). The product

measure µh+yT therefore satisfies a log-Sobolev inequality uniformly in h+ y with constant γV > 0:

EνCr,T

[

Ent
µh+yT

(F 2)
]

6
2

γV
E
µC,hT

[

|∇F |2
]

. (3.37)

On the other hand, thanks to (3.35), the renormalised measure is strictly log-concave for all N
large enough and the Bakry–Émery criterion gives:

EntνC′
r,T

(

E
µy+hT

[F 2]
)

6 2
( 1

3TεN
− 1

T 2γV

)−1
EνC

′
r,T

[
∣

∣

∣
∇
√

E
µy+hT

[F 2]
∣

∣

∣

2 ]

6
2

γ2V

( 1

3TεN
− 1

T 2γV

)−1
E
µC,hT

[

|∇F |2
]

. (3.38)

Above, the second line follows from Lemma A.1, Equation (A.2):

|∇
√

E
µy+hT

[F 2]|2 =
1

4E
µy+hT

[F 2]

N
∑

i=1

Cov
µy+hT

(F 2, xi)
2
6

1

γ2V
E
µy+hT

[

|∇F |2
]

. (3.39)

We conclude that µC,hT satisfies a log-Sobolev inequality with constant uniform in h:

1

γ
=

4

γ2V

( 1

3TεN
− 1

T 2γV

)−1
+

1

γV
=

1

γV
+O(εN ). (3.40)

Since µB,ϕT = µC,hT for h = ϕ1, this completes the proof of Proposition 3.5.

3.5. Comparison of renormalised potentials.

Proof of Proposition 3.6. The second derivative of the renormalised potential was already computed
in (2.22):

∂2ϕV
0
T (ϕ) =

1

T
− 1

NT 2
Varµ0,ϕT

(

(x,1)
)

=
1

T
− 1

T 2
Varµ0,ϕT

(

x1
)

. (3.41)

One has also

∂2ϕV
B
T (ϕ) =

1

T
− 1

NT 2
Var

µB,ϕT

(

(x,1)
)

. (3.42)
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We again use the measure decomposition and the notations of Section 3.4 to compute the variance
with h = ϕ1:

Var
µB,ϕT

(

(x,1)
)

= Var
µC,hT

(

(x,1)
)

= E
νC

′
r,T

[

Var
µ0,h+yT

(

(x,1)
)]

+ Var
νC

′
r,T

(

E
µ0,h+yT

[(x,1)]
)

. (3.43)

Each term will be estimated separately. Using the product structure of µ0,h+yT , the first term simplifies

E
νC

′
r,T

[

Var
µ0,h+yT

(

(x,1)
)]

=
N
∑

i=1

E
νC

′
r,T

[

Var
µ0,h+yT

(

xi
)]

6 N Var
µ0,0T

(x1), (3.44)

where we used the Assumption 2.4 on V to bound the variance by its value at 0 field by (2.20).

Let F = (x,1). Proceeding as in (3.38), the last term in (3.43) is bounded by a spectral gap
estimate

VarνC′
r,T

(

E
µ0,y+hT

[F ]
)

6

( 1

3TεN
− 1

T 2γV

)−1
EνC

′
r,T

[

∣

∣∇E
µ0,y+hT

[F ]
∣

∣

2
]

=
( 1

3TεN
− 1

T 2γV

)−1
N
∑

i=1

E
νC

′
r,T

[

Cov
µ0,y+hT

(F, xi)
2
]

6 c εN

N
∑

i=1

EνC
′

r,T

[

Var
µ0,y+hT

(xi)
]

6 c εN N Varµ0,0T
(x1), (3.45)

where we used that the measure µ0,y+hT is product to simplify the covariance and then the Assump-
tion 2.4 on V to derive an estimate on the variance uniform in h by (2.20). Thus the variance (3.43)
is bounded from above by

sup
ϕ∈R

Var
µB,ϕT

[(x,1)] 6 N Varµ0,0T
(x1) +N O(εN ). (3.46)

Thanks to (3.41), (3.42), this gives the claim:

inf
ϕ∈R

∂2ϕV
B
T > inf

ϕ∈R
∂2ϕV

0
T −O(εN ). (3.47)

3.6. Log-Sobolev constant for T < Tc. Let T < Tc be fixed. In this section we prove that there are
C,α > 0 depending only on the potential V and on T such that, if a sequence of graphs GN verifies
Assumption 3.1 with sequence εN , then the Poincaré constant γGNP satisfies:

γGNP (T ) 6 eCεNNe−αN , (3.48)

where γGNP (T ) is the best constant γ > 0 such that:

Var
m
GN
T

(F ) 6
1

γ
E
m
GN
T

[

|∇F |2
]

, F ∈ C∞
c (RN ,R). (3.49)

Recalling the classical bound γGNP > γGNLS , (3.48) implies case (ii) in Theorem 1.5 by Lemma 3.2 as
in particular CεN = O(1/

√
dN ) 6 α/2 with probability converging to 1 as N is large.
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Proof of (3.48). Let T < Tc. We first build a suitable test function to show that the spectral gap
(thus the log-Sobolev constant) for the (fully connected) mean-field measure mN

T is exponentially

small in N . We then use a similar test function to deduce the same property for the measure mGN
T

on the random graphs.

Let m± = m±(T ) denote the two values around which 1
N

∑N
i=1 xi concentrates under mN

T (note
that parity of V implies m− = −m+). Let δ > 0 be small enough that |m+ −m−| > 3δ. The large
deviation principle for the empirical measure under mN

T with good rate function [40] implies that
there is cδ > 0 such that:

PmNT

[ 1

N

N
∑

i=1

xi /∈ B(m±, δ)
]

6
1

cδ
e−Ncδ , N > 1, (3.50)

since the above event is at positive distance from minimisers of the rate function.
Let r < cδ/2 and define:

Fr(x1, . . . , xN ) = fr

( 1

N

∑

i

xi

)

with fr(u) =











erN if u > m+ − δ,

−erN if u 6 m− + δ,

fr linear otherwise.

