overview paper[61] (Alphabetic order) Zhi-Qin John Xu*, Yaoyu Zhang, Zhangchen Zhou, An overview of condensation phenomenon in deep learning. In pdf and in arXiv:2504.09484. [56] Zhi-Qin John Xu#, Lulu Zhang#, Wei Cai*, On Understanding And Overcoming Spectral Biases of Deep Neural Network Learning Methods for Solving Pdes. Journal of Computational Physics, 2025, pdf and in arXiv 2024. [27] Zhi-Qin John Xu*, Yaoyu Zhang, Tao Luo, Overview frequency principle/spectral bias in deep learning. Communications on Applied Mathematics and Computation 2024 (dedicated to the memory of Professor Zhong-Ci Shi), arxiv 2201.07395 (2022) pdf, and in arxiv. 科普Transformer是推断还是记忆?初始化大小很重要 文献[49] 频率原则理解深度学习的媒体报道,见 《麻省理工科技评论》中文官网,DeepTech深科技,络绎科学 神经网络的简单偏好 (2017.11-2022.11 五年的理论研究小结) 从频率角度理解为什么深度可以加速神经网络的训练 文献[11] 线性Frequency Principle动力学:定量理解深度学习的一种有效模型 文献[13,17] F-Principle:初探深度学习在计算数学的应用 文献[4,9,12] 从傅里叶分析角度解读深度学习的泛化能力 [1,2,4,17] codecode at github. Toy example of Reasoning
1d example of F-Principle
CondensationWeight condensation: input weights of neurons in a group are same.
Phase diagram of two-layer ReLU NN
Embedding principle
MscaleDNN structure
|