publications

2022

  1. A striatal SOM-driven ChAT-iMSN loop generates beta oscillations and produces motor deficits
    Dandan Qian, Wei Li, Jinwen Xue, Yi Wu, Ziling Wang, Tao Shi, Songting Li, Jingxuan Yang, Shi Qiu, Shaoli Wang, Yousheng Shu, Liang Chen, Qiao Wang, Ti-Fei Yuan, Douglas Zhou, and Wei Lu
    Cell Reports, 40(3), 111111, 2022
  2. Improved effective linearization of nonlinear Schrödinger waves by increasing nonlinearity
    Katelyn Plaisier Leisman, Douglas Zhou, J. W. Banks, Gregor Kovačič, and David Cai
    Phys. Rev. Research, 4, L012009, 2022

2021

  1. 计算神经科学
    周栋焯
    计算数学, 43(2), 133, 2021
  2. Maximum Entropy Principle Underlies Wiring Length Distribution in Brain Networks
    Yuru Song, Douglas Zhou, and Songting Li
    Cereb. Cortex, 31(10), 4628–4641, 2021
  3. Mathematical Modeling and Analysis of Spatial Neuron Dynamics: Dendritic Integration and Beyond
    Songting Li, David W. McLaughlin, and Douglas Zhou
    Commun. Pure Appl. Math., 2021
  4. Network mechanism for insect olfaction
    Pamela B. Pyzza, Katherine A. Newhall, Gregor Kovačič, Douglas Zhou, and David Cai
    Cogn. Neurodyn., 15(1), 103–129, 2021

2020

  1. Exponential Time Differencing Algorithm for Pulse-Coupled Hodgkin-Huxley Neural Networks
    Zhong-qi Kyle Tian, and Douglas Zhou
    Front. Comput. Neurosci., 14, 40, 2020
  2. A computational investigation of electrotonic coupling between pyramidal cells in the cortex
    Jennifer Crodelle, Douglas Zhou, Gregor Kovačič, and David Cai
    J. Comput. Neurosci., 48(4), 387–407, 2020
  3. The extended Granger causality analysis for Hodgkin-Huxley neuronal models
    Hong Cheng, David Cai, and Douglas Zhou
    Chaos, 30(10), 103102, 2020
  4. A Combined Offline-Online Algorithm for Hodgkin-Huxley Neural Networks
    Zhong qi Kyle Tian, Jennifer Crodelle, and Douglas Zhou
    J. Sci. Comput., 84(1), 2020
  5. Computational neuroscience: a frontier of the 21st century
    Xiao-Jing Wang, Hailan Hu, Chengcheng Huang, Henry Kennedy, Chengyu Tony Li, Nikos Logothetis, Zhong-Lin Lu, Qingming Luo, Mu-ming Poo, Doris Tsao, Si Wu, Zhaohui Wu, Xu Zhang, and Douglas Zhou
    Natl. Sci. Rev., 7(9), 1414–1418, 2020
  6. Neural networks of different species, brain areas and states can be characterized by the probability polling state
    Zhi Qin John Xu, Xiaowei Gu, Chengyu Li, David Cai, Douglas Zhou, and David W. McLaughlin
    Eur. J. Neurosci., 52(7), 3790–3802, 2020