(3.51)

The assumption |m+ −m−| > 3δ ensures that such an fr can be constructed. Note that fr is odd
due to m− = −m+. Then:

EmNT

[

|∇Fr|2
]

= EmNT

[

|∇Fr|2 1
{ 1

N

∑

i

xi ∈ [m− + δ,m+ − δ]
}

]

6
e2rN

cδ
e−Ncδ 6

1

cδ
. (3.52)

On the other hand, the variance reads:

VarmNT
(Fr) = EmNT

[F 2
r ] > EmNT

[F 2
r 1B(m− ,δ)∪B(m+ ,δ)] > e2rN

(

1 − 1

cδ
e−Ncδ

)

. (3.53)

The spectral gap ofmN
T is then exponentially small inN as it is smaller than EmNT

[|∇Fr|2]/VarmNT
(Fr).

Let us show that, for a suitable r > 0, the test function Fr also gives an exponentially small
upper bound on the spectral gap in the graph case. Recall the definition B := A− dNP and observe
that, by definition of mGN

T ,

mGN
T ∝ exp

[(x,Ax)

2TdN

]

α⊗N
V (dx) ∝ exp

[

(x,Bx)

2TdN

]

mN
T (dx). (3.54)

We first obtain useful bounds on exponential moments under mN
T . Recall our integrability assump-

tion (1.4). In particular it implies that 1
N logZNT = ON (1) by Varadhan’s lemma, see e.g. [40].

Assumption 1.1 on V and the Cauchy-Schwarz inequality then imply that there is λ0 > 0 small
enough such that:

lim sup
N→∞

1

N
logEmNT

[

eλ0|x|
2
]

<∞. (3.55)

The above and the Hölder inequality imply the existence of K > 0 such that:

EmNT

[

e
εN |x|2

T

]

6 exp
[KNεN
Tλ0

]

, N > 1. (3.56)

20



Recall that |(x,Bx)|/dN 6 εN |x|2 for each x ∈ R
N by Assumption 3.1. Jensen’s inequality and the

large deviation bound (3.50) for mN
T also imply the following lower bound: for some C(m±) > 0

depending only on m±,

EmNT

[

exp
[±εN |x|2

2T

]

]

> exp

[

−
EmNT

[x21]NεN

2T

]

> exp
[

− C(m±)NεN
2T

]

. (3.57)

We now use these bounds to find r > 0 such that Fr gives an exponentially small spectral gap for
mGN
T . Let r > 0 to be chosen later. By Jensen and Cauchy-Schwarz inequalities together with the

above exponential moment bounds, we find:

E
m
GN
T

[|∇Fr|2] = E
m
GN
T

[

|∇Fr|2 1
{ 1

N

∑

i

xi /∈ [m− + δ,m+ − δ]
}

]

6 e2rNEmNT

[

1

{ 1

N

∑

i

xi /∈ [m− + δ,m+ − δ]
}

e
εN |x|2

2T

]

EmNT

[

e−
εN |x|2

2T

]−1

6 e2rN exp
[KNεN
λ0T

]

exp
[C(m±)NεN

2T

]

PmNT

[

1

N

∑

i

xi /∈ [m− + δ,m+ − δ]

]1/2

. (3.58)

It remains to take r such that 8r < cδ, with cδ the constant in (3.50) to obtain, for some C =
C(λ0, T,K):

E
m
GN
T

[|∇Fr|2] 6 e−2rNeCεNN . (3.59)

Consider next the variance of Fr. Note first that E
m
GN
T

[Fr] = 0 as before, as Fr is odd and the

measure mGN
T is symmetric. Using the exponential moment bound on the denominator then gives:

Var
m
GN
T

(Fr) = E
m
GN
T

[F 2
r ] > e2rNE

m
GN
T

[

1

{ 1

N

∑

i

xi ∈ B(m+, δ)
}

]

> exp

[

2rN − C(m±)NεN
T

− KNεN
Tλ0

]

PmNT

[ 1

N

∑

i

xi ∈ B(m+, δ)
]

. (3.60)

Recall that the probability converges to 1 by (3.50). This implies that the spectral gap of mGN
T is

bounded from above by eCεNNe−2rN for some C > 0 independent of the graph.

4 Non-quadratic interaction potential - Proof of Theorem 1.8

In this section, we prove Theorem 1.8. We first generalise the notion of the renormalised potential
defined in Section 2 with respect to the mode decomposition and obtain an analogue of Theorem 1.8
for temperatures such that the renormalised potential is strongly convex (see Theorem 4.2). We then
show in Section 4.3 that this is equivalent to the condition of Theorem 1.8 involving the functional
FT .

4.1. Definition of the renormalised potential. Throughout the section we work with an interaction

potential W = W+ −W− on R
d satisfying Assumption 1.7. Recall in particular definition (1.21):

W−(x, y) := α(x, y) +
∑

k>0

w−
k nk(x)nk(y) :=

∑

k>−d

w−
k nk(x)nk(y), (4.1)
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where we set w−
−i = α and n−i(x) = xi for i ∈ {1, . . . , d}. Furthermore, there are two constants

M,L > 0, such that the potentials satisfy the bounds :

sup
x,y

|W+(x, y)| 6M2, sup
x,y

|HessW+(x, y)|op 6M,

sup
x,y

∣

∣W−(x, y) − α(x, y)
∣

∣ =
∥

∥

∥

∑

k∈N

w−
k nk(x)nk(y)

∥

∥

∥

∞
6M2, (4.2)

∑

k>−d

w−
k sup
x∈Rd

|∇nk(x)|2 6 L2.

Let H0 = H0(W
−) denote the Hilbert space:

H0 = H0(W
−) :=

{

(uk) ∈ R
N :

∑

k∈N

w−
k |uk|2 <∞

}

, (4.3)

with scalar product

(ζ, ζ ′)H0 :=
∑

k>0

w−
k ζkζ

′
k. (4.4)

It will be also convenient to consider the extended space

H :=
{

ψ = (ϕ, ζ) : ϕ ∈ R
d, ζ ∈ H0

}

, (4.5)

with scalar product

(ψ,ψ′)H := (ϕ,ϕ′) + (ζ, ζ ′)H0 =
∑

k>−d

w−
k ψkψ

′
k, (4.6)

where (·, ·) denotes the standard inner product in R
d. We always use the letter ψ to denote elements

of H and ψ = (ϕ, ζ), ϕ ∈ R
d, ζ ∈ H0. The associated norms are written ‖ · ‖H, ‖ · ‖H0 .

