Haitao WANG

Contact

Institute of Natural Sciences, and School of Mathematical Sciences Shanghai Jiao Tong University #315, Build. No.5, Science Buildings No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China

Phone: (+86) 21 5474 2921 Email: haitallica@sjtu.edu.cn and haitaowang.math@gmail.com

Research Interests

Employment

Education

Publications

  1. Y.-C. Lin, H. Wang, and K.-C. Wu: Stability of background perturbation for Boltzmann equation, arXiv:2307.15849, to appear in J. Math. Pures Appl.

  2. H. Wang, S.-H. Yu, and X. Zhang: Compressible Navier-Stokes equation with BV initial data. Part II. Global stability, Bull. Inst. Math. Acad. Sin. (N.S.), 19 (2024), no.4, 251-364.

  3. H. Wang, S.-H. Yu, and X. Zhang: Lamb's Problem, Bull. Inst. Math. Acad. Sin. (N.S.), 19 (2024), no.3, 213-240.

  4. Y.-C. Lin, H. Wang, and K.-C. Wu: Mixture estimate in fractional sense and its application to the well-posedness of the Boltzmann equation with very soft potential, Math. Ann., 387 (2023), no. 3-4, 2061–2103.

  5. H. Wang and X. Zhang: Regularity and uniqueness of the weak solution to isentropic compressible Navier-Stokes equation with BV initial data, Acta Math. Sci. Ser. B, 43 (2023), no. 4, 1675–1716.

  6. H. Wang and X. Zhang: Propagation of rough initial data for Navier-Stoke equation, SIAM J. Math. Anal., 55 (2023), no. 2, 966–1006.

  7. H.-L. Li, H. Tang, and H. Wang: Pointwise wave behavior of the non-isentropic compressible Navier-Stokes equations in half space, Commun. Math. Sci., 21 (2023), no. 3,795–827.

  8. H. Wang, S.-H. Yu, and X. Zhang: Global well-posedness of compressible Navier-Stokes equation with BVL1 initial data, Arch. Ration. Mech. Anal., 245 (2022), no. 1, 375–477.

  9. H.-L. Li, H. Tang, and H. Wang: Pointwise estimates of the solution to one dimensional compressible Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst., 42 (2022), no. 6, 2603–2636.

  10. Y.-C. Lin, M.-J. Lyu, H. Wang, and K.-C. Wu: Space-time behavior of the Boltzmann equation with soft potentials, J. Differential Equations, 322 (2022), 180–236.

  11. Y.-C. Lin, H. Wang, and K.-C. Wu: Spatial behavior of the solution to the linearized Boltzmann equation with hard potentials, J. Math. Phys., 61 (2020), no. 2, 021504, 19 pp.

  12. Y.-C. Lin, H. Wang, and K.-C. Wu: Explicit structure of the Fokker-Planck equation with potential, Quart. Appl. Math., 77 (2019), no. 4, 727–766.

  13. Y.-C. Lin, H. Wang, and K.-C. Wu: Smoothing effects and decay estimate of the solution of the linearized two species Landau equation, Commun. Math. Sci., 16 (2018), no. 8, 2261–2300.

  14. L. Du and H. Wang: Pointwise wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst., 38 (2018), no. 3, 1349–1363.

  15. Y.-C. Lin, H. Wang, and K.-C. Wu: Quantitative pointwise estimate of the solution of the linearized Boltzmann equation, J. Stat. Phys., 171 (2018), no. 5, 927–964.

  16. T.-P. Liu and H. Wang: Viscous scalar rarefaction wave, SIAM J. Math. Anal., 49 (2017), no. 3, 2061–2100.

  17. H. Wang and S.-H. Yu: Algebraic-complex scheme for Dirichlet-Neumann data for parabolic system, Arch. Ration. Mech. Anal., 211 (2014), no. 3, 1013–1026.

Preprints

  1. Y.-C. Lin, H. Wang, and K.-C. Wu: Space-time structure and particle-fluid duality of solutions for Boltzmann equation with hard potentials, arXiv:2411.11253.

  2. Y.-C. Lin, H. Wang, and K.-C. Wu: 3D hard sphere Boltzmann equation: explicit structure and the transition process from polynomial tail to Gaussian tail, arXiv:2408.02183.

  3. H. Wang and K.-C. Wu: Solving linearized Landau equation pointwisely, arXiv:1709.00839.

Teaching

Shanghai Jiao Tong University

National University of Singapore

Referee

Reviewer for Arch. Ration. Mech. Anal., J. Math. Pures Appl., SIAM J. Math. Anal., Acta Appl. Math., Acta Math. Sci., Bull. Inst. Math. Acad. Sin. (N.S.), Commun. Pure Appl. Anal., Kinet. Relat. Models, Internat. J. Math., Math. Methods Appl. Sci., Multiscale Model. Simul., Netw. Heterog. Media, Nonlinear Anal., Res. Math. Sci., Z. Angew. Math. Phys. . . .