2019

  1. Modulation-resonance mechanism for surface waves in a two-layer fluid system
    Shixiao W. Jiang, Gregor Kovačič, Douglas Zhou, and David Cai
    Journal of Fluid Mechanics, 875, 807-841, 2019
  2. Effective dispersion in the focusing nonlinear Schrödinger equation
    Katelyn Plaisier Leisman, Douglas Zhou, J. W. Banks, Gregor Kovačič, and David Cai
    Phys. Rev. E, 100, 022215, 2019
  3. Asymmetric behavior of surface waves induced by an underlying interfacial wave
    Shixiao W Jiang, Gregor Kovačič, and Douglas Zhou
    Communications in Mathematical Sciences, 17(5), 1333–1351, 2019
  4. A cautionary tale of entropic criteria in assessing the validity of the maximum entropy principle
    Zhi-Qin John Xu, Fang Xu, Guoqiang Bi, Douglas Zhou, and David Cai
    EPL (Europhysics Letters), 126(3), 38005, 2019
  5. Dendritic computations captured by an effective point neuron model
    Songting Li, Nan Liu, Xiaohui Zhang, David W. McLaughlin, Douglas Zhou, and David Cai
    Proc. Natl. Acad. Sci., 116(30), 15244–15252, 2019
  6. Fast algorithms for simulation of neuronal dynamics based on the bilinear dendritic integration rule
    Wei P. Dai, Songting Li, and Douglas Zhou
    Commun. Math. Sci., 17(5), 1313–1331, 2019
  7. Balanced Active Core in Heterogeneous Neuronal Networks
    Qing-long L. Gu, Songting Li, Wei P. Dai, Douglas Zhou, and David Cai
    Front. Comput. Neurosci., 12, 2019
  8. The role of sparsity in inverse problems for networks with nonlinear dynamics
    Victor J. Barranca, Gregor Kovačič, and Douglas Zhou
    Commun. Math. Sci., 17(5), 1291–1311, 2019
  9. Dynamical and Coupling Structure of Pulse-Coupled Networks in Maximum Entropy Analysis
    Zhi-Qin Xu, Douglas Zhou, and David Cai
    Entropy, 21(1), 76, 2019
  10. A Role for Electrotonic Coupling Between Cortical Pyramidal Cells
    Jennifer Crodelle, Douglas Zhou, Gregor Kovačič, and David Cai
    Front. Comput. Neurosci., 13, 1–13, 2019
  11. Compressive Sensing Inference of Neuronal Network Connectivity in Balanced Neuronal Dynamics
    Victor J. Barranca, and Douglas Zhou
    Front. Neurosci., 13, 1–10, 2019
  12. Emergence of spatially periodic diffusive waves in small-world neuronal networks
    Qinglong L. Gu, Yanyang Xiao, Songting Li, and Douglas Zhou
    Phys. Rev. E, 100(4), 042401, 2019
  13. Maximum entropy principle analysis in network systems with short-time recordings
    Zhi-Qin John Xu, Jennifer Crodelle, Douglas Zhou, and David Cai
    Phys. Rev. E, 99(2), 022409, 2019
  14. Representing conditional Granger causality by vector auto-regressive parameters
    Yanyang Xiao, Songting Li, and Douglas Zhou
    Commun. Math. Sci., 17(5), 1353–1386, 2019

2018

  1. Causal inference in nonlinear systems: Granger causality versus time-delayed mutual information
    Songting Li, Yanyang Xiao, Douglas Zhou, and David Cai
    Phys. Rev. E, 97(5), 052216, 2018
  2. Mechanisms underlying contrast-dependent orientation selectivity in mouse V1
    Wei P. Dai, Douglas Zhou, David W. McLaughlin, and David Cai
    Proc. Natl. Acad. Sci., 115(45), 11619–11624, 2018
  3. The Dynamics of Balanced Spiking Neuronal Networks Under Poisson Drive Is Not Chaotic
    Qing-long L. Gu, Zhong-qi K. Tian, Gregor Kovačič, Douglas Zhou, and David Cai
    Front. Comput. Neurosci., 12, 1–9, 2018
  4. Effects of Firing Variability on Network Structures with Spike-Timing-Dependent Plasticity
    Bin Min, Douglas Zhou, and David Cai
    Front. Comput. Neurosci., 12, 2018

2017

  1. The characterization of hippocampal theta-driving neurons-A time-delayed mutual information approach
    Songting Li, Jiamin Xu, Guifen Chen, Longnian Lin, Douglas Zhou, and David Cai
    Sci. Rep., 7(1), 1–12, 2017
  2. A dynamical state underlying the second order maximum entropy principle in neuronal networks
    Zhi-Qin John Xu, Guoqiang Bi, Douglas Zhou, and David Cai
    Commun. Math. Sci., 15(3), 665–692, 2017
  3. Spike-Triggered Regression for Synaptic Connectivity Reconstruction in Neuronal Networks
    Yaoyu Zhang, Yanyang Xiao, Douglas Zhou, and David Cai
    Front. Comput. Neurosci., 11, 1–13, 2017

2016

  1. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks
    Victor J. Barranca, Douglas Zhou, and David Cai
    Phys. Rev. E, 93(6), 060201, 2016
  2. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state
    Shixiao W Jiang, Haihao Lu, Douglas Zhou, and David Cai
    New Journal of Physics, 18(8), 083028, 2016
  3. Efficient image processing via compressive sensing of integrate-and-fire neuronal network dynamics
    Victor J. Barranca, Gregor Kovačič, Douglas Zhou, and David Cai
    Neurocomputing, 171, 1313–1322, 2016
  4. Granger causality analysis with nonuniform sampling and its application to pulse-coupled nonlinear dynamics
    Yaoyu Zhang, Yanyang Xiao, Douglas Zhou, and David Cai
    Phys. Rev. E, 93(4), 042217, 2016
  5. Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling
    Victor J. Barranca, Gregor Kovačič, Douglas Zhou, and David Cai
    Sci. Rep., 6(1), 31976, 2016

2015

  1. A Novel Characterization of Amalgamated Networks in Natural Systems
    Victor J. Barranca, Douglas Zhou, and David Cai
    Sci. Rep., 5(1), 10611, 2015
  2. Low-rank network decomposition reveals structural characteristics of small-world networks
    Victor J. Barranca, Douglas Zhou, and David Cai
    Phys. Rev. E, 92(6), 062822, 2015
  3. Analysis of the dendritic integration of excitatory and inhibitory inputs using cable models
    Songting Li, Douglas Zhou, and David Cai
    Commun. Math. Sci., 13(2), 565–575, 2015