Using these notations, we introduce the multi-mode counterpart VT : H → R of the renormalised
potential of Section 2.

Definition 4.1. For any ψ ∈ H, the renormalised potential is

VT (ψ) = inf
m

{

F̂T (m) +
1

2T
‖ψ −m‖2H

}

, (4.7)

where the projection F̂T of the mean-field functional was introduced in (1.24).

Using Definition 4.1, we can now state a condition for the log-Sobolev inequality to hold uniformly
in N .

Theorem 4.2. Let V , W satisfying Assumptions 1.1 and 1.7. Let T > 0 be such that VT is λT -strongly
convex (in the sense of (1.25)) for some λT > 0: for any ψ1, ψ2 and t ∈ [0, 1] then

tVT (ψ1) + (1 − t)VT (ψ2) > VT
(

αψ1 + (1 − α)ψ2
)

+
λT
2
t(1 − t)‖ψ1 − ψ2‖2H. (4.8)

Then the measure mN
T of (1.2) satisfies a log-Sobolev inequality with constant γNLS(T ) bounded below

uniformly in N .

The following lemma, proven in Section 4.3, shows that Theorem 4.2 implies Theorem 1.8 as
strong convexity of the renormalised potential and of F̂T are equivalent.
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Lemma 4.3. The projected free energy F̂T is strongly convex if and only if the renormalised potential
VT is strongly convex.

Remark 4.4. Our assumptions allow for an unbounded number of modes in W−. It is however enough
to prove Theorem 4.2 with a finite number of modes K. Indeed, define the truncated potential
W−,K(x, y) :=

∑K
k>−dw

−
k nk(x)nk(y) and let mN

T,K be the approximated mean-field measure. The
truncated mean-field functional reads

F (K)
T (ρ) = FT (ρ) +

∑

k>K

w−
k

2T

(

∫

Rd

nk(x)ρ(dx)
)2
. (4.9)

As in (1.24), one can define F̂ (K)
T as the projection of F (K)

T on the first K modes. Strong convexity

(1.25) of F̂T implies strong convexity of F̂ (K)
T with the same constant for any K. Since (mN

T,K)K
converges weakly to mN

T , proving the log-Sobolev inequality for the measure mN
T,K with constant

uniform in K and N implies Theorem 4.2.

4.2. Proof of Theorem 4.2. The proof of Theorem 4.2 is split over the following subsections. We
assume throughout that the number of modes in the decomposition (4.1) is finite as explained in
Remark 4.4.

4.2.1. Decomposition of the mean-field measure. We again rely on the formula for the moment gener-
ating function of a Gaussian random variable to decompose the potential W− in terms of the different
modes indexed by the Hilbert space H defined in (4.3). Let γHσ2 denote the centred Gaussian measure
on H with covariance σ2 id, which formally reads:

γHσ2(dψ) ∝ exp

(

− 1

2σ2
‖ψ‖2H

)

∏

k>−d

dψk. (4.10)

The formula for the moment generating function of a Gausian random variable then gives:

exp
( 1

2TN

N
∑

i,j=1

W−(xi, xj)
)

= exp
( 1

2TN

∥

∥

∥

N
∑

i=1

n·(xi)
∥

∥

∥

2

H

)

= EγH
T/N

[

exp
( 1

T

(

ψ,

N
∑

i=1

n·(xi)
)

H

)

]

, (4.11)

with ψ = (ψk)k ∈ H the variable of the measure γHT/N . The last equation implies the following

decomposition of mN
T :

EmNT
[F ] = EνrT

[

E
µN,ψT

[F ]
]

, (4.12)

where the fluctuation measure µN,ψT ∈ M1((R
d)N ) is this time not product (particles still interact

through W+) and depends on a generalised external field ψ ∈ H:

µN,ψT (dx) = eNU
N
T (ψ) exp

[

1

T

(

ψ,

N
∑

i=1

n·(xi)
)

H

− 1

2TN

∥

∥

∥

N
∑

i=1

n·(xi)
∥

∥

∥

2

H

]

mN
T (dx). (4.13)

The non-quadratic part UNT (ψ) of the renormalised potential, now depending on N , is given by:

UNT (ψ) = − 1

N
logEmNT

[

exp
( 1

T

(

ψ,

N
∑

i=1

n·(xi)
)

H

− 1

2TN

∥

∥

∥

N
∑

i=1

n·(xi)
∥

∥

∥

2

H

)

]

= − 1

N
logEα⊗N

V

[

exp
( 1

T

(

ψ,

N
∑

i=1

n·(xi)
)

H

− 1

2TN

∑

i,j

W+(xi, xj)
)

]

+
1

N
logZNT . (4.14)
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Correspondingly the renormalised measure reads:

νrT (dψ) = exp
(

−NUNT (ψ)
)

γHT/N (dψ). (4.15)

Compared with the quadratic case (2.5), the renormalised potential ‖ψ‖2
H
/(2T ) +UNT (ψ) depends on

N and the quadratic terms in ψ are included in the measure γHT/N . Note also that if W+ = 0, then

µN,ψT is a product measure as in the quadratic case and UNT again becomes independent of N . In
the general W+ 6= 0 case, Proposition 4.7 below shows that UNT is well approximated by its N → ∞
limit UT (ψ) given by

UT (ψ) = inf
ρ∈M1(Rd)

{

H(ρ|αV ) +
1

2T

∫

Rd×Rd

W+(x, y)ρ(dx)ρ(dy)

− 1

T

(

ψ·,

∫

n·(x) ρ(dx)
)

H

}

+ inf FT , ψ ∈ H, (4.16)

where FT is the free energy (1.5) and αV ∝ e−V (x) dx. Using the projection over the modes, one gets
that

UT (ψ) = inf
m

{

F̂T (m) +
1

2T
‖m‖2H − 1

T
(ψ,m)H

}

+ inf FT . (4.17)

Thus the limiting renormalised potential VT introduced in (4.7) can be rewritten as

VT (ψ) =
1

2T
‖ψ‖2H + UT (ψ). (4.18)

4.2.2. The fluctuation measure. We now begin the proof of Theorem 4.2. Let W satisfy Assump-
tion 1.7. Recall the definitions (4.13)–(4.15) of the renormalised measure νrT and the fluctuation mea-

sure µN,ψT , built so that the mean-field measure mN
T of (1.2) decomposes as mN

T = νrTµ
N,ψ
T . As in the

quadratic case, this implies the following splitting for the entropy of a test function F : (Rd)N → R:

EntmNT
(F 2) = EνrT

[

Ent
µN,ψT

(F 2)
]

+ EntνrT
(

E
µN,ψT

[F 2]
)

. (4.19)

In this section, we establish a log-Sobolev inequality for the fluctuation measure µN,ψT with explicit
dependence on the field ψ. The renormalised measure will be studied in Section 4.2.3.

Proposition 4.5. Let ψ = (ϕ, ζ) ∈ H = R
d × H0 (recall (4.3)). There are c,N0 > 0 independent of

N,ψ, T such that the fluctuation measure µN,ψT satisfies a log-Sobolev inequality with the following
constant.

(i) (Theorem 1 in [47]). For any N > N0e
c‖ζ‖H0

/T ,

(

γN,ψT

)−1
6 c exp

(

c‖ζ‖H0/T
)

. (4.20)

(ii) For any N > 1 (recall that M2 > ‖W+‖∞, ‖W− − α(x, y)‖∞ by (4.2)),

(

γN,ψT

)−1
6 c exp

(2M

T
(MN + 2‖ζ‖H0)

)

. (4.21)

Note that the constant in Proposition 4.5 depends on ψ = (ϕ, ζ) ∈ H only through ζ; this will be
useful in Section 4.2.4.
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Proof. The claim of item (i) is exactly [47, Theorem 1] with explicit dependence on ζ of the various
constants. It states the following. For a flat convex interaction term W+, assume that HessW+ has
operator norm uniformly bounded by M > 0; that the measure:

M1(Rd) ∋ mψ
ρ (dx) ∝ exp

[

− V (x) +
(ψ, n·(x))H

T
− 1

T

∫

W+(x, y)ρ(dy)
]

dx (4.22)

satisfies a log-Sobolev inequality with constant γ uniform in ρ; and that the one-particle conditional
law:

µN,ψT (dxi|(xj)j 6=i) ∝ exp
[

− V (xi) +
(ψ, n·(xi))H

T
− 1

TN

N
∑

j=1

W+(xi, xj)
]

dxi, (4.23)

has Poincaré constant bounded below by the same γ > 0 uniformly in (xj)j 6=i. Then by [47,
Theorem 1], there is a constant r > 0 depending only on the dimension d such that, for any

N > 100 max{M/γ, 1}3, µN,ψT satisfies a log-Sobolev inequality with constant rmin{γ, γ3}.

The upper bound on HessW+ and flat convexity are implied by Assumption 1.7. Write ψ =
(ϕ, ζ) ∈ R

d×H0. Assumption 1.1 that V is the sum of a uniformly convex and a Lipschitz or bounded
part together with the boundedness of

∫

W+(·, y)ρ(dy) for any ρ ∈ M1(Rd) (see Assumption 1.7)

implies that, for ζ = 0, the measures m
(ϕ,0)
ρ , µ

N,(ϕ,0)
T,i (·|(xj)j 6=i) satisfy log-Sobolev inequalities with

the same constant γ0 > 0 independent of ϕ, ρ, (xj)j 6=i (e.g. as a consequence of [18, Theorem 1.3]),
where we recall that ϕ is the field associated with the quadratic part of W−.

Consider now the measures m
(ϕ,ζ)
ρ , µ

N,(ϕ,ζ)
T,i (·|(xj)j 6=i) for ζ 6= 0. Assumption 1.7 gives:

∀x ∈ R
d,

∣

∣(ζ, n·(x))H0

∣

∣ 6 ‖ζ‖H0 sup
y∈Rd

‖n·(y)‖H0 6 ‖ζ‖H0M. (4.24)

Thus tilting by (ζ, n·(x))H0/T amounts to a bounded perturbation of the measures m
(ϕ,0)
ρ and

µ
N,(ϕ,0)
T,i (·|(xj)j 6=i), which deteriorates the log-Sobolev constant by e−4M‖ζ‖H0

/T at worst by the Holley–
Stroock argument. The log-Sobolev constant associated with the measures (4.22) and (4.23) is there-
fore larger than e−4M‖ζ‖H0

/T (uniformly in ϕ), and an application of [47, Theorem 1(i)] yields (i).

The claim of item (ii) is a simple perturbation argument. As W+ is bounded by M2, the Holley–
Stroock argument applies and shows:

(

γN,ψT

)−1
6 exp

(2NM2

T

)

(

γ̃N,ψT

)−1
, (4.25)

with γ̃N,ψT the log-Sobolev constant of the product measure:

µ̃N,ψT (dx) ∝ exp
( 1

T

(

ψ,
N
∑

i=1

n·(xi)
)

H

)

α⊗N
V (dx). (4.26)

Assumption 1.1 implies that the probability measure proportional to eϕ·xαV (dx) satisfies a log-
Sobolev inequality uniformly in ϕ ∈ R

d. On the other hand the contribution (ζ, n·(x))H0 of the other

fields is bounded as in (4.24). The Holley–Stroock argument thus gives (µ̃N,ψT )−1 6 ce4M‖ζ‖H0
/T ,

which is the claim.
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4.2.3. The renormalised measure. In this section, we establish a log-Sobolev inequality for the renor-
malised measure for T > 0 such that the renormalised potential VT is strongly convex (recall Defini-
tion (4.18)–(4.16) of VT ). Our aim is to show that the renormalised potential is close enough to its
limit VT (ϕ) for the uniform convexity of the latter to imply the log-Sobolev inequality at fixed N .
We prove the following result.