2014

  1. Bilinearity in Spatiotemporal Integration of Synaptic Inputs
    Songting Li, Nan Liu, Xiao Zhang, Douglas Zhou, and David Cai
    PLoS Comput. Biol., 10(12), 2014
  2. A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony
    Jiwei Zhang, Douglas Zhou, David Cai, and Aaditya V. Rangan
    J. Comput. Neurosci., 37(1), 81–104, 2014
  3. Analysis of sampling artifacts on the Granger causality analysis for topology extraction of neuronal dynamics
    Douglas Zhou, Yaoyu Zhang, Yanyang Xiao, and David Cai
    Front. Comput. Neurosci., 8, 75, 2014
  4. Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks
    Jiwei Zhang, Katherine Newhall, Douglas Zhou, and Aaditya Rangan
    J. Comput. Neurosci., 36(2), 279–295, 2014
  5. Granger Causality Network Reconstruction of Conductance-Based Integrate-and-Fire Neuronal Systems
    Douglas Zhou, Yanyang Xiao, Yaoyu Zhang, Zhiqin Xu, and David Cai
    PLoS One, 9(2), 1-17, 2014
  6. Network dynamics for optimal compressive-sensing input-signal recovery
    Victor J. Barranca, Gregor Kovačič, Douglas Zhou, and David Cai
    Phys. Rev. E, 90(4), 042908, 2014
  7. Reliability of the Granger causality inference
    Douglas Zhou, Yaoyu Zhang, Yanyang Xiao, and David Cai
    New J. Phys., 16(4), 043016, 2014
  8. Sparsity and Compressed Coding in Sensory Systems
    Victor J. Barranca, Gregor Kovačič, Douglas Zhou, and David Cai
    PLoS Comput. Biol., 10(8), 1-11, 2014
  9. Renormalized dispersion relations of β-Fermi-Pasta-Ulam chains in equilibrium and nonequilibrium states
    Shi-xiao W. Jiang, Hai-hao Lu, Douglas Zhou, and David Cai
    Phys. Rev. E, 90, 032925, 2014

2013

  1. Causal and Structural Connectivity of Pulse-Coupled Nonlinear Networks
    Douglas Zhou, Yanyang Xiao, Yaoyu Zhang, Zhiqin Xu, and David Cai
    Phys. Rev. Lett., 111(5), 054102, 2013
  2. Phenomenological Incorporation of Nonlinear Dendritic Integration Using Integrate-and-Fire Neuronal Frameworks
    Douglas Zhou, Songting Li, Xiao-hui Zhang, and David Cai
    PLoS One, 8(1), 1-12, 2013
  3. Spatiotemporal dynamics of neuronal population response in the primary visual cortex
    Douglas Zhou, Aaditya V. Rangan, David W. McLaughlin, and David Cai
    Proc. Natl. Acad. Sci., 110(23), 9517–9522, 2013

2012

  1. Coarse-grained event tree analysis for quantifying Hodgkin-Huxley neuronal network dynamics
    Yi Sun, Aaditya V. Rangan, Douglas Zhou, and David Cai
    J. Comput. Neurosci., 32(1), 55–72, 2012

2010

  1. Spectrum of Lyapunov exponents of non-smooth dynamical systems of integrate-and-fire type
    Douglas Zhou, Yi Sun, Aaditya V. Rangan, and David Cai
    J. Comput. Neurosci., 28(2), 229–245, 2010
  2. Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics
    Yi Sun, Douglas Zhou, Aaditya V. Rangan, and David Cai
    J. Comput. Neurosci., 28(2), 247–266, 2010
  3. Dynamics of current-based, Poisson driven, integrate-and-fire neuronal networks
    Katherine A. Newhall, Gregor Kovačič, Peter R. Kramer, Douglas Zhou, Aaditya V. Rangan, and David Cai
    Commun. Math. Sci., 8(2), 541–600, 2010

2009

  1. Library-based numerical reduction of the Hodgkin-Huxley neuron for network simulation
    Yi Sun, Douglas Zhou, Aaditya V. Rangan, and David Cai
    J. Comput. Neurosci., 27(3), 369–390, 2009
  2. Network-induced chaos in integrate-and-fire neuronal ensembles
    Douglas Zhou, Aaditya V. Rangan, Yi Sun, and David Cai
    Phys. Rev. E, 80(3), 031918, 2009

2008

  1. Numerical simulation of phase separation coupled with crystallization
    Douglas Zhou, An-Chang Shi, and Pingwen Zhang
    The Journal of Chemical Physics, 129(15), 154901, 2008

2006

  1. Modified models of polymer phase separation
    Douglas Zhou, Pingwen Zhang, and Weinan E
    Phys. Rev. E, 73, 061801, 2006