Proposition 4.6. If VT is λT -strongly convex (4.8) for some λT > 0, then there is a constant C > 0
such that uniformly in N

EntνrT
(

E
µN,ψT

[F 2]
)

6
2CL2

λT
EνrT

[ 1
(

γN,ψT

)2 EµN,ψT

[

|∇F |2
]

]

. (4.27)

Recall from (4.2) that L2 = ‖ supx |∇n·(x)|‖2
H

.

Proposition 4.6 makes use of the following estimate that shows that the renormalised potential
UNT is very close to its limit UT defined in (4.16).

Proposition 4.7. There is C > 0 such that, for all ψ ∈ H and all N > 1:

∣

∣UNT (ψ) − UT (ψ)
∣

∣ 6
C

N
. (4.28)

We will also need the following lemma that states that the Bakry–Émery criterion can be used
to obtain a log-Sobolev inequality on H.

Lemma 4.8. Let λT > 0 and assume that VT = UT +‖ ·‖2
H
/2T is λT -convex (recall (4.8)). Then there

is C > 0 such that the renormalised measure satisfies the followint log-Sobolev inequality:

EntνrT
(

F 2
)

6
2C

NλT
EνrT

[

∑

k>−d

(w−
k )−1

(

∂ψkF
)2]

. (4.29)

Assuming Proposition 4.7 and Lemma 4.8, let us prove Proposition 4.6.

Proof of Proposition 4.6. Lemma 4.8 gives

EntνrT
(

E
µN,ψT

[F 2]
)

6
2C

NλT
EνrT

[

∑

k>−d

(w−
k )−1

(

∂ψk

√

E
µN,ψT

[F 2]
)2]

. (4.30)

Expanding the gradient yields:

∑

k>−d

(w−
k )−1

(

∂ψk

√

E
µN,ψT

[F 2]
)2

=
1

4E
µN,ψT

[F 2]

∑

k>−d

(w−
k )−1|∂ψkEµN,ψT

[F 2]|2

=
1

4T 2E
µN,ψT

[F 2]

∑

k>−d

w−
k

∣

∣

∣
Cov

µN,ψT

(

F 2,

N
∑

i=1

nk(xi)
)
∣

∣

∣

2

6
4

(

γN,ψT

)2

1

4T 2E
µN,ψT

[F 2]

∑

k>−d

w−
k

(

N sup
x

|∇nk(x)|2
)

E
µN,ψT

[F 2]E
µN,ψT

[

|∇F |2
]

6
NL2

T 2
(

γN,ψT

)2EµN,ψT

[

|∇F |2
]

, (4.31)

where we used Lemma A.1 (denoting by γN,ψT the log-Sobolev constant of the measure µN,ψT ) and
the assumed bound L2 > ‖ supx |∇n·(x)|‖2

H
in the last line (recall (4.2)). Combined with (4.30), this

completes the proof of Proposition 4.6.
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Proof of Proposition 4.7. Let ψ ∈ H and denote by Fψ
T (·) the functional appearing in the variational

principle (4.16) defining UT , which we rewrite as:

Fψ
T (ρ) = H(ρ|αψV,T ) +

1

2T

∫

Rd×Rd

W+dρ⊗2 + C(ψ,W, V, T ), ρ ∈ M1(Rd), (4.32)

where C(ψ,W, V, T ) > 0 is a constant and:

M1(R
d) ∋ αψV,T (dx) =

1

ZψV,T
exp

(

− V (x) +
1

T
(ψ, n·(x))H

)

dx. (4.33)

As ρ 7→
∫

W+dρ⊗2 is bounded below, convex and ρ 7→ H(ρ|αψV,T ) > 0 is (strictly) convex, the

functional Fψ
T admits a (unique) minimiser, call it µ∞,ψ

T . This minimiser is absolutely continuous

with respect to αψV,T . The uniqueness will not be used below.

The critical point equation for Fψ
T gives the following identities for µ∞,ψ

T . Letting f :=
dµ∞,ψ

T

dαψV,T
, for

some constant C = C(ψ) > 0,

log f(x) = − 1

T

∫

W+(x, y)µ∞,ψ
T (dy) +C(ψ) for µ∞,ψ

T -a.e. x. (4.34)

For once, we compute the constant C(ψ) as we are looking to compensate it precisely. Notice the
elementary identity:

H(ρ|αV ) = H(ρ|αψV,T ) +
1

T

∫

(ψ, n·(x))H ρ(dx) − logZψV,T , ρ ∈ M1(Rd). (4.35)

Following [35, Proposition 4.2 item (3)], we integrate both sides of (4.34) against µ∞,ψ
T , recalling the

definition (4.16) of UT to obtain:

H(µ∞,ψ
T |αψV,T ) = − 1

T

∫

W+(x, y)µ∞,ψ
T (dx)µ∞,ψ

T (dy) + C(ψ)

= UT (ψ) − 1

2T

∫

W+(x, y)µ∞,ψ
T (dx)µ∞,ψ

T (dy) + logZψV,T − inf FT , (4.36)

so that:

C(ψ) = UT (ψ) +
1

2T

∫

W+(x, y)µ∞,ψ
T (dx)µ∞,ψ

T (dy) + logZψV,T − inf FT . (4.37)

Recall now that the renormalised potential UNT (ψ) (4.14) reads:

e−NU
N
T (ψ) =

(ZψV,T )N

ZNT

∫

exp
(

− N

2T

∫

W+(x, y)πN (dx)πN (dy)
)

d(αψV,T )⊗N , (4.38)

where πN = 1
N

∑

i δxi denotes the empirical measure. Turning αψV,T into µ∞,ψ
T , we get:

UT (ψ) − UNT (ψ) =
1

N
log

∫

exp
(

− N

2T

∫

W+ (πN − µ∞,ψ
T )⊗2

)

d(µ∞,ψ
T )⊗N . (4.39)

It therefore suffices to prove that the integral is bounded by O(1) uniformly in ψ. The flat convexity
of W+ implies that for any finite signed measure ρ such that

∫

ρ = 0 one has
∫

W+ρ⊗2 > 0, thus
the exponential is at most 1:

UT (ψ) − UNT (ψ) 6 0. (4.40)
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On the other hand, Jensen’s inequality and an expansion of (πN − µ∞,ψ
T )⊗2 give:

UT (ψ) − UNT (ψ) > − 1

2T
E
(µ∞,ψ
T )⊗N

[

∫

W+ (πN − µ∞,ψ
T )⊗2

]

=
1

2TN

∫

W+ (µ∞,ψ
T )⊗2 − 1

2TN

∫

W+(x, x)µ∞,ψ
T (dx). (4.41)

As W+ is bounded, the right-hand side above is bounded uniformly in ψ by C/N for some C > 0.
This concludes the proof.

Proof of Lemma 4.8. Recall from Remark 4.4 that we work under the assumption that H is finite-
dimensional. By assumption VT = UT + ‖ · ‖2

H
/2T is λT -convex. It is proven in [30, Theorem 2]

(see [5] for a claim directly applicable to the present setting) that there is a sequence V(n)
T : H → R

of λT -convex C2 functions such that ‖VT − V(n)
T ‖∞ 6 2−n. The Bakry–Émery criterion then implies

that the probability measure with density proportional to eV
(n)
T satisfies a log-Sobolev inequality of

the form (4.29). By weak convergence as n → ∞ the same is therefore true for e−NVT (ψ) dψ. Since
‖UNT −UT ‖∞ 6 C/N by Proposition 4.7, another application of the Holley–Stroock result concludes
the proof up to changing the log-Sobolev constant by a multiplicative factor.

4.2.4. Conclusion of the proof of Theorem 4.2. At this point we have established in (4.19) and (4.27)
that if VT is λT -strongly convex for some λT > 0:

EntmNT
(F 2) 6

2CL2

λT
EνrT

[ 1
(

γN,ψT

)2 EµN,ψT

[

|∇F |2
]

]

+ EνrT

[

Ent
µN,ψT

(F 2)
]

. (4.42)

Using again the log-Sobolev inequality for the fluctuation measure (Proposition 4.5), this implies:

EntmNT
(F 2) 6 EνrT

[

( 2CL2

λT (γN,ψT )2
+

2

γN,ψT

)

E
µN,ψT

[

|∇F |2
]

]

. (4.43)

It remains to express the right-hand side in terms of the Dirichlet form for the measure mN
T . The

starting point is the following elementary Gaussian identity.

Lemma 4.9. For any G : (Rd)N → R+ and Φ : H → R+,

EνrT

[

Φ(ψ)E
µN,ψT

[G(x)]
]

= EmNT

[

G(x)E
γH,x
T/N

[Φ(ψ)]
]

, (4.44)

where γH,xT/N is the Gaussian measure on H with variance T/N (as in (4.10)) and mean
(

1
N

∑

i nk(xi)
)

k>−d
.

Proof. We go back to the definition (4.13)–(4.15) of the decomposition mN
T = νrTµ

N,ψ
T in terms of

moment generating function and exchange the order of integration, which is legitimate as both G,Φ
are non-negative:

EνrT

[

Φ(ψ)E
µN,ψT

[G(x)]
]

= EγH
T/N

[

Φ(ψ)EmNT

[

G exp
[ 1

T

(

ψ,
∑

i

n·(xi)
)

H

− N

2T

∥

∥

∥

1

N

N
∑

i=1

n·(xi)
∥

∥

∥

2

H

]

]]

= EmNT

[

G(x)E
γH,x
T/N

[Φ(ψ)]
]

. (4.45)
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Proof of Theorem 4.2. Let A > 0 to be chosen later. Write for short:

κN,ψT :=
2CL2

λT (γN,ψT )2
+

2

γN,ψT

. (4.46)

Split the expectation on ψ = (ϕ, ζ) ∈ H = R
d ×H0 in the right-hand side of (4.43) as follows:

EνrT

[

κN,ψT E
µN,ψT

[

|∇F |2
]

]

= EνrT

[

1‖ζ‖H0
6A κ

N,ψ
T E

µN,ψT

[

|∇F |2
]

]

+ EνrT

[

1‖ζ‖H0
>A κ

N,ψ
T E

µN,ψT

[

|∇F |2
]

]

. (4.47)

Consider first the case where ‖ζ‖H0 6 A. By Proposition 4.5 item (i) one has then, for some c,N0 > 0
independent of N,A,ψ and all N > N0e

cA/T :

EνrT

[

1‖ζ‖H0
6A κ

N,ψ
T E

µN,ψT

[

|∇F |2
]

]

6 cecA/T
( 1

λT
+ 1

)

EνrT

[

E
µN,ψT

[

|∇F |2
]

]

= cecA/T
( 1

λT
+ 1

)

EmNT

[

|∇F |2
]

. (4.48)

Proposition 4.5 item (ii) implies on the other hand that, for N 6 N0e
cA/T and some c′ > 0:

EνrT

[

1‖ζ‖H0
6A κ

N,ψ
T E

µN,ψT

[

|∇F |2
]

]

6 c′ec
′ecA/T

( 1

λT
+ 1

)

EmNT

[

|∇F |2
]

. (4.49)

The first term in the right-hand side of (4.47) is thus bounded by C(T,A)(1 + 1/λT ) uniformly in N
for a locally bounded T ′ 7→ C(T ′, A) > 0.

Consider now the second term in the right-hand side of (4.47). Using Lemma 4.9 with G =

|∇F |2 > 0 and Φ = 1‖ζ‖H0
>A κ

N,ψ
T yields:

EνrT

[

1‖ζ‖H0
>A κ

N,ψ
T E

µN,ψT

[

|∇F |2
]

]

= EmNT

[

|∇F |2 E
γH,x
T/N

[

1‖ζ‖H0
>A κ

N,ψ
T

]

]

6 ce2M
2N/T

EmNT

[

|∇F |2 E
γH,x
T/N

[

e4M‖ζ‖H0
/T
1‖ζ‖H0

>A

]

]

, (4.50)

where we use item (ii) of Proposition 4.5 to get the last line. Concentration under the Gaussian
measure γH,x gives a bound on the probability of the event {‖ζ‖H0 > A}. Since supx ‖n·(x)‖H0 6M
by Assumption 1.7, for each A > 2M it holds that ‖ζ − 1

N

∑

i n·(xi)‖H0 > A/2 if ‖ζ‖H0 > A. Thus,
for some c′ > 0 and each A > 2M :

E
γH,x
T/N

[

‖ζ‖H0 > A
]

6 c′ exp
[

− NA2

8T

]

. (4.51)

We can then write, for some c′′ > 0:

E
γH,x
T/N

[

e4M‖ζ‖H0
/T

1‖ζ‖H0
>A

]

6 c′
∫ ∞

A
exp

[4Ma

T
− Na2

8T

]

da

6 c′ exp
[32M2

NT
− c′′N

T

(

A− 16M

N

)2]

. (4.52)

It remains to take A > 2M so that also 32M2/(NT ) − c′′NA2/4T + 2NM2T 6 0 for each N > 1,
which is possible for A larger than a constant depending only on M,T , to obtain:

EνrT

[

1‖ζ‖H0
>A κ

N,ψ
T E

µN,ψT

[

|∇F |2
]

]

6 c′EmNT

[

|∇F |2
]

. (4.53)

Together with (4.49) this concludes the proof.

29



4.3. Proof of Lemma 4.3.

Proof of Lemma 4.3. Recall Definition 4.1 of VT . Assume F̂T is δ-strongly convex (δ > 0). Let
ψ1, ψ2 ∈ H and α ∈ [0, 1]. Write ψα = αψ1 + (1−α)ψ2, ∆ψ = ψ1 −ψ2 and similarly define mα, ∆m

for m1,m2 ∈ H. Using the strong convexity of F̂T in the inequality and, in the last line, the fact
that 1-strong convexity holds for ‖ · ‖2

H
/2 with an equal sign,

αVT (ψ1) + (1 − α)VT (ψ2)

= inf
m1,m2

{

αF̂T (m1) + (1 − α)F̂T (m2) +
α

2T
‖ψ1 −m1‖2H +

1 − α

2T
‖ψ2 −m2‖2H

}

> inf
m1,m2

{

FT (mα) +
δα(1 − α)

2
‖∆m‖2H +

α

2T
‖ψ1 −m1‖2H +

1 − α

2T
‖ψ2 −m2‖2H

}

= inf
m1,m2

{

FT (mα) +
δα(1 − α)

2
‖∆m‖2H +

1

2T
‖ψα −mα‖2H +

α(1 − α)

2T
‖∆ψ − ∆m‖2H

}

. (4.54)

Changing variables from m1,m2 to m = mα, m′ = ∆m yields:

αVT (ψ1) + (1 − α)VT (ψ2) > VT (ψα) + inf
m′

{δα(1 − α)

2
‖m′‖2H +

α(1 − α)

2T
‖∆ψ −m

′‖2H
}

= VT (ψα) +
α(1 − α)

2

δ

δT + 1
‖ψ1 − ψ2‖2H. (4.55)

Thus VT is strongly convex.

Conversely, we claim that F̂T can be defined in terms of the renormalised potential as follows:

F̂T (m) = sup
ψ∈H

{

VT (ψ) − 1

2T
‖ψ −m‖2H

}

− inf FT . (4.56)

If this is true then an identical proof gives that strong convexity of VT implies strong convexity of
F̂T . Let us thus show (4.56). Recall that P(m) = {ρ :

∫

Rd
n·(x) ρ(dx) = m} for m ∈ H. Define the

(strictly) convex part GT of the free energy FT :

GT (ρ) = FT (ρ) +
1

2T

∥

∥

∥

∫

Rd

n·(x) ρ(dx)
∥

∥

∥

2

H

. (4.57)

Define also:

ĜT (m) = inf
ρ∈P(m)

GT (ρ) = F̂T (m) +
‖m‖2

H

2T
, (4.58)

with ĜT (m) = +∞ if P(m) = ∅. Then:

VT (ψ) =
‖ψ‖2

H

2T
+ inf

m∈H

{

ĜT (m) − 1

T
(ψ,m)H

}

+ inf FT . (4.59)

In particular −VT (T ·) +
T‖·‖2

H

2 is the Legendre transform of ĜT . As GT is convex and lower semi-

continuous, so is ĜT . In addition ĜT is finite as soon as P(m) is not empty. The Legendre transform
can therefore be inverted [17, Theorem 1.11]:

ĜT (m) = sup
ψ∈H

{

(ψ,m)H −
(

− VT (Tψ) +
T‖ψ‖2

H

2
+ inf FT

)}

. (4.60)

Since ĜT (m) = F̂T (m) + ‖m‖2
H
/(2T ), this yields (4.56):

F̂T (m) = sup
ψ∈H

{ 1

T
(ψ,m)H + VT (ψ) − ‖ψ‖2

H

2T
− ‖m‖2

H

2T

}

− inf FT . (4.61)
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A Proof of L∞ covariance bound

The following statement is proven e.g. in [44, Lemma 5] which goes back to [49, 16]. We prove a
slightly stronger form below in (A.2).

Lemma A.1 (Lemma 5 in [44]). Let N > 1 and µ be a probability measure on R
N satisfying a log-

Sobolev inequality with constant γLS > 0. Take F : RN → R to be smooth and compactly supported
and a Lipschitz function H : RN → R. Then:

Covµ(F 2,H)2 6
4

γ2LS
sup
x∈RN

|∇H(x)|2 Eµ[F 2] Eµ
[

|∇F |2
]

, (A.1)

with the notation |∇H(x)| =
(
∑N

i=1(∂xiH(x))2
)1/2

. The same bound holds for a vector valued
function H(x) ∈ R

d.
Let Hi : R → R be Lipschitz (1 6 i 6 N) and let F : RN → R be smooth and compactly supported.

Then:
N
∑

i=1

Covµ(F 2,Hi(xi))
2
6

4

γ2LS
max
16i6N

‖H ′
i‖2∞ Eµ[F 2] Eµ

[

|∇F |2
]

. (A.2)

Proof. The statement (A.1) in [44, Lemma 5] only concerns real-valued H, but the claim with
vector-valued H with independent components is straightforward from the proof. We follow the
same method to prove (A.2).

Without loss of generality assume Eµ[F ] = 1. Let (Pt)t>0 denote the semi-group associated with
the Langevin dynamics and let L denote the corresponding generator. Then:

Covµ(F,Hi) =

∫

RN

Hi(xi)
(

P0F (x) − P∞F (x)
)

dµ(x) = −
∫ ∞

0

∫

RN

Hi(xi)LPtF (x) dµ(x) dt

=

∫ ∞

0

∫

RN

H ′
i(xi)∂xiPtF (x) dµ(x) dt

6 ‖H ′
i‖∞

∫ ∞

0

(

∫

RN

(

∂xiPtF
)2

PtF
dµ

)1/2
dt, (A.3)

where we used the integration by parts formula Eµ[FLG] = −Eµ[(∇F,∇G)] in the second equality,
and Cauchy-Schwarz inequality with Eµ[PtF ] = 1 in the inequality. Thus:

N
∑

i=1

Covµ(F,Hi)
2
6 max

16i6N
‖H ′

i‖2∞
N
∑

i=1

[
∫ ∞

0

(

∫

(

∂xiPtF
)2

PtF
dµ

)1/2
dt

]2

. (A.4)

To have the square go inside the time integral, let ε > 0 to be chosen later and write:

[
∫ ∞

0

(

∫

(

∂xiPtF
)2

PtF
dµ

)1/2
dt

]2

=
1

ε2

[
∫ ∞

0
εe−εt

(

e2εt
∫

(

∂xiPtF
)2

PtF
dµ

)1/2
dt

]2

6
1

ε2

∫ ∞

0
εe−εte2εt

∫

(

∂xiPtF
)2

PtF
dµ dt. (A.5)

Summing over all 1 6 i 6 N yields:

N
∑

i=1

Covµ(F,Hi)
2
6 max

16i6N
‖H ′

i‖2∞
1

ε2

∫ ∞

0
dt εeεt Eµ

[ |∇PtF |2
PtF

]

. (A.6)
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Let Φ(u) = u log u (u > 0). Then:

d

dt
Eµ

[

Φ(PtF )
]

= −Eµ

[ |∇PtF |2
PtF

]

, (A.7)

and the log-Sobolev inequality for the measure µ implies (F has average 1 under µ):

Eµ

[

Φ(PtF )
]

6 e−2γLS t Eµ

[

Φ(F )
]

. (A.8)

For any ε < 2γLS, an integration by parts in time in (A.6) therefore yields:

N
∑

i=1

Covµ(F,Hi)
2
6

1

ε2

[

− εeεt Eµ
[

Φ(PtF )
]

]∞

0
+

1

ε2

∫ ∞

0
ε2eεt Eµ

[

Φ(PtF )
]

dt

=
1

ε
Eµ

[

Φ(F )
]

+

∫ ∞

0
eεt Eµ

[

Φ(PtF )
]

dt 6
(1

ε
+

1

2γLS − ε

)

Eµ

[

Φ(F )
]

. (A.9)

The right-hand side is minimal when ε = γLS, in which case it equals 2(γLS)−1
Eµ

[

Φ(F )
]

. Applying
the log-Sobolev inequality yields the desired estimate:

N
∑

i=1

Covµ(F,Hi)
2
6

4

γ2LS
max
16i6N

‖H ′
i‖2∞Eµ

[

|∇
√
F |2

]

. (A.10)

B XY model

We consider the mean-field XY model defined on the periodic compact space (x1, . . . , xN ) ∈ [0, 2π)N

with V = 0,W = −W− and

W−(x, y) = cos(x− y) = cos(x) cos(y) + sin(x) sin(y). (B.1)

In this case, the Hilbert space H0 (4.3) reduces to variables ψ = (ζ1, ζ2) associated with the 2 modes
n1(x) = cos(x), n2(x) = sin(x). Note also that αV is simply the uniform measure on [0, 2π] as V = 0.

We will check that strong convexity of the renormalised potential, and thus a uniform log-Sobolev
inequality, hold up to the critical temperature Tc = 1/2 (see [34] for the analysis of the equilibrium
phase transition). This statement was already derived in [7] (under the name O(2)-model) and we
recall the proof below for the sake of completeness.

As W+ = 0, UNT defined in (4.14) is independent of N and given by

UNT (ζ1, ζ2) = − logEαV

[

exp
(ζ1
T

cos(x) +
ζ2
T

sin(x)
)

]

+ constant. (B.2)

Thus the renormalised potential defined in (4.18) reads

VT (ζ1, ζ2) =
(ζ21 + ζ22 )

2T
− log

∫ 2π

0
dx exp

(ζ1
T

cos(x) +
ζ2
T

sin(x)
)

+ constant. (B.3)

For any vector v = (v1, v2), the quadratic form associated with the Hessian is given by

(

v,HessVT v
)

=
|v|2
T

− 1

T 2
Var

µ
(ζ1,ζ2)
T

[

(v,

(

cos(x)
sin(x)

)

)
]

>
( 1

T
− 1

2T 2

)

|v|2, (B.4)
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where µ
(ζ1,ζ2)
T (x) ∝ exp

(

ζ1
T cos(x) + ζ2

T sin(x)
)

and the last inequality comes from the uniform upper

bound by 1/2 on the variance in (B.4) established in [26, Theorem D.2].

As a consequence for any T > Tc = 1/2, the renormalised potential VT is strongly convex and
the log-Sobolev inequality holds for the XY model by Theorem 4.2. By Lemma 4.3, this implies the
uniform convexity of F̂T (1.24) up to Tc.
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[41] P. Monmarché. Uniform log-sobolev inequalities for mean field particles beyond flat-convexity.
arXiv 2409.17901, 2024.